Fast Recognition on Shallow Groundwater and Anomaly Analysis Using Frequency Selection Sounding Method
Abstract
:1. Introduction
2. Description of the Study Area
2.1. Physical Environment
2.2. Geological Environment
3. Methodology
4. Results and Discussion
4.1. Results
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, T.C.; Xia, D.L.; Wang, Q.R.; Fu, G.H. Theoretical Research and Application of Natural Electric Field Frequency Selection Method; Central South University Press: Changsha, China, 2017. [Google Scholar]
- Bao, G.S.; Li, D.Q.; Zhang, Y.S.; Wang, S.W. Research on the interfering electric field instrument. Chin. J. Nonferrous Met. 1994, 4, 9–13. [Google Scholar]
- Zhang, J.; Li, K.; Huang, C.L.; Li, Z.Y. Detecting system of underground magneto fluid & application. Comput. Technol. Autom. 2010, 29, 119–122, 136. [Google Scholar]
- Wang, R.G.; Liu, S.Y.; Shangguan, D.H.; Radic, V.; Zhang, Y. Spatial Heterogeneity in Glacier Mass-Balance Sensitivity across High Mounta in Asia. Water 2019, 11, 776. [Google Scholar] [CrossRef] [Green Version]
- Deng, R.J.; Shao, R.; Ren, B.Z.; Hou, B.L.; Tang, Z.E.; Hursthouse, A. Adsorption of Antimony(III) onto Fe(III)-Treated Humus Sludge Adsorbent: Behavior and Mechanism Insights. Pol. J. Environ. Stud. 2019, 28, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ren, B.Z.; Hursthouse, A.; Deng, R.J.; Hou, B.L. Leaching and Releasing Characteristics and Regularities of Sb and As from Antimony Mining Waste Rocks. Pol. J. Environ. Stud. 2019, 28, 4017–4025. [Google Scholar] [CrossRef] [PubMed]
- You, B.; Xu, J.X.; Shi, S.L.; Liu, H.Q.; Lu, Y.; Liang, X.Y. Treatment of coal mine sewage by catalytic supercritical water oxidation. Fresenius Environ. Bull. 2020, 29, 497–502. [Google Scholar]
- Yu, S.Q.; Mo, Q.F.; Chen, Y.Q.; Li, Y.W.; Li, Y.X.; Zou, B.; Xia, H.P.; Jun, W.; Li, Z.A.; Wang, F.M. Effects of seasonal precipitation change on soil respiration processes in a seasonally dry tropical forest. Ecol. Evol. 2020, 10, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.H.; Huang, W.; Wang, C.; Li, X.S.; He, Z.H.; Hursthouse, A.; Zhu, G.C. Variation of Al species during water treatment: Correlation with treatment efficiency under varied hydraulic conditions. AQUA Water Infrastruct. Ecosyst. Soc. 2021, 70, 891–900. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, C.L.; Wang, J.; Zhou, H. Detecting system of underground magneto fluid and its application on mine area flood prevention. Chin. J. Sci. Instrum. 2009, 30 (Suppl. S6), 807–810. [Google Scholar]
- Cheng, H.; Bai, Y.C. Design and application of audio frequency natural electric field instrument. Prog. Geophys. 2014, 29, 2874–2879. [Google Scholar]
- Zhang, K.Y.; Zhou, M.R.; Yan, P.C.; Wang, R. Research of electrical conductivity measurement system based on frequency selection method. Instrum. Tech. Sens. 2015, 42, 65–67. [Google Scholar]
