Effect of Diclofenac Concentration on Activated Sludge Conditions in a Biological Wastewater Treatment Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Analytical Methods
3. Results and Discussion
3.1. Respirometric Measurements
3.2. Dephosphatation, Nitrification and Denitrification
3.3. Fermentation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AUR | ammonia uptake rate |
BOD | biological oxygen demand |
C/N/P | carbon/nitrogen/phosphorous |
COD | chemical oxygen demand |
DCF | diclofenac |
EC50 | the concentration representing the acute toxicity of the compound to various aquatic organisms |
OUR | oxygen uptake rate |
NSAID | non-steroidal anti-inflammatory drug |
NUR | nitrogen uptake rate |
PAO | phosphate accumulating organisms |
SBR | anaerobic/aerobic sequencing batch reactor |
TS | total solids |
VS | volatile solids |
WWTP | wastewater treatment plant |
References
- Arlos, M.J.; Bragg, L.M.; Parker, W.J.; Servos, M.R. Distribution of selected anti androgens and pharmaceuticals in a highly impacted watershed. Water Res. 2014, 72, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Biel-Maeso, M.; Baena-Nogueras, R.M.; Corada-Fernández, C.; Lara-Martín, P.A. Occurrence, distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and ocean waters from the Gulf of Cadiz (SW Spain). Sci. Total Environ. 2018, 612, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Undeman, E. Diclofenac in the Baltic Sea—Sources, Transport Routes and Trends. Balt. Sea Environ. Proc. 2020, 170, 1–24. Available online: https://helcom.fi/wp-content/uploads/2020/06/Helcom_170_Diclofenac.pdf (accessed on 29 December 2022).
- Chyc, M.; Sawczak, J.; Wiąckowski, K. Occurence of pharmaceuticals in surface waters. Sci. Technol. Innov. 2020, 9, 40–46. [Google Scholar] [CrossRef]
- Äystö, L.; Siimes, K.; Junttila, V.; Joukola, M.; Liukko, N. Emissions and Environmental Levels of Pharmaceuticals—Upscaling to the Baltic Sea Region. Project CWPharma Activity 2.3 Report. 2020. Available online: http://hdl.handle.net/10138/321722 (accessed on 29 December 2022).
- Kołecka, K.; Gajewska, M.; Cytawa, S.; Stepnowski, P.; Caban, M. Is sequential batch reactor an efficient technology to protect recipient against non-steroidal anti-inflammatory drugs and paracetamol in treated wastewater? Bioresour. Technol. 2020, 318, 124068. [Google Scholar] [CrossRef]
- Dobrzycka-Krahel, A.; Bogalecka, M. The Baltic Sea under Anthropopressure—The Sea of Paradoxes. Water 2022, 14, 3772. [Google Scholar] [CrossRef]
- HELCOM. Ecosystem health of the Baltic Sea 2003–2007. Balt. Sea Environ. Proc. 2010, 122, 1–121. Available online: https://www.helcom.fi/wp-content/uploads/2019/08/BSEP149.pdf (accessed on 29 December 2022).
- HELCOM. Biodiversity in the Baltic Sea—An Integrated Thematic Assessment on Biodiversity and Nature Conservation in the Baltic Sea: Executive Summary. Balt. Sea Environ. Proc. 2009, 116A, 1–24. Available online: https://helcom.fi/wp-content/uploads/2019/08/BSEP116A.pdf (accessed on 29 December 2022).
