Divergence in Quantifying ET with Independent Methods in a Primary Karst Forest under Complex Terrain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Data Collection and Processing
2.3. Methods
2.3.1. Eddy Covariance Method
- the latent heat flux based on the EC method (W m−2);
- the fluctuation in the water vapor density (kg m−3);
- latent heat of vaporization (J kg−1);
- the fluctuation in the vertical wind speed (m s−1);
- the sensible heat flux (W m−2);
- the density of dry air (kg m−3);
- specific heat capacity of the dry air (1013 J kg−1 K −1);
- the fluctuation in the air temperature (°C)
2.3.2. Penman–Monteith Combination Equation
- Calculation Of Evapotranspiration
- the latent heat flux based on the PM method (W m−2);
- evapotranspiration based on the PM method (mm time−1);
- net radiation at the surface (W m−2);
- soil heat flux (W m−2);
- slope of the saturation vapor pressure–temperature curve (kPa °C−1);
- latent heat of the vaporization of water (MJ kg−1);
- psychrometer constant (kPa °C−1);
- saturation vapor pressure (kPa);
- actual vapor pressure (kPa);
- saturation vapor pressure deficit (kPa);
- aerodynamic conductance for water vapor (m s−1);
- canopy conductance (m s−1).
- slope of saturation vapor pressure curve at air temperature (kPa °C−1);
- mean air temperature (°C).
- psychrometric constant (kPa °C−1);
- atmospheric pressure (kPa);
- latent heat of vaporization (MJ kg−1);
- air specific heat at constant pressure, 1.013 × 10−3 (MJ kg−1 °C−1);
- ratio of molecular weight of water vapor/dry air ().
- Calculating the vapor dynamic conductivity
- aerodynamic conductance for momentum (m s−1);
- the mean wind speed at the reference height (m s−1);
- friction velocity at the reference height (m s−1).
- where:
- boundary layer resistance to water vapor transport (m s−1);
- boundary layer conductance (m s−1);
- Schmidt number for water vapor (0.67);
- Prandtl number for air (0.71);
- leaf area index (m2 m−2);
- characteristic leaf dimension (0.1 m);
- wind speed at the top of the canopy (m s−1);
- height as a fraction of canopy top height;
- vertical profile of light absorption normalized such that ;
- extinction coefficient for the assumed exponential wind profile, .
- aerodynamic conductance for water vapor (m s−1);
- aerodynamic conductance for momentum (m s−1);
- boundary layer conductance (m s−1).
- Calculation of Canopy Conductance
- leaf stomatal conductance (m s−1);
- saturation vapor pressure deficit (kPa);
- the maximum stomatal conductance of leaves at the top of the canopy;
- the humidity deficit at which stomatal conductance is half its maximum value, = 0.7 kpa;
- the visible radiation flux when stomatal conductance is half its maximum value, = 30 W m−2;
- the extinction coefficient for shortwave radiation, = 0.6;
- the extinction coefficient for available energy, = 0.6;
- PAR the flux density of visible radiation at the top of the canopy (approximately half of incoming solar radiation);
- LAI the leaf area index
- the latent heat flux (W m−2);
- net radiation at the surface (W m−2);
- soil heat flux (W m−2);
- Δ slope of the saturation vapor pressure–temperature curve (kPa K−1);
- psychrometer constant (kPa K−1);
- saturation vapor pressure (kPa);
- actual vapor pressure (kPa);
- saturation vapor pressure deficit (kPa);
- aerodynamic conductance for water vapor (m s−1);
- surface conductance (m s−1).
2.3.3. The Resistance Method
- mean air density at constant pressure (kg m−3);
- air-specific heat at constant pressure (MJ kg−1 °C−1);
- saturation vapor pressure (kPa);
- actual vapor pressure (kPa);
- ( − ) saturation vapor pressure deficit (kPa);
- aerodynamic resistance (m s−1);
- the canopy temperature (K);
- the air temperature (°C).
- E upward long-wave radiation (W );
- ε the emissivity of the object, which is a value between 0 and 1 and is determined by the surface properties of the object;
- σ the Stefan–Boltzmann constant, σ = 5.67 × W/(·);
- the canopy temperature (K).