- Zhao, Y.L.; Luo, S.L.; Wang, Y.X.; Wang, W.J.; Zhang, L.Y.; Wan, W. Numerical analysis of karst water inrush and a criterion for establishing the width of water-resistant rock pillars. Mine Water Environ. 2017, 36, 508–519. [Google Scholar] [CrossRef]
- Yang, T.C.; Zhang, Y.P.; Fu, G.H. Application research of comprehensive geophysical method to karst investigaion in a productive mine. Prog. Geophys. 2021, 36, 1145–1153. [Google Scholar]
- Yang, Z.C. The least-square Fourier-series model-based evaluation and forecasting of monthly average water-levels. Environ. Earth Sci. 2018, 77, 328. [Google Scholar] [CrossRef]
- Jin, C.S.; Liu, Y.X.; Li, Z.W.; Gong, R.Z.; Huang, M.; Wen, J.J. Ecological consequences of China’s regional development strategy: Evidence from water ecological footprint in Yangtze River Economic Belt. Environ. Earth Sci. 2018, 77, 328. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Zhang, M.Q.; Ji, M.T.; Wang, Z.H.; Hou, H.; Zhang, J.; Huang, X.; Hursthouse, A.; Qian, G.R. Evaluation of heavy metals stability and phosphate mobility in the remediation of sediment by calcium nitrate. Water Environ. Res. 2020, 92, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Berdychevsky, M.H. Telluric Current Prospecting; China Industrial Press: Beijing, China, 1962. [Google Scholar]
- Pham, V.N.; Boyer, D.; Xue, C.Y.; Liu, S.C. Application of telluric-telluric profiling combined with magnetotelluric and self-potential methods to geothermal exploration in the Fujian Province, China. J. Volcanol. Geotherm. Res. 1995, 65, 227–236. [Google Scholar] [CrossRef]
- Mlynarski, M.; Zlotnicki, J. Fluid circulation in the active emerged Asal rift (east Africa, Djibouti) inferred from self-potential and Telluric-Telluric Prospecting. Tectonophysics 2001, 339, 455–472. [Google Scholar] [CrossRef]
- Deng, R.J.; Jin, C.S.; Ren, B.Z.; Hou, B.L.; Hursthouse, A.S. The Potential for the Treatment of Antimony-Containing Wastewater by Iron-Based Adsorbents. Wate 2017, 9, 794. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.F.; Tan, X.H.; Zhang, L.Y.; Li, Y.J.; Liu, R.H. Influence of particle diameter on the wettability of coal dust and the dust suppression efficiency via spraying. Process Saf. Environ. Prot. 2019, 132, 189–199. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Z.S.; Li, Z.X.; Fu, H.; Chen, G.L.; Feng, T.; Chen, Z. Preparation of magnetic hydrochar derived from iron-rich Phytolacca acinosa Roxb. for Cd removal. Sci. Total Environ. 2021, 769, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.C.; Zhang, H. Study faults by natural electric field frequency selection method. J. Hunan Univ. Sci. Technol. (Nat. Sci. Ed.) 2013, 28, 32–37. [Google Scholar]
- Yang, T.C.; Zhang, H. A study of the anomaly genesis for the frequency selection method in a natural electric field of a karst body. Hydrogeol. Eng. Geol. 2013, 40, 22–28. [Google Scholar]