- Vieno, N.; Hallgren, P.; Wallberg, P.; Pyhala, M.; Zandarya, S. Pharmaceuticals in the Aquatic Environment of the Baltic Sea Region—A Status Report UNESCO Emerging Pollutants in Water Series—No. 1; UNESCO Publishing: Paris, France, 2017. [Google Scholar]
- Fan, H.; Li, J.; Zhang, L.; Feng, L. Contribution of sludge adsorption and biodegradation to the removal of five pharmaceuticals in a submerged membrane bioreactor. Biochem. Eng. J. 2014, 88, 101–107. [Google Scholar] [CrossRef]
- Carballa, M.; Omil, F.; Lema, J.M.; Llompart, M.; García-Jares, C.; Rodríguez, I.; Gómez, M.; Ternes, T. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res. 2004, 38, 2918–2926. [Google Scholar] [CrossRef]
- Díaz-Cruz, S.; Barceló, D. Occurrence and analysis of selected pharmaceuticals and metabolites as contaminants present in waste waters, sludge and sediments. In Series Anthropogenic Compounds. The Handbook of Environmental Chemistry; Barceló, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 5, pp. 227–260. [Google Scholar] [CrossRef]
- Gworek, B.; Kijeńska, M.; Wrzosek, J.; Graniewska, M. Pharmaceuticals in the Soil and Plant Environment: A Review. Water Air Soil Pollut. 2021, 232, 145. [Google Scholar] [CrossRef]
- EC (European Commission). Report from the Commission to the European Parliament and the Council on the Outcome of the Review of Annex X to Directive 2000/60/EC of the European Parliament and of the Council on Priority Substances in the Field of Water Policy. 2012. Available online: https://www.parliament.bg/pub/ECD/114884COM_2011_875_EN_ACTE_f.pdf (accessed on 29 December 2022).
- EU. Groundwater Watch List: Pharmaceuticals Pilot Study. 2016. Available online: https://circabc.europa.eu/w/browse/a1e23792-6ecd-4b34-b86c-dcb6f1c7ad1c (accessed on 29 December 2022).
- Roberts, P.H.; Thomas, K.V. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci. Total Environ. 2006, 356, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, S.; Bagnati, R.; Calamari, D.; Fanelli, R.; Zuccato, E. A multiresidue analytical method using solid-phase extraction and high-pressure liquid chromatography tandem mass spectrometry to measure pharmaceuticals of different therapeutic classes in urban wastewaters. J. Chromatogr. A 2005, 1092, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.N.; Nghiem, L.D.; Pramanik, B.K.; Oh, D. Cometabolic biotransformation and impacts of the anti-inflammatory drug diclofenac on activated sludge microbial communities. Sci. Total Environ. 2019, 657, 739–745. [Google Scholar] [CrossRef]
- Drzymała, J.; Kalka, J. Ecotoxic interactions between pharmaceuticals in mixtures: Diclofenac and sulfamethoxazole. Chemosphere 2020, 259, 127407. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.; Marinov, D.; Sanseverino, I.; Napierska, D.; Lettieri, T. Review of the 1st Watch List under the Water Framework Directive and Recommendations for the 2nd Watch List; European Commission: Luxembourg, 2018. [Google Scholar]
- EU. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32013L0039 (accessed on 29 December 2022).
- Zauska, L.; Bova, S.; Benova, E.; Bednarcik, J.; Balaz, M.; Zelenak, V.; Hornebecq, V.; Almasi, M. Thermosensitive Drug Delivery System SBA-15-PEI for Controlled Release of Nonsteroidal Anti-Inflammatory Drug Diclofenac Sodium Salt: A Comparative Study. Materials 2021, 14, 1880. [Google Scholar] [CrossRef]
- Meyer, W.; Reich, M.; Beier, S.; Behrendt, J.; Gulyas, H.; Otterpohl, R. Measured and predicted environmental concentrations of carbamazepine, diclofenac, and metoprolol in small and medium rivers in northern Germany. Environ. Monit. Assess. 2016, 188, 487. [Google Scholar] [CrossRef] [PubMed]
- Lonappan, L.; Brar, S.K.; Das, R.K.; Verma, M.; Surampalli, R.Y. Diclofenac and its transformation products: Environmental occurrence and toxicity—A review. Environ. Int. 2016, 96, 127–138. [Google Scholar] [CrossRef]
- EMA (European Medicines Agency). Diclofenac Summary Report. 2003. Available online: https://www.ema.europa.eu/en/documents/mrl-report/diclofenac-summary-report-committee-veterinary-medicinal-products_en.pdf (accessed on 29 December 2022).
- Kraigher, B.; Kosjek, T.; Heath, E.; Kompare, B.; Mandic-Mulec, I. Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Res. 2008, 42, 4578–4588. [Google Scholar] [CrossRef]
- Bort, R.; Macé, K.; Boobis, A.; Gómez-Lechón, M.J.; Pfeifer, A.; Castell, J. Hepatic metabolism of diclofenac: Role of human CYP in the minor oxidative pathways. Biochem. Pharmacol. 1999, 58, 787–796. [Google Scholar] [CrossRef]
- Buser, H.R.; Poiger, T.; Müller, M.D. Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: Rapid photodegradation in a lake. Environ. Sci. Technol. 1998, 32, 3449–3456. [Google Scholar] [CrossRef]
- EEA (European Environmental Agency). Pharmaceuticals in the Environment. EEA Technical Report 1/2010. Available online: http://www.eea.europa.eu/publications/pharmaceuticals-in-the-environment-result-of-an-eea-workshop.pdf (accessed on 29 December 2022).
