Mechanical Strength, Permeability, and Micromechanics of Municipal Sludge Modified with Calcium-Containing Industrial Solid Waste and Powdered Construction Waste
Abstract
:1. Introduction
2. Materials and Test Methods
2.1. Materials
2.2. Test Methods
2.2.1. Mechanical Properties
2.2.2. Hydraulic Conductivity
2.2.3. Micromechanics
3. Results and Discussions
3.1. Compressive Strength, Volumetric Shrinkage, and Water Content
3.2. Hydraulic Conductivity
3.3. Micromechanics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, X.; Chen, Y.; Xue, Q.; Wan, Y.; Liu, L. Conditioning of resuspension excess sludge with chemical oxidation technology: The respective performance of filtration and expression stage in compression dewatering. Sep. Purif. Technol. 2020, 237, 116317. [Google Scholar] [CrossRef]
- Fu, K.M.; Liao, M.H.; Wang, J.A.; Yang, Z.Y.; Li, H.; Fu, F.G. Present situation on low concentration domestic waster ater in villages and towns and its treatment technology analysis. Environ. Eng. 2019, 37, 5. [Google Scholar]
- Guo, G.H.; Yang, J.; Chen, T.B.; Zheng, G.D.; Gao, D.; Song, B.; Du, W. Concentrations and variation of organic matter and nutrients in municipal sludge of China. China Water Wastewater 2009, 25, 120–121. [Google Scholar]
- Li, Z.H. Current Situation and Development Prospect of Resource Utilization of Construction and Demolition Debris in Shanghai. Environ. Sanit. Eng. 2020, 28, 49–54. [Google Scholar]
- Ministry of Ecology and Environment, PRC. Annual Report on Environmental Prevention and Control of Solid Waste Pollution in Large and Medium-Sized Cities in 2020 [EB/OL]. Available online: http://www.mee.gov.cn (accessed on 28 December 2020).
- Du, G.J. The main problems of the solid waste industry in China’s bulk industry. Resource Recovery 2019, 34–36. [Google Scholar]
- LI, Z.Y. Study of Optimized Distribution of Sludge Curing Agent and Solidification Effect of Sludge; Harbin Institute of Technology: Harbin, China, 2013. [Google Scholar]
- Yang, A.W.; HU, Y.; Yang, S.K. New solidification technology and mechanical properties of municipal sludge. Rock Soil Mech. 2019, 40, 4439–4449. [Google Scholar]
- Yang, A.W.; HU, Y. Study of engineering properties and micromechanism of new municipal sludge solidified soil. Rock Soil Mech. 2018, 39 (Suppl. S1), 69–78. [Google Scholar]
- He, J.; Li, F.; Li, Y. Geotechnical Characteristics of Sewage Sludge for Final Cover of Landfill. Chin. J. Undergr. Space Eng. 2014, 10 (Suppl. S1), 1612–1616. [Google Scholar]
- Li, Y.L.; Yang, J.K.; Yang, C.Z.; Li, Y. Study on durability of landfill disposal of dewatered sludge conditioned by composites based on skeleton builder. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 2013, 41, 76–80. [Google Scholar]
- Liu, M.; Lu, H.; Deng, Q.; Ji, S.; Qin, L.; Wan, Y. Shear strength, water permeability and microstructure of modified municipal sludge based on industrial solid waste containing calcium used as landfill cover materials. Waste Manag. 2022, 145, 20–28. [Google Scholar] [CrossRef]
- Chen, M.; Yang, G.L.; YU, L.Y. Experimental study on solidification and stabilization of polluted silt using fly ash and sodium hydroxide. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 2013, 41, 123–127. [Google Scholar]
- Lin, S.; Chen, J.; Ran, M.; Zhang, C. Geotechnical engineering properties of the solidified sludge soil landfilled in Fuyong Shenzhen, China. Acta Sci. Nat. Alium Univer Sitatis Sunyatseni 2017, 56, 93–99. [Google Scholar]
- Li, L.; Xu, F.; Zhou, L.J.; Bian, B.; Zhang, C. Compression characteristics of solidified sewage sludge. Chin. J. Geotech. Eng. 2015, 37, 171–176. [Google Scholar]
- Yi, J.X.; Li, L.; Cui, M.; Xue, F. Study on compression properties of solidified sludge. Sci. Technol. Eng. 2014, 14, 107–111. [Google Scholar]
- Qian, G.; Cao, Y.; Chui, P.; Tay, J. Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge. J. Hazard. Mater. 2006, 129, 274–281. [Google Scholar] [CrossRef]
- Taki, K.; Choudhary, S.; Gupta, S.; Kumar, M. Enhancement of geotechnical properties of municipal sewage sludge for sustainable utilization as engineering construction material. J. Clean. Prod. 2020, 251, 119723. [Google Scholar] [CrossRef]
