Improving Wheat Grain Yield and Nitrogen Use Efficiency by Optimizing the Fertigation Frequency Using Center Pivot Irrigation System
Abstract
:1. Introduction
2. Material and Methods
2.1. Research Site
2.2. Experimental Design
2.3. Measurements
2.3.1. Meteorological Data
2.3.2. Field Measurements
2.3.3. Soil Samples and Analysis
2.3.4. Nitrogen Accumulation and Nitrogen Use Efficiency
2.3.5. Data Analysis
3. Results
3.1. Climatic Conditions
3.2. ET, Grain Yield, HI and WUE
3.2.1. Crop Evapotranspiration
3.2.2. Grain Yield, HI and WUE
3.3. Soil NO3−N Accumulation and Spatial Distribution
3.4. Nitrogen Use Efficiency
4. Discussion
4.1. Grain Yield and WUE in Response to N Fertigation Frequency
4.2. Soil NO3−-N Accumulation and Distribution in Response to N Fertigation Frequency
4.3. N Utilization in Response to N Fertigation Frequency
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- China Statistical Yearbook; China Statistics Press: Beijing, China, 2020. (In Chinese)
- Zhu, Z.; Chen, D. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutr. Cycl. Agroecosystems 2002, 63, 117–127. [Google Scholar] [CrossRef]
- Ma, Q.; Yu, W.-T.; Jiang, C.-M.; Zhou, H.; Xu, Y.-G. The influences of mineral fertilization and crop sequence on sustainability of corn production in northeastern China. Agric. Ecosyst. Environ. 2012, 158, 110–117. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Chen, A.; Liu, H.; Zhai, L.; Lei, B.; Ren, T. An optimal regional nitrogen application threshold for wheat in the North China Plain considering yield and environmental effects. Field Crops Res. 2017, 207, 52–61. [Google Scholar] [CrossRef]
- Hartmann, T.E.; Yue, S.; Schulz, R.; He, X.; Chen, X.; Zhang, F.; Müller, T. Yield and N use efficiency of a maize-wheat cropping system as affected by different fertilizer management strategies in a farmer’s field of the North China Plain. Field Crops Res. 2015, 174, 30–39. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Adeli, A.; Yan, H. Effects of application methods and urea rates on ammonia volatilization, yields and fine root biomass of alfalfa. Field Crops Res. 2018, 218, 115–125. [Google Scholar] [CrossRef]
- Li, J.-P.; Zhang, Z.; Yao, C.-S.; Liu, Y.; Wang, Z.-M.; Fang, B.-T.; Zhang, Y.-H. Improving winter wheat grain yield and water-/nitrogen-use efficiency by optimizing the micro-sprinkling irrigation amount and nitrogen application rate. J. Integr. Agric. 2021, 20, 606–621. [Google Scholar] [CrossRef]
- Hartz, T.; Hochmuth, G. Fertility Management of Drip-irrigated Vegetables. Horttechnology 1996, 6, 168–172. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Gong, S.; Xu, D.; Sui, J. Nitrogen fertigation effect on photosynthesis, grain yield and water use efficiency of winter wheat. Agric. Water Manag. 2017, 179, 277–287. [Google Scholar] [CrossRef]
- Sayed, M.A.; Bedaiwy, M.A.N. Effect of controlled sprinkler chemigation on wheat crop in a sandy soil. Soil Water Res. 2011, 6, 61–72. [Google Scholar] [CrossRef]
- Farneselli, M.; Benincasa, P.; Tosti, G.; Simonne, E.; Guiducci, M.; Tei, F. High fertigation frequency improves nitrogen uptake and crop performance in processing tomato grown with high nitrogen and water supply. Agric. Water Manag. 2015, 154, 52–58. [Google Scholar] [CrossRef]
- Kennedy, T.L.; Suddick, E.C.; Six, J. Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation. Agric. Ecosyst. Environ. 2013, 170, 16–27. [Google Scholar] [CrossRef]
- Alva, A.K.; Mattos, D.; Quaggio, J.A. Advances in Nitrogen Fertigation of Citrus. J. Crop. Improv. 2008, 22, 121–146. [Google Scholar] [CrossRef]