- mean air density at constant pressure (kg m−3);
- air-specific heat at constant pressure (MJ kg−1 °C−1);
- saturation vapor pressure (kPa);
- actual vapor pressure (kPa);
- saturation vapor pressure deficit (kPa);
- psychrometric constant (kPa °C−1);
- canopy resistance (m s−1);
- aerodynamic resistance (m s−1).
2.3.4. Potential Evapotranspiration
- latent heat of vaporization of water (MJ kg−1);
- potential evapotranspiration (mm day−1);
- net radiation at the crop surface (MJ m−2 day−1);
- soil heat flux (MJ m−2 day−1);
- mean air density at constant pressure (kg m−3);
- air-specific heat at constant pressure (MJ kg−1 °C−1);
- saturation vapor pressure (kPa);
- actual vapor pressure (kPa);
- saturation vapor pressure deficit (kPa);
- slope vapor pressure curve (kPa °C−1);
- psychrometric constant (kPa °C−1);
- canopy resistance (m s−1);
- aerodynamic resistance (m s−1).
2.3.5. Reference Evapotranspiration FAO56
- reference evapotranspiration (mm day−1);
- net radiation at the crop surface (MJ m−2 day−1);
- soil heat flux density (MJ m−2 day−1);
- mean daily air temperature at 2 m height (m s−1);
- wind speed at 2 m height (m s−1);
- saturation vapor pressure (kPa);
- actual vapor pressure (kPa);
- saturation vapor pressure deficit (kPa);
- Δ slope vapor pressure curve (kPa °C−1);
- γ psychrometric constant (kPa °C−1).
2.4. Energy Balance Calculation
3. Results
3.1. Comparison of Independent Methods for Estimating Evapotranspiration
3.1.1. Energy Closure Analysis (EC Method)
3.1.2. Eddy Covariance Method
3.1.3. Comparison between Eddy Covariance and Resistance Methods
3.1.4. Comparing the Eddy Covariance and PM Method
3.2. Surface Conductance Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Symbol | Definition | Units |
latent heat flux based on the EC method | W m−2 | |
fluctuation in the water vapor density | kg m−3 | |
latent heat of vaporization | J kg−1 | |
fluctuation in the vertical wind speed | m s−1 | |
sensible heat flux | W m−2 | |
density of dry air | kg m−3 | |
specific heat capacity of the dry air, 1.013 × 10−3 | MJ kg−1 K −1 | |
fluctuation in the air temperature | ℃ | |
latent heat flux based on the PM method | W m−2 | |
net radiation at the surface | W m−2 | |
soil heat flux | W m−2 | |
slope of the saturation vapor pressure–temperature curve | kPa °C−1 | |
latent heat of vaporization of water | MJ kg−1 | |
psychrometer constant | kPa °C−1 | |
saturation vapor pressure | kPa | |
actual vapor pressure | kPa | |
saturation vapor pressure deficit | kPa | |
aerodynamic conductance for water vapor | m s−1 | |
canopy conductance | m s−1 | |
atmospheric pressure | kPa | |
ratio of molecular weight of water vapor/dry air, | dimensionless | |
aerodynamic conductance for momentum | m s−1 | |
mean wind speed at reference height | m s−1 | |
friction velocity at reference height | m s−1 | |
boundary layer resistance to water vapor transport | s m−1 | |
Schmidt number for water vapor, 0.67 | dimensionless | |
Prandtl number for air, 0.71 | dimensionless | |
leaf area index | dimensionless | |
characteristic leaf dimension, 0.1 m | m | |
height as a fraction of canopy top height | dimensionless | |
vertical profile of light absorption normalized such that | dimensionless | |
extinction coefficient for the assumed exponential wind profile, | dimensionless | |
reference evapotranspiration | mm day−1 |
References