- Yang, T.C.; Shen, J.P.; Li, G.M.; Cao, Y.J.; Zhang, H. Application and analysis of natural electric field frequency selection method for water-filled karst investigation. Coal Geol. Explor. 2014, 42, 71–75. [Google Scholar]
- Yang, T.C.; Zhang, Q.; Wang, Q.R.; Fu, G.H.; Liao, J.P. Study on the anomaly genesis of the frequency selection method for a sphere under natural electromagnetic field. J. Hunan Univ. Sci. Technol. (Nat. Sci. Ed.) 2016, 31, 58–65. [Google Scholar]
- Chen, Z.C.; Deng, H.Y.; Yang, T.C. The observation and test of the daily variation based on the frequency selection method of natural electtric field. Miner. Eng. Res. 2020, 35, 61–66. [Google Scholar]
- Yang, T.C.; Liang, J.; Cheng, H.; Cao, S.J.; Dong, S.Y.; Gong, Y.F. The effect and the anomaly analysis of shallow groundwater exploration based on the frequency selection method of natural electric field. Geophys. Geochem. Explor. 2018, 42, 1194–1200. [Google Scholar]
- Zhou, Y.Y.; Ren, B.Z.; Hursthouse, A.S.; Zhou, S.J. Antimony Ore Tailings: Heavy Metals, Chemical Speciation, and Leaching Characteristics. Pol. J. Environ. Stud. 2019, 28, 485–495. [Google Scholar] [CrossRef]
- Hou, B.L.; Liu, X.; Li, Z.; Ren, B.Z.; Kuang, Y. Heterogeneous fenton oxidation of butyl xanthate catalyzed by iron-loaded sewage sludge. Fresenius Environ. Bull. 2022, 31, 4125–4131. [Google Scholar]
- Tang, J.T.; Zhou, C.; Xiao, X. Selection of minimum transmit-receive distance of CSAMT on complicated media. Chin. J. Nonferrous Met. 2013, 23, 1681–1693. [Google Scholar]
- Shi, X.Y.; Ren, B.Z.; Hursthouse, A. Source identification and groundwater health risk assessment of PTEs in the stormwater runoff in an abandoned mining area. Environ. Geochem. Health 2022, 44, 3555–3570. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Zhu, G.C. A review on metal organic frameworks (MOFs) modified membrane for remediation of water pollution. Environ. Eng. Res. 2021, 26, 190435. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Zhang, C.S.; Wang, Y.X.; Lin, H. Shear-related roughness classification and strength model of natural rock joint based on fuzzy comprehensive evaluation. Int. J. Rock Mech. Min. Sci. 2021, 137, 104550. [Google Scholar] [CrossRef]
- Liu, J.H.; Zhao, Y.L.; Tan, T.; Zhang, L.Y.; Zhu, S.T.; Xu, F.Y. Evolution and modeling of mine water inflow and hazard characteristics in southern coalfields of China: A case of Meitanba mine. Int. J. Min. Sci. Technol. 2022. [CrossRef]
- Chongo, M.; Christiansen, A.V.; Tembo, A.; Banda, K.E.; Imasiku, A.N.; Larsen, F.; Peter, B.G. Airborne and ground-based transient electromagnetic mapping of groundwater salinity in the Machile-Zambezi Basin, southwestern Zambia. Near Surf. Geophys. 2015, 13, 383–395. [Google Scholar] [CrossRef]