- Changjutturas, K.; Hoy, M.; Rashid AS, A.; Horpibulsuk, S.; Arulrajah, A. Solidification and stabilization of metal plating sludge with fly ash geopolymers. Environ. Geotech. 2019, 40, 1–10. [Google Scholar] [CrossRef]
- Sanghwa, O.; Won, S.S. Applicability of solidified/stabilized dye sludge char as a landfill cover material. KSCE J. Civ. Eng. 2017, 21, 2573–2583. [Google Scholar]
- Cai, L. Experimental Study on Mechanical Properties of Silty Soft Soil Modified by Industrial Solid Waste and Residual Soil; Wuhan Polytechnic University: Wuhan, China, 2022. [Google Scholar]
- He, J.; Shi, X.K.; Li, Z.X.; Zhang, L.; Feng, X.Y.; Zhou, L.R. Strength properties of dredged soil at high water content treated with soda residue, carbide slag, and ground granulated blast furnace slag. Constr. Build. Mater. 2020, 242, 118126. [Google Scholar] [CrossRef]
- Cai, G.H.; Zhou, Y.F.; Poon, C.S.; Li, J.S. Engineering performance and microstructure characteristics of natural marine sediment stabilized with quicklime-activated GGBS under different lime proportions. Mar. Georesources Geotechnol. 2022. [Google Scholar] [CrossRef]
- Zhong, Y.Q.; Cai, G.H.; Wang, S.Q.; Qin, H.J.; Zhang, C.H.; Li, J.S. Influence of Organic Content on the Mechanical Properties of Organic-Rich Soils Stabilized with CaO-GGBS Binder and PC. Water 2022, 14, 3053. [Google Scholar] [CrossRef]
- Cai, G.H.; Zhou, Y.F.; Li, J.S.; Poon, C.S. Deep insight into mechanical behavior and microstructure mechanism of quicklime-activated ground granulated blast-furnace slag pastes. Cem. Concr. Compos. 2022, 134, 104767. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, H.; Liu, M.; Cai, L.; Wei, N.; Liu, Y. Microanalytical characterizations, mechanical strength and water resistance performance of solidified dredged sludge with industrial solid waste and architecture residue soil. Case Stud. Constr. Mater. 2022, 17, e01492. [Google Scholar] [CrossRef]
Raw Materials | Main Chemical Composition/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | P2O5 | K2O | SO3 | TiO | Others | |
Municipal sludge | 6.62 | 37.19 | 17.19 | 10.87 | 3.25 | 14.65 | 3.00 | 4.09 | 1.11 | 2.03 |
Construction waste powder | 35.07 | 39.87 | 8.93 | 6.03 | 2.01 | 0.17 | 2.31 | 3.09 | 0.76 | 1.76 |
Slag | 36.82 | 26.75 | 19.66 | 0.32 | 11.10 | 0.36 | 0.29 | 2.65 | 0.94 | 1.11 |
Fly ash | 3.70 | 47.70 | 37.53 | 4.55 | 0.94 | 0.36 | 1.62 | 1.04 | 1.40 | 1.16 |
Desulfurized gypsum | 45.36 | 2.38 | 0.90 | 0.48 | 0.62 | 0.02 | 0.18 | 49.16 | 0.05 | 0.85 |
Sample Number | Construction Waste Powder: Slag: Fly Ash: Desulfurized Gypsum | Construction Waste Powder (%) | Slag (%) | Fly Ash (%) | Desulfurized Gypsum (%) |
---|---|---|---|---|---|
MS1 | 9:5:3:3 | 24.75 | 13.75 | 8.25 | 8.25 |
MS2 | 9:3:2:2 | 30.94 | 10.31 | 6.88 | 6.88 |
MS3 | 9:1:1:1 | 41.25 | 4.58 | 4.58 | 4.58 |
MS4 | 9:5:2:1 | 29.12 | 16.18 | 6.47 | 3.24 |
MS5 | 9:3:1:3 | 30.94 | 10.31 | 3.44 | 10.31 |
MS6 | 9:1:3:2 | 33.00 | 3.67 | 11.00 | 7.33 |
MS7 | 9:5:1:2 | 29.12 | 16.18 | 3.24 | 6.47 |
MS8 | 9:3:3:1 | 30.94 | 10.31 | 10.31 | 3.44 |
MS9 | 9:1:2:3 | 33.00 | 3.67 | 7.33 | 11.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Lu, H.; Liu, M.; He, Y.; Yu, H.; He, B.; Wan, Y. Mechanical Strength, Permeability, and Micromechanics of Municipal Sludge Modified with Calcium-Containing Industrial Solid Waste and Powdered Construction Waste. Water 2023, 15, 91. https://doi.org/10.3390/w15010091
Liu Y, Lu H, Liu M, He Y, Yu H, He B, Wan Y. Mechanical Strength, Permeability, and Micromechanics of Municipal Sludge Modified with Calcium-Containing Industrial Solid Waste and Powdered Construction Waste. Water. 2023; 15(1):91. https://doi.org/10.3390/w15010091
Chicago/Turabian StyleLiu, Yajun, Haijun Lu, Mengyi Liu, Yifan He, Hanxi Yu, Bin He, and Yong Wan. 2023. "Mechanical Strength, Permeability, and Micromechanics of Municipal Sludge Modified with Calcium-Containing Industrial Solid Waste and Powdered Construction Waste" Water 15, no. 1: 91. https://doi.org/10.3390/w15010091
APA StyleLiu, Y., Lu, H., Liu, M., He, Y., Yu, H., He, B., & Wan, Y. (2023). Mechanical Strength, Permeability, and Micromechanics of Municipal Sludge Modified with Calcium-Containing Industrial Solid Waste and Powdered Construction Waste. Water, 15(1), 91. https://doi.org/10.3390/w15010091