- Oaks, J.L.; Gilbert, M.; Virani, M.Z.; Watson, R.T.; Meteyer, C.U.; Rideout, B.A.; Shivaprasad, H.L.; Ahmed, S.; Chaudhry, M.J.; Arshad, M.; et al. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 2004, 427, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Fedrizzi, D.; Kosfeld, V.; Schlechtriem, C.; Ganz, V.; Derrer, S.; Rentsch, D.; Hollender, J. Biotransformation Changes Bioaccumulation and Toxicity of Diclofenac in Aquatic Organisms. Environ. Sci. Technol. 2020, 54, 4400–4408. [Google Scholar] [CrossRef] [PubMed]
- Dastidar, S.G.; Ganguly, K.; Chaudhuri, K.; Chakrabarty, A.N. The anti-bacterial action of diclofenac shown by inhibition of DNA synthesis. Int. J. Antimicrob. Agents 2000, 14, 249–251. [Google Scholar] [CrossRef]
- Paje, M.; Kuhlicke, U.; Winkler, M.; Neu, T. Inhibition of lotic biofilms by Diclofenac. Appl. Microbiol. Biotechnol. 2002, 59, 488–492. [Google Scholar] [CrossRef]
- Felis, E.; Ledakowicz, S.; Miksch, K. Zmiany biochemicznych właściwości osadu czynnego pod wpływem niesteroidowych leków przeciwzapalnych. Inżynieria I Apar. Chem. 2009, 3, 48–49. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi8m9zW2cT8AhVyhosKHdzPAtMQFnoECAgQAQ&url=https%3A%2F%2Fbibliotekanauki.pl%2Farticles%2F2070490.pdf&usg=AOvVaw2wahjJp1fDlOQXUIoByWd8 (accessed on 29 December 2022).
- Grandclément, C.; Piram, A.; Petit, M.E.; Seyssiecq, I.; Laffont-Schwob, I.; Vanot, G.; Tiliacos, N.; Roche, N.; Doumenq, P. Biological removal and fate assessment of diclofenac using Bacillus subtilis and Brevibacillus laterosporus strains and ecotoxicological effects of diclofenac and 49-hydroxy-diclofenac. J. Chem. 2020, 2020, 9789420. [Google Scholar] [CrossRef]
- Dong, X.; He, Y.; Peng, X.; Jia, X. Triclosan in contact with activated sludge and its impact on phosphate removal and microbial community. Bioresour. Technol. 2021, 329, 124144. [Google Scholar] [CrossRef]
- Liu, S.; Chen, D.; Wang, Z.; Zhang, M.; Zhu, M.; Yin, M.; Zhang, T.; Wang, X. Shifts of bacterial community and molecular ecological network in activated sludge system under ibuprofen stress. Chemosphere 2022, 295, 133888. [Google Scholar] [CrossRef]
- Katsou, E.; Alvarino, T.; Malamis, S.; Suarez, S.; Frison, N.; Omil, F.; Fatone, F. Effects of selected pharmaceuticals on nitrogen and phosphorus removal bioprocesse. Chem. Eng. J. 2016, 295, 509–517. [Google Scholar] [CrossRef]
- Jiang, C.; Geng, J.; Hu, H.; Ma, H.; Gao, X.; Ren, H. Impact of selected non-steroidal anti-inflammatory pharmaceuticals on microbial community assembly and activity in sequencing batch reactors. PLoS ONE 2017, 12, e0179236. [Google Scholar] [CrossRef] [PubMed]
- Haiba, E.; Nei, L.; Kutti, S.; Lillenberg, M.; Herodes, K.; Ivask, M.; Kipper, K.; Aro, R.; Laaniste, A. Degradation of Diclofenac and Triclosan Residues in Sewage Sludge Compost. Agron. Res. 2017, 15, 395–405. Available online: https://agronomy.emu.ee/wp-content/uploads/2017/05/Vol15nr2_Haiba.pdf (accessed on 29 December 2022).