- Ikard, S.; Pease, E. Preferential groundwater seepage in karst terrane inferred from geoelectric measurements. Near Surf. Geophys. 2019, 17, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.J.; Zhang, Z.Z.; Deng, M.; Yan, S.; Bai, J.J. Gob-Side Entry Retained with Soft Roof, Floor, and Seam in Thin Coal Seams: A Case Study. Sustainability 2020, 12, 1197. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, F.Y. Indicative significance of the magnetic susceptibility of substrate sludge to heavy metal pollution of urban lakes. ScienceAsia 2021, 47, 374. [Google Scholar] [CrossRef]
- Yang, J. Experimental results and theoretical study of the stray current method in karst area. Geophys. Geochem. Explor. 1982, 6, 41–54. [Google Scholar]
- Li, Y.C.; Hu, X.X.; Ren, B.Z. Treatment of antimony mine drainage: Challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria. Water Sci. Technol. 2016, 73, 2039–2051. [Google Scholar] [CrossRef]
- Li, Y.C.; Xu, Z.; Ma, H.Q.; Hursthouse, A. Removal of Manganese(II) from Acid Mine Wastewater: A Review of the Challenges and Opportunities with Special Emphasis on Mn-Oxidizing Bacteria and Microalgae. Wate 2019, 11, 2493. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.S.; Jiang, B.Y.; Xue, S.; Chen, Z.W.; Li, H. Coalbed methane emissions and drainage methods in underground mining for mining safety and environmental benefits: A review. Process Saf. Environ. Prot. 2019, 127, 103–124. [Google Scholar] [CrossRef]
- Qin, B.T.; Li, L.; Ma, D.; Lu, Y.; Zhong, X.X.; Jia, Y.W. Control technology for the avoidance of the simultaneous occurrence of a methane explosion and spontaneous coal combustion in a coal mine: A case study. Process Saf. Environ. Prot. 2016, 103, 203–211. [Google Scholar] [CrossRef]
- Liang, J.; Wei, Q.F.; Hong, J.; Zheng, S.Y.; Qin, Y.C.; Yan, F.S.; Feng, Y.X. Application of self-potential method to explore water in karst area. Geotech. Investig. Surv. 2016, 44, 68–78. [Google Scholar]
- Zhao, Y.L.; Liu, Q.; Zhang, C.S.; Liao, J.; Lin, H.; Wang, Y.X. Coupled seepage-damage effect in fractured rock masses: Model development and a case study. Int. J. Rock Mech. Min. Sci. 2021, 144, 104822. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Zhang, L.Y.; Wang, W.J.; Tang, J.Z.; Lin, H.; Wan, W. Transient pulse test and morphological analysis of single rock fractures. Int. J. Rock Mech. Min. Sci. 2017, 91, 139–154. [Google Scholar] [CrossRef]
No. | Borehole Location | Drilling Depth (m) | Spacing MN of Sounding Anomaly (m) | Depth to Water of Borehole (m) | Ratio of MN/Aquifer Depth | |||||
---|---|---|---|---|---|---|---|---|---|---|
County | Town | Village | Hamlet | Range | Mean | Depth Range | Mean | |||
1 | Wuxuan | Tongwan | Huama | Huameng | 82.0 | 60~70 | 65 | 46.1~52.1 | 49.1 | 1.324 |
2 | Ancun | Lukuan | 113.6 | 20~30 | 25 | 20.0~20.5 | 20.3 | 1.235 | ||
3 | 135.2 | 60~80 | 70 | 68.0 | 68.0 | 1.029 | ||||
4 | Guzuo | Lufeng | 105.4 | 80~100 | 90 | 50.3~85.3 | 67.8 | 1.327 | ||
5 | Luxin | Fudan | Team 1–10 | 117.4 | 80~90 | 85 | 70.4~79.0 | 74.7 | 1.138 | |