- Yan, H.; Hui, X.; Li, M.; Xu, Y. Development in sprinkler irrigation technology in China. Irrig. Drain. 2020, 69, 75–87. [Google Scholar] [CrossRef]
- Li, H.; Hao, W.; Liu, Q.; Mao, L.; Nangia, V.; Guo, R.; Mei, X. Developing nitrogen management strategies under drip fertigation for wheat and maize production in the North China Plain based on a 3-year field experiment. J. Plant Nutr. Soil Sci. 2019, 182, 335–346. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Zhang, M.; Liu, Y.; Xu, X.; Lin, G.; Wang, Z.; Yang, Y.; Zhang, Y. Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat. Agric. Water Manag. 2019, 211, 59–69. [Google Scholar] [CrossRef]
- Zhao, W.; Shan, Z.; Li, J.; Li, Y. Effects of fertigation splits through center pivot on the nitrogen uptake, yield, and nitrogen use efficiency of winter wheat grown in the North China Plain. Agric. Water Manag. 2020, 240, 106291. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Sun, H.; Chen, S.; Shao, L. Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply. Irrig. Sci. 2013, 31, 1103–1112. [Google Scholar] [CrossRef]
- Dordas, C.A.; Sioulas, C. Dry matter and nitrogen accumulation, partitioning, and retranslocation in safflower (Carthamus tinctorius L.) as affected by nitrogen fertilization. Field Crops Res. 2009, 110, 35–43. [Google Scholar] [CrossRef]
- Ruisi, P.; Saia, S.; Badagliacca, G.; Amato, G.; Frenda, A.S.; Giambalvo, D.; Di Miceli, G. Long-term effects of no tillage treatment on soil N availability, N uptake, and 15N-fertilizer recovery of durum wheat differ in relation to crop sequence. Field Crops Res. 2016, 189, 51–58. [Google Scholar] [CrossRef]
- Ju, X.-T.; Xing, G.-X.; Chen, X.-P.; Zhang, S.-L.; Zhang, L.-J.; Liu, X.-J.; Cui, Z.-L.; Yin, B.; Christie, P.; Zhu, Z.-L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Lei, Q.; Luo, J.; Lindsey, S.; Zhang, J.; Zhai, L.; Wu, S.; Zhang, J.; Liu, X.; et al. Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain. Sci. Total. Environ. 2018, 618, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Raun, W.R.; Solie, J.B.; Stone, M.L. Independence of yield potential and crop nitrogen response. Precis. Agric. 2011, 12, 508–518. [Google Scholar] [CrossRef]
- Mahama, G.Y.; Prasad, P.V.V.; Roozeboom, K.L.; Nippert, J.B.; Rice, C.W. Response of maize to cover crops, fertilizer nitrogen rates, and economic return. Agron. J. 2016, 108, 17–31. [Google Scholar] [CrossRef]
- Stevens, W.B.; Evans, R.G.; Jabro, J.D.; Iversen, W.M. Nitrogen availability for sugar beet affected by tillage system and sprinkler irrigation method. Agron. J. 2010, 102, 1745–1752. [Google Scholar] [CrossRef]
- Xie, Y.; Li, L.; Hong, J.; Wang, H.; Zhang, L. Effects of nitrogen application and irrigation on grain yield, water and nitrogen utilizations of summer maize. Plant Nutr. Fertil. Sci. 2012, 18, 1354–1361. (In Chinese) [Google Scholar] [CrossRef]
- Wei, T.; Chai, Q.; Wang, W.; Wang, J. Effects of coupling of irrigation and nitrogen application as well as planting density on photosynthesis and dry matter accumulation characteristics of maize in oasis irrigated areas. Sci. Agric. Sin. 2019, 52, 428–444. (In Chinese) [Google Scholar] [CrossRef]
- Cao, C.; Xiu, L. Effect of water stress and nitrogen deficiency on some physiological characteristics and wheat yield at the jointing stage. Chin. J. Soil Sci. 2003, 36, 505–509. (In Chinese) [Google Scholar] [CrossRef]
- Ning, D.; Qin, A.; Liu, Z.; Zhang, J.; Liu, Z.; Zhao, B.; Xiao, J. Effects of irrigation and fertilization levels on grain yield and water and N use efficiency of drip-fertigation summer maize in the North China Plain. J. Irrig. Drain. 2019, 38, 28–35. (In Chinese) [Google Scholar]