- Bonacci, O.; Pipan, T.; Culver, D.C. A framework for karst ecohydrology. Environ. Geol. 2009, 56, 891–900. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P.D. Karst Hydrogeology and Geomorphology; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Wang, K.; Zhang, C.; Chen, H.; Yue, Y.; Zhang, W.; Zhang, M.; Qi, X.; Fu, Z. Karst landscapes of China: Patterns, ecosystem processes and services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef]
- Ma, N.; Szilagyi, J.; Zhang, Y. Calibration-free complementary relationship estimates terrestrial evapotranspiration globally. Water Resour. Res. 2021, 57, e2021WR029691. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, Y.; Konings, A.G. Evapotranspiration frequently increases during droughts. Nat. Clim. Chang. 2022, 12, 1024–1030. [Google Scholar] [CrossRef]
- Aubinet, M.; Vesala, T.; Papale, D. Eddy Covariance: A practical Guide to Measurement and Data Analysis; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Jaeger, L.; Kessler, A. Twenty Years of Heat and Water Balance Climatology at the Hartheim Pine Forest, Germany. Agric. For. Meteorol. 1997, 84, 25–36. [Google Scholar] [CrossRef]
- Cuenca, R.H.; Stangel, D.E.; Kelly, S.F. Soil Water Balance in a Boreal Forest. J. Geophys. Res. Atmos. 1997, 102, 29355–29365. [Google Scholar] [CrossRef]
- Eastham, J.; Rose, C.W.; Cameron, D.M.; Rance, S.J.; Talsma, T. The Effect of Tree Spacing on Evaporation from an Agroforestry Experiment. Agric. For. Meteorol. 1988, 42, 355–368. [Google Scholar] [CrossRef]
- Katerji, N.; Hallaire, M. Reference measures for use in studies of plant water needs. Agronomie 1984, 4, 999–1008. [Google Scholar] [CrossRef]
- Wullschleger, S.D.; Meinzer, F.; Vertessy, R. A review of whole-plant water use studies in tree. Tree Physiol. 1998, 18, 499–512. [Google Scholar] [CrossRef]
- Clearwater, M.J.; Meinzer, F.C.; Andrade, J.L.; Goldstein, G.; Holbrook, N.M. Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiol. 1999, 19, 681–687. [Google Scholar] [CrossRef]
- Ford, C.R.; Goranson, C.E.; Mitchell, R.J.; Will, R.E.; Teskey, R.O. Diurnal and seasonal variability in the radial distribution of sap flow: Predicting total stem flow in Pinus taeda trees. Tree Physiol. 2004, 24, 951–960. [Google Scholar] [CrossRef]
- Garratt, J. Transfer characteristics for a heterogeneous surface of large aerodynamic roughness. Q. J. R. Meteorol. Soc. 1978, 104, 491–502. [Google Scholar] [CrossRef]
- Thom, A.; Stewart, J.; Oliver, H.; Gash, J. Comparison of aerodynamic and energy budget estimates of fluxes over a pine forest. Q. J. R. Meteorol. Soc. 1975, 101, 93–105. [Google Scholar] [CrossRef]
- Rana, G.; Katerji, N. Evapotranspiration measurement for tall plant canopies: The sweet sorghum case. Theor. Appl. Climatol. 1996, 54, 187–200. [Google Scholar] [CrossRef]
- Baldocchi, D.D. How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Glob. Chang. Biol. 2020, 26, 242–260. [Google Scholar] [CrossRef]
- Mengelkamp, H.-T.; Beyrich, F.; Heinemann, G.; Ament, F.; Bange, J.; Berger, F.; Bösenberg, J.; Foken, T.; Hennemuth, B.; Heret, C. Evaporation over a heterogeneous land surface. Bull. Am. Meteorol. Soc. 2006, 87, 775–786. [Google Scholar] [CrossRef]
- Sellers, P.; Hall, F.; Margolis, H.; Kelly, B.; Baldocchi, D.; den Hartog, G.; Cihlar, J.; Ryan, M.G.; Goodison, B.; Crill, P. The Boreal Ecosystem—Atmosphere Study (BOREAS): An Overview and Early Results from the 1994 Field Year. Bull. Am. Meteorol. Soc. 1995, 76, 1549–1577. [Google Scholar] [CrossRef]
- Foken, T. The energy balance closure problem: An overview. Ecol. Appl. 2008, 18, 1351–1367. [Google Scholar] [CrossRef] [PubMed]