- Lin, K.; Gan, J. Sorption and degradation of wastewater-associated non-steroidal anti-inflammatory drugs and antibiotics in soils. Chemosphere 2011, 83, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Al-Rajab, A.J.; Sabourin, L.; Lapen, D.R.; Topp, E. The non-steroidal anti-inflammatory drug diclofenac is readily biodegradable in agricultural soils. Sci. Total Environ. 2010, 409, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Langas, V.; Garnaga-Budrė, G.; Björklund, E.; Svahn, O.; Tränckner, J.; Kaiser, A.; Luczkiewicz, A. Determination of the Regional Pharmaceutical Burden in 15 Selected WWTPs and Associated Water Bodies Using Chemical Analysis: Status in Four Coastal Regions of the South Baltic Sea; Germany, Lithuania, Poland and Sweden. European Union Interreg South Baltic Programme. 2019. Available online: https://eucc-d-inline.databases.eucc-d.de/files/documents/00001235_morpheus_deliverable_4.1_pharmaceutical_burden.pdf (accessed on 29 December 2022).
- Kincl, M.; Meleh, M.; Veber, M.; Vrečer, F. Study of Physicochemical Parameters Affecting the Release of Diclofenac Sodium from Lipophilic Matrix Tablets. Acta Chim. Slov. 2004, 51, 409–425. Available online: http://acta-arhiv.chem-soc.si/51/51-3-409.pdf (accessed on 29 December 2022).
- Vieno, N.; Sillanpää, M. Fate of diclofenac in municipal wastewater treatment plant—A review. Environ. Int. 2014, 69, 28–39. [Google Scholar] [CrossRef]
- Kehrein, N.; Berlekamp, J.; Klasmeier, J. Modeling the fate of down the-drain chemicals in whole watersheds: New version of the GREAT-ER software. Environ. Model. Softw. 2015, 64, 1–8. [Google Scholar] [CrossRef]
- Radjenovic, J.; Petrovic, M.; Ventura, F.; Barcelo, D. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 2008, 42, 3601–3619. [Google Scholar] [CrossRef]
- Jelic, A.; Gros, M.; Ginebreda, A.; Cespedes-Sanchez, R.; Ventura, F.; Petrovic, M.; Barcelo, D. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res. 2011, 45, 1165–1176. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473, 619–641. [Google Scholar] [CrossRef]
- Kasprzyk-Horderna, B.; Dinsdale, R.M.; Guwy, A.J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res. 2009, 43, 363–380. [Google Scholar] [CrossRef]
- O’Flaherty, E.; Gray, N.F. A comparative analysis of the characteristics of a range of real and synthetic wastewaters. Environ Sci. Pollut. Res. 2013, 20, 8813–8830. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; Method 2540D; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Orupõld, K.; Hellat, K.; Tenno, T. Estimation of treatability of different industrial wastewaters by activated sludge oxygen uptake measurements. Water Sci. Tech. 1999, 40, 31–36. [Google Scholar] [CrossRef]
- Hagman, M.; Jansen, J.C. Oxygen uptake rate measurements for application at wastewater treatment plant. VATTEN 2007, 63, 131–138. [Google Scholar] [CrossRef]
- Kristensen, G.H.; Jørgensen, P.E.; Henze, M. Characterization of Functional Microorganism Groups and Substrate in Activated Sludge and Wastewater by AUR, NUR and OUR Water. Sci. Tech. 1992, 25, 43–57. [Google Scholar] [CrossRef]
- Liwarska-Bizukojc, M.E.; Bizukojć, S. Ledakowicz Denitrification in the Activated Sludge Systems: Study of the Kinetics. Archit. Civ. Eng. Environ. 2012, 5, 101–108. Available online: http://www.acee-journal.pl (accessed on 29 December 2022).