6 | Wanlong | 110.2 | 40~50, 70~90 | 45 | 52.0~55.0 | 53.5 | 0.841 | |||
7 | Xinxue | Fangxue | 114.5 | 60~70, 80~90 | 65 | 57.6~68.0, 68.0~79.6 | 62.8 | 1.035 | ||
8 | Diyou | Xiaoxue | 112.0 | 20~30, 70~80 | 25 | 30.8~33.6, 71.20~78.0 | 32.2 | 0.776 | ||
9 | Diyou | 109.2 | 70~100 | 85 | 70.0~80.0 | 75.0 | 1.133 | |||
10 | Gubei | 111.6 | 50~60 | 55 | 46.7~48.0 | 47.4 | 1.162 | |||
11 | Gunan | 128.6 | 50~60 | 55 | 74.0~85.0 | 79.5 | 0.692 | |||
12 | Guhang | Xiaoxue | 95.2 | 60~70 | 65 | 69.5~71.3 | 70.4 | 0.923 | ||
13 | Siling | Gantang | Gantang | 100.6 | 34~48 | 41 | 32.8~40.0 | 36.4 | 1.126 | |
14 | Guzhang | Taocun | 120.7 | 60~70, 80~90 | 65 | 62.2~66.6, 73.6~75.8, 101.8~103.2 | 64.4 | 1.009 | ||
15 | Silao | Gutie | 108.7 | 70~80 | 75 | 69.2~90.8 | 80.0 | 0.938 | ||
16 | 98.8 | 30~40 | 35 | 39.2~49.2, 71.2~85.5 | 44.2 | 0.792 | ||||
17 | Ertang | Shuicun | Pingdong | 82.4 | 50~60, 70~80 | 55 | 35.4~56.1, 70.0~72.0 | 45.8 | 1.202 | |
18 | Dalin | Guzhai | 81.0 | 40~50 | 45 | 40.9~45.6 | 43.3 | 1.040 | ||
19 | Boyao | Boyao | 142.8 | 60~80 | 70 | 56.5~65.0, 105.0~115.0 | 60.8 | 1.152 | ||
20 | Jieshou | 127.3 | 30~40, 80~90 | 35 | 43.3~55.9, 92.0~96.7 | 49.6 | 0.706 | |||
21 | Ludang | Yiqiao | 140.9 | 60~70 | 65 | 62.0~75.0 | 68.5 | 0.949 | ||
22 | Ludang | 128.5 | 40~50, 80~90 | 45 | 45.4~65.6, 102.5~107.1 | 55.5 | 0.811 | |||
23 | Dongxiang | Hema | Wuhe | 83.0 | 70~80 | 75 | 64.5~67.6 | 66.05 | 1.136 | |
24 | Lingding | 112.5 | 70~80 | 75 | 70.0~75.0 | 72.5 | 1.034 | |||
25 | Mocun | Mocun | 93.1 | 50~60, 80~90 | 55 | 68.0~69.0, 72.6~74.0 | 68.5 | 0.803 | ||
26 | Mumian | 88.6 | 40~50, 60~70 | 45 | 39.8~45.5 | 42.65 | 1.055 | |||
27 | Liyun | Ludong | 93.0 | 30~40, 50~60 | 35 | 40.5~44.6, 70.0~77.2 | 42.55 | 0.823 | ||
28 | Luoqiao | Nasha | 116.9 | 80~90 | 85 | 86.1~86.4 | 86.25 | 0.986 | ||
29 | Luoqiao | 107.9 | 50~70 | 60 | 54.3~61.0, 78.6~93.5 | 57.65 | 1.041 | |||
30 | Fengyan | Xiafengyan | 138.8 | 40~50, 80~90 | 45 | 44.5~54.0 | 49.25 | 0.914 | ||
31 | Dengsi | Longpu | 122 | 20~30, 40~50, 80~90 | 25 | 33.4~33.9, 33.9~44.1,75.5~87.0 | 33.65 | 0.743 | ||
32 | Jinji | Laishan | Daren | 130.4 | 70~80 | 75 | 54.5~76.8 | 65.65 | 1.142 | |
33 | 128.8 | 60~70, 90~100, 110~120 | 65 | 64.5~78.5, 90.5~115.7 | 71.5 | 0.909 | ||||
34 | Shixiang | Cunweihui | 114.5 | 50~60, 70~90 | 55 | 48.8~56.2, 96.4~104.0 | 52.5 | 1.048 | ||
35 | Daping | Bashou | 120.8 | 20~30, 70~80 | 25 | 22.9~25.3 | 24.1 | 1.037 | ||
36 | 99.8 | 40~60, 70~80 | 50 | 39.3~62.0 | 50.65 | 0.987 | ||||
37 | Tongling | Xianglong | Lubo | 110.0 | 40~50, 70~80 | 45 | 32.7~39.5 | 36.1 | 1.247 | |
38 | Xinlong | Pinglong | 110.5 | 40~60 | 50 | 39.2~70.7 | 54.95 | 0.910 | ||
39 | 133.5 | 20~30, 50~70 | 25 | 24.3~25.4, 64.3~74.8 | 24.85 | 1.006 | ||||
40 | 110.5 | 50~60, 70~80 | 55 | 53.9~77.4 | 65.65 | 0.838 | ||||
41 | Daxiang | Jiuxu | 116.2 | 60~70 | 65 | 60.0~71.0 | 65.5 | 0.992 | ||