- Twine, T.E.; Kustas, W.; Norman, J.; Cook, D.; Houser, P.; Meyers, T.; Prueger, J.; Starks, P.; Wesely, M. Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef]
- Houborg, R.; Anderson, M.C.; Norman, J.M.; Wilson, T.; Meyers, T. Intercomparison of a ‘bottom-up’and ‘top-down’modeling paradigm for estimating carbon and energy fluxes over a variety of vegetative regimes across the US. Agric. For. Meteorol. 2009, 149, 2162–2182. [Google Scholar] [CrossRef]
- Tanner, C. Energy relations in plant communities. In Environmental Control of Plant Growth; Academic Press: New York, NY, USA; London, UK, 1963; pp. 141–148. [Google Scholar]
- Phillips, G.; Young, M. Energy transport in carbohydrates. Part III. Chemical effects of γ-radiation on the cycloamyloses. J. Chem. Soc. A Inorg. Phys. Theor. 1966, 383–387. [Google Scholar] [CrossRef]
- Jin, M.; Dickinson, R.E. A generalized algorithm for retrieving cloudy sky skin temperature from satellite thermal infrared radiances. J. Geophys. Res. Atmos. 2000, 105, 27037–27047. [Google Scholar] [CrossRef]
- Jarvis, P. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1976, 273, 593–610. [Google Scholar]
- Stewart, J. Modelling surface conductance of pine forest. Agric. For. Meteorol. 1988, 43, 19–35. [Google Scholar] [CrossRef]
- Magnani, F.; Leonardi, S.; Tognetti, R.; Grace, J.; Borghetti, M. Modelling the surface conductance of a broad-leaf canopy: Effects of partial decoupling from the atmosphere. Plant Cell Environ. 1998, 21, 867–879. [Google Scholar] [CrossRef]
- Ogink-Hendriks, M. Modelling surface conductance and transpiration of an oak forest in The Netherlands. Agric. For. Meteorol. 1995, 74, 99–118. [Google Scholar] [CrossRef]
- Tan, Z.-H.; Zhao, J.-F.; Wang, G.-Z.; Chen, M.-P.; Yang, L.-Y.; He, C.-S.; Restrepo-Coupe, N.; Peng, S.-S.; Liu, X.-Y.; da Rocha, H.R. Surface conductance for evapotranspiration of tropical forests: Calculations, variations, and controls. Agric. For. Meteorol. 2019, 275, 317–328. [Google Scholar] [CrossRef]
- Shuttleworth, W.J. Evaporation models in hydrology. In Land Surface Evaporation: Measurement and Parameterization; Springer: New York, NY, USA, 1991; pp. 93–120. [Google Scholar]
- Lanjun, H. Population Distribution Patterns and Interspecific Spatial Associations in Tropical Karst Seasonal Rainforests at Guangxi Nonggang Nature Reserve. Master’s Thesis, Guangxi Normal University, Guilin, China, 2012. [Google Scholar]
- Yunlin, H. Study on Litterfall and Nutrient of Temporal-spatial Dynamics in Nonggang Karst Seasonal Rainforest. Master’s Thesis, Guangxi Normal University, Guilin, China, 2015. [Google Scholar]
- Guo, Y.; Xiang, W.; Wang, B.; Li, D.; Mallik, A.U.; Chen, H.Y.H.; Huang, F.; Ding, T.; Wen, S.; Lu, S.; et al. Partitioning beta diversity in a tropical karst seasonal rainforest in Southern China. Sci. Rep. 2018, 8, 17408. [Google Scholar] [CrossRef]
- Vickers, D.; Mahrt, L. Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Ocean. Technol. 1997, 14, 512–526. [Google Scholar] [CrossRef]