- Hejna, M.; Kapuścińska, D.; Aksmann, A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. Int. J. Environ. Res. Public Health 2022, 19, 7717. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, B.; Paxeus, N.; Giudice, R.L.; Pollio, A.; Garric, J. Ecotoxicological impact of pharmaceuticals found in treated wastewaters, study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol. Environ. Saf. 2003, 55, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Hillis, D.; Antunes, P.; Sibley, P.; Klironomos, J.; Solomon, K. Structural responses of Daucus carota root-organ cultures and the arbuscular mycorrhizal fungus, Glomus intraradices, to 12 pharmaceuticals. Chemosphere 2008, 73, 344–352. [Google Scholar] [CrossRef]
- Hallare, A.V.; Köhler, H.R.; Triebskorn, R. Developmental toxicity and stress protein responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemosphere 2004, 56, 659–666. [Google Scholar] [CrossRef]
- Triebskorn, R.; Casper, H.; Heyd, A.; Eikemper, R.; Köhler, H.-R.; Schwaiger, J. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part II: Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicol. 2004, 68, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Triebskorn, R.; Casper, H.; Scheil, V.; Schwaiger, J. Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Anal. Bioanal. Chem. 2007, 387, 1405–1416. [Google Scholar] [CrossRef]
- Mehinto, A.C.; Hill, E.M.; Tyler, C.R. Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (Oncorhynchus mykiss). Environ. Sci. Technol. 2010, 44, 2176–2182. [Google Scholar] [CrossRef] [PubMed]
- Fent, K. Effects of pharmaceuticals on aquatic organisms. In Pharmaceuticals in the Environment—Sources, Fate, Effects and Risks; Kümmerer, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 174–203. [Google Scholar] [CrossRef]
- Memmert, U.; Peither, A.; Burri, R.; Weber, K.; Schmidt, T.; Sumpter, J.P.; Hartmann, A. Diclofenac: New data on chronic toxicity and bioconcentration in fish. Environ. Toxicol. Chem. 2013, 32, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Osorio, V.; Sanchís, J.; Abad, J.L.; Ginebreda, A.; Farré, M.; Pérez, S.; Barceló, D. Investigating the formation and toxicity of nitrogen transformation products of diclofenac and sulfamethoxazole in wastewater treatment plants. J. Hazard. Mater. 2016, 309, 157–164. [Google Scholar] [CrossRef]
- Van Niel, E.W.; Appeldoorn, K.J.; Zehnder, A.J.; Kortstee, G.J. Inhibition of anaerobic phosphate release by nitric oxide in activated sludge. Appl. Environ. Microbiol. 1998, 64, 2925–2930. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Stensel, D.; Tsuchihashi, R.; Burton, F. (Eds.) Wastewater Engineering. In Treatment and Resource Recovery; McGraw-Hill: New York, NY, USA, 2014; ISBN 978-0073401188. [Google Scholar]
Sample | S1 | 1 mg/gTS | 1 mg/gTS | S2 | 0.25 mg/ gTS | 0.5 mg/ gTS | 3.0 mg/ gTS |
---|---|---|---|---|---|---|---|
AUR | 0.013 | 0.009 | 0.010 | 0.015 | 0.016 | 0.014 | 0.022 |
NUR | 0.671 | 0.079 | 0.061 | 0.076 | 0.086 | 0.066 | 0.082 |
Accumulation DCF in Sludge | Biogas Potential (BP) | Methane Content in Biogas |
---|---|---|
[mg DCF/g TS] | [m3/Mg TS] | [%] |
0 | 119.1 | 61 |
0.0065 | 149.4 | 60 |
0.0130 | 209.1 | 60 |
0.0262 | 125.7 | 62 |
0.0391 | 79.7 | 61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dereszewska, A.; Cytawa, S. Effect of Diclofenac Concentration on Activated Sludge Conditions in a Biological Wastewater Treatment Plant. Water 2023, 15, 1838. https://doi.org/10.3390/w15101838
Dereszewska A, Cytawa S. Effect of Diclofenac Concentration on Activated Sludge Conditions in a Biological Wastewater Treatment Plant. Water. 2023; 15(10):1838. https://doi.org/10.3390/w15101838
Chicago/Turabian StyleDereszewska, Alina, and Stanislaw Cytawa. 2023. "Effect of Diclofenac Concentration on Activated Sludge Conditions in a Biological Wastewater Treatment Plant" Water 15, no. 10: 1838. https://doi.org/10.3390/w15101838
APA StyleDereszewska, A., & Cytawa, S. (2023). Effect of Diclofenac Concentration on Activated Sludge Conditions in a Biological Wastewater Treatment Plant. Water, 15(10), 1838. https://doi.org/10.3390/w15101838