42 | Wuxuan | Yacun | Yacun | 97.04 | 80~90 | 85 | 54.2~64.8 | 59.5 | 1.429 | |
43 | Dalu | Matou | 106.8 | 70~80 | 75 | 69.2~87.0 | 78.1 | 0.960 | ||
44 | Xinbeihan | 104.7 | 60~70 | 65 | 47.0~70.2 | 58.6 | 1.109 | |||
45 | 113.3 | 50~60 | 55 | 28.8~35.1, 41.4~49.1 | 45.25 | 1.215 | ||||
46 | 109.5 | 60~70, 80~90 | 65 | 51.0~62.3, 80.5~87.6 | 56.65 | 1.147 | ||||
47 | Qingshui | Qingshui | 84.4 | 40~50 | 45 | 54.5~55.0, 55.0~64.7 | 54.75 | 0.822 | ||
48 | Sanli | Sanjiang | Shiziling | 90.0 | 40~50 | 45 | 50.8~64.0 | 57.4 | 0.784 | |
49 | Guli | Guli | 110.2 | 70~80 | 75 | 61.9~76.0 | 68.95 | 1.088 | ||
50 | Wangcun | Wangcun | 104.5 | 50~60 | 55 | 48.2~68.2 | 58.2 | 0.945 | ||
51 | Wuxing | Longtou | 109.5 | 50~70 | 60 | 66.1~87.9 | 77.0 | 0.779 | ||
52 | 111.7 | 50~60 | 55 | 46.2~52.5 | 49.35 | 1.114 | ||||
53 | Tianliao | 102.3 | 50~70 | 60 | 60.0~80.4 | 70.2 | 0.855 | |||
54 | Wufu | Jiacun 6–7 | 138.6 | 60~70 | 65 | 75.0~85.0 | 80.0 | 0.813 | ||
55 | Xingcun | 120.5 | 80~90 | 85 | 70.9~99.5 | 85.2 | 0.998 | |||
56 | Jiacun 8–10 | 119.8 | 70~80 | 75 | 70.8~94.4 | 82.6 | 0.908 | |||
57 | 112.9 | 60~70, 80~90 | 65 | 60.0~70.0 | 65 | 1.0 | ||||
58 | Changle | Laicun | 80.7 | 40~50 | 45 | 46.0~54.4 | 50.2 | 0.896 | ||
59 | Pingle | Pingle | Taolin | Jiajian | 110.3 | 40~60 | 50 | 53.74~57.4 | 55.57 | 0.900 |
60 | Longwo | Xiaoxue | 135 | 80~100 | 90 | 82.2~102.0 | 92.1 | 0.977 | ||
61 | Zhangjia | Rongjin | Zongxue | 100.3 | 30~50 | 40 | 43.4~47.5 | 45.45 | 0.880 | |
62 | Shuishan | Tianliaochong | 130.1 | 60~70, 100~110 | 65 | 76.3~98.6 | 87.45 | 0.743 | ||
63 | Pengtian | Tangnao | 75.2 | 40~50, 80~90 | 45 | 50.7~75.2 | 62.95 | 0.715 | ||
64 | Ertang | Hongjiang -kou | Laocun | 120.1 | 50~60 | 55 | 50.0~60.0 | 55 | 1.0 | |
65 | 120.1 | 80~90 | 85 | 100.0~105.0 | 102.5 | 0.829 | ||||
66 | 103.0 | 70~110 | 90 | 90.0~100.0 | 95 | 0.947 | ||||
67 | Majia | Xianghuayan | 111.0 | 50~60, 80~90 | 55 | 50.5~57.0, 83.2~84.0 | 53.75 | 1.023 | ||
68 | Qiaoting | Qiaoting | Xinglong | 96.1 | 60~70 | 65 | 75.5~82.4 | 78.95 | 0.823 | |
69 | Yuantou | Jinhua | Nanshe | 83.2 | 70~80 | 75 | 44.7~64.0 | 54.35 | 1.380 | |
70 | Shazi | Anquan | Yangtijing | 120.2 | 70~80 | 75 | 59.0~87.0 | 73.0 | 1.027 | |
71 | Xiezhong | Geshuitang | 102.2 | 40~60 | 50 | 54.0~62.0 | 58.0 | 0.862 | ||
72 | Xiaziling | 112.2 | 80~100 | 90 | 83.6~100.0 | 91.8 | 0.980 | |||
73 | Gong -cheng | Pingan | Beixi | Beixi | 90 | 40~50, 60~70 | 45 | 30.7~39.8, 65.8~90.0 | 35.25 | 1.277 |
74 | Jutang | Niulutou | 82.2 | 30~40, 60~70 | 35 | 47.3~52.1 | 49.7 | 0.704 | ||
75 | Gongcheng | Menlou | Menlou | 95.1 | 60~70, 80~90 | 65 | 60.0~70.0, 83.0~89.0 | 65.0 | 1.0 | |
76 | 105.5 | 50~60, 80~90 | 55 | 38.4~40.5, 82.8~84.0 | 39.45 | 1.394 | ||||
77 | Jiangbei | Jiangbei | 82.2 | 40~50 | 45 | 49.4~61.2 | 55.3 | 0.814 | ||
78 | Longhu | Shizi | Laohulei | 81.3 | 60~80 | 70 | 48.5~55.45 | 51.98 | 1.347 | |