- Kaimal, J.C.; Finnigan, J.J. Atmospheric Boundary Layer Flows: Their Structure and Measurement; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Moncrieff, J.; Massheder, J.; De Bruin, H.; Elbers, J.; Friborg, T.; Heusinkveld, B.; Kabat, P.; Scott, S.; Soegaard, H.; Verhoef, A. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J. Hydrol. 1997, 188, 589–611. [Google Scholar] [CrossRef]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of flux measurements for density effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Wilczak, J.M.; Oncley, S.P.; Stage, S.A. Sonic anemometer tilt correction algorithms. Bound.-Layer Meteorol. 2001, 99, 127–150. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. In Symposia of the Society for Experimental Biology; Cambridge University Press: Cambridge, UK, 1965; pp. 205–234. [Google Scholar]
- Szeicz, G.; Endrödi, G.; Tajchman, S. Aerodynamic and surface factors in evaporation. Water Resour. Res. 1969, 5, 380–394. [Google Scholar] [CrossRef]
- Monteith, J.; Unsworth, M. Principles of Environmental Physics: Plants, Animals, and the Atmosphere; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Verma, S. Aerodynamic resistances to transfers of heat, mass and momentum. Pap. Nat. Resour. 1989, 177, 1211. [Google Scholar]
- Wehr, R.; Commane, R.; Munger, J.W.; McManus, J.B.; Nelson, D.D.; Zahniser, M.S.; Saleska, S.R.; Wofsy, S.C. Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake. Biogeosciences 2017, 14, 389–401. [Google Scholar] [CrossRef]
- Thom, A. Momentum, mass and heat exchange of vegetation. Q. J. R. Meteorol. Soc. 1972, 98, 124–134. [Google Scholar] [CrossRef]
- Wesely, M.; Hicks, B.; Dannevik, W.; Frisella, S.; Husar, R. An eddy-correlation measurement of particulate deposition from the atmosphere. Atmos. Environ. 1977, 11, 561–563. [Google Scholar] [CrossRef]
- Noilhan, J.; Planton, S. A simple parameterization of land surface processes for meteorological models. Mon. Weather Rev. 1989, 117, 536–549. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, J.; Zhang, S.; Yao, F.; Magliulo, V. A remote sensing-based two-leaf canopy conductance model: Global optimization and applications in modeling gross primary productivity and evapotranspiration of crops. Remote Sens. Environ. 2018, 215, 411–437. [Google Scholar] [CrossRef]
- Brown, K.; Rosenberg, N.J. A Resistance Model to Predict Evapotranspiration and Its Application to a Sugar Beet Field 1. Agron. J. 1973, 65, 341–347. [Google Scholar] [CrossRef]
- Boltzmann, L. Derivation of Stefan’s law, concerning the dependence of thermal radiation on temperature from the electromagnetic theory of light= Ableitung des Stefan’schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie. Ann. Phys. 1884, 258, 291–294. [Google Scholar]
- Stefan, J. Uber die beziehung zwischen der warmestrahlung und der temperatur, sitzungsberichte der mathematisch-naturwissenschaftlichen classe der kaiserlichen. Akad. Wiss. 1879, 79, S391–S428. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Germany, 1998; Volume 300, p. D05109. [Google Scholar]
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef]
- Hollinger, D.; Goltz, S.; Davidson, E.; Lee, J.; Tu, K.; Valentine, H. Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest. Glob. Chang. Biol. 1999, 5, 891–902. [Google Scholar] [CrossRef]
- Anthoni, P.M.; Law, B.E.; Unsworth, M.H. Carbon and water vapor exchange of an open-canopied ponderosa pine ecosystem. Agric. For. Meteorol. 1999, 95, 151–168. [Google Scholar] [CrossRef]
- Wilson, K.B.; Baldocchi, D.D. Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agric. For. Meteorol. 2000, 100, 1–18. [Google Scholar] [CrossRef]
- Stannard, D.; Blanford, J.; Kustas, W.P.; Nichols, W.; Amer, S.; Schmugge, T.; Weltz, M. Interpretation of surface flux measurements in heterogeneous terrain during the Monsoon’90 experiment. Water Resour. Res. 1994, 30, 1227–1239. [Google Scholar] [CrossRef]