79 | Jiahui | Baiyang | Panlong | 86.1 | 40~60, 80~90 | 50 | 60.5~67.45 | 63.98 | 0.782 | |
80 | Lianhua | Dongzhai | Baima | 83.2 | 40~50, 60~70 | 45 | 54.0~66.0 | 60.0 | 0.750 | |
81 | Dushi | Liaolou | 125.9 | 30~40 | 35 | 36.1~41.8 | 38.95 | 0.899 | ||
82 | Hushan | Liangshan | 81.2 | 40~50 | 45 | 52.4~55.0 | 53.7 | 0.838 | ||
83 | Lianhua | Team 10 | 86.5 | 40~50, 60~70 | 45 | 47.5~50.0 | 48.75 | 0.923 | ||
84 | Jiantou | Shetang | 82.5 | 40~60 | 50 | 55.5~58.0 | 56.75 | 0.881 | ||
85 | Xiling | Xiasong | Mojiaping | 80.3 | 40~50 | 45 | 40.9~54.5 | 47.7 | 0.943 | |
86 | 112.0 | 70~90 | 80 | 101.5~112.0 | 106.75 | 0.749 | ||||
87 | Huwei | Yangliu | 126.6 | 60~70 | 65 | 75.6~93.3 | 84.45 | 0.770 | ||
88 | 109.6 | 50~60, 70~90 | 55 | 60.95~69.88, 96.25~102.13 | 65.42 | 0.841 | ||||
89 | Limu | Liuling | Liuling | 108.1 | 60~70 | 65 | 90.5~99.5 | 95.0 | 0.684 | |
90 | Wufu | Miaoleikou | 114.4 | 60~70 | 65 | 66.6~73.6, 98.1~105.7 | 70.1 | 0.927 | ||
91 | Changjia | Changjia | 119.7 | 40~60, 80~90 | 50 | 53.9~56.3 | 55.1 | 0.907 | ||
92 | Shangguan | Futang | 110.5 | 30~40, 60~80 | 35 | 33.9~35.5 | 34.7 | 1.009 | ||
93 | Chetian | Chetian | 107.3 | 50~70, 90~100 | 60 | 52.5~64.0 | 58.25 | 1.030 | ||
94 | Zhoujia | 83.5 | 40~50 | 45 | 49.0 | 49.0 | 0.918 | |||
95 | Liangxi | Qingshuigou | 119.6 | 40~50, 70~80, 90~100 | 45 | 56.5~59.45 | 57.98 | 0.776 | ||
96 | Taitang | Taitang | 112.4 | 50~60 | 55 | 72.14~74.84 | 73.49 | 0.748 | ||
97 | Qingtang | Shika | Shika Plate Factory | 98.5 | 36~46, 58~60 | 41 | 40.0~43.0 | 41.5 | 0.988 | |
98 | Gangbei | Gangcheng | Guigang Prison | 115.4 | 60~70, 80~90 | 65 | 47.0~47.3 | 47.15 | 1.379 |
ρ1 (Ω·m) | 150 | 100 | 80 | 50 | 40 |
MN of abnormal point position (m) | 36 | 32 | 30 | 24 | 18 |
MN/h0 | 1.20 | 1.07 | 1.00 | 0.80 | 0.60 |
ρ2 (Ω·m) | 4000 | 1500 | 1000 | 800 | 500 |
MN of abnormal point position (m) | 30 | 30 | 28 | 28 | 24 |
MN/h0 | 1.00 | 1.00 | 0.933 | 0.933 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yulong, L.; Tianchun, Y.; Tizro, A.T.; Yang, L. Fast Recognition on Shallow Groundwater and Anomaly Analysis Using Frequency Selection Sounding Method. Water 2023, 15, 96. https://doi.org/10.3390/w15010096
Yulong L, Tianchun Y, Tizro AT, Yang L. Fast Recognition on Shallow Groundwater and Anomaly Analysis Using Frequency Selection Sounding Method. Water. 2023; 15(1):96. https://doi.org/10.3390/w15010096
Chicago/Turabian StyleYulong, Lu, Yang Tianchun, Abdollah Taheri Tizro, and Liu Yang. 2023. "Fast Recognition on Shallow Groundwater and Anomaly Analysis Using Frequency Selection Sounding Method" Water 15, no. 1: 96. https://doi.org/10.3390/w15010096
APA StyleYulong, L., Tianchun, Y., Tizro, A. T., & Yang, L. (2023). Fast Recognition on Shallow Groundwater and Anomaly Analysis Using Frequency Selection Sounding Method. Water, 15(1), 96. https://doi.org/10.3390/w15010096