- Mahrt, L. Flux sampling errors for aircraft and towers. J. Atmos. Ocean. Technol. 1998, 15, 416–429. [Google Scholar] [CrossRef]
- Mauder, M.; Oncley, S.P.; Vogt, R.; Weidinger, T.; Ribeiro, L.; Bernhofer, C.; Foken, T.; Kohsiek, W.; De Bruin, H.A.; Liu, H. The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods. Bound.-Layer Meteorol. 2007, 123, 29–54. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, B.; Wei, Y.; He, F.; Lv, F.; Li, D.; Huang, F.; Guo, Y.; Xiang, W.; Li, X. Leaf micromorphological, photosynthetic characteristics and their ecological adaptability of dominant tree species in a karst seasonal rain forest in Guangxi, China. Guihaia 2023, 42, 415–428. [Google Scholar]
- Kelliher, F.M.; Leuning, R.; Raupach, M.; Schulze, E.-D. Maximum conductances for evaporation from global vegetation types. Agric. For. Meteorol. 1995, 73, 1–16. [Google Scholar] [CrossRef]
- Leuning, R. Modelling stomatal behaviour and and photosynthesis of Eucalyptus grandis. Funct. Plant Biol. 1990, 17, 159–175. [Google Scholar] [CrossRef]
- Franssen, H.H.; Stöckli, R.; Lehner, I.; Rotenberg, E.; Seneviratne, S.I. Energy balance closure of eddy-covariance data: A multisite analysis for European FLUXNET stations. Agric. For. Meteorol. 2010, 150, 1553–1567. [Google Scholar] [CrossRef]
- Siedlecki, M.; Pawlak, W.; Fortuniak, K. Eddy covariance observations and FAO Penman-Monteith modelling of evapotranspiration over a heterogeneous farmland area. Meteorol. Z. 2022, 31, 227–242. [Google Scholar] [CrossRef]
- Pauwels, V.R.; Samson, R. Comparison of different methods to measure and model actual evapotranspiration rates for a wet sloping grassland. Agric. Water Manag. 2006, 82, 1–24. [Google Scholar] [CrossRef]
- Shi, T.T.; Guan, D.X.; Wu, J.B.; Wang, A.Z.; Jin, C.J.; Han, S.J. Comparison of methods for estimating evapotranspiration rate of dry forest canopy: Eddy covariance, Bowen ratio energy balance, and Penman-Monteith equation. J. Geophys. Res. Atmos. 2008, 113, D19116. [Google Scholar] [CrossRef]
- Dolman, A.J.; Gash, J.H.; Roberts, J.; Shuttleworth, W.J. Stomatal and surface conductance of tropical rainforest. Agric. For. Meteorol. 1991, 54, 303–318. [Google Scholar] [CrossRef]
- Sugita, M.; Usui, J.; Tamagawa, I.; Kaihotsu, I. Complementary relationship with a convective boundary layer model to estimate regional evaporation. Water Resour. Res. 2001, 37, 353–365. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Liu, W.; Zheng, L.; Liu, S.; Zhang, A.; Wang, P.; Jin, Y.; Liu, Q.; Song, B. Divergence in Quantifying ET with Independent Methods in a Primary Karst Forest under Complex Terrain. Water 2023, 15, 1823. https://doi.org/10.3390/w15101823
Li Q, Liu W, Zheng L, Liu S, Zhang A, Wang P, Jin Y, Liu Q, Song B. Divergence in Quantifying ET with Independent Methods in a Primary Karst Forest under Complex Terrain. Water. 2023; 15(10):1823. https://doi.org/10.3390/w15101823
Chicago/Turabian StyleLi, Qingyun, Wenjie Liu, Lu Zheng, Shengyuan Liu, Ang Zhang, Peng Wang, Yan Jin, Qian Liu, and Bo Song. 2023. "Divergence in Quantifying ET with Independent Methods in a Primary Karst Forest under Complex Terrain" Water 15, no. 10: 1823. https://doi.org/10.3390/w15101823
APA StyleLi, Q., Liu, W., Zheng, L., Liu, S., Zhang, A., Wang, P., Jin, Y., Liu, Q., & Song, B. (2023). Divergence in Quantifying ET with Independent Methods in a Primary Karst Forest under Complex Terrain. Water, 15(10), 1823. https://doi.org/10.3390/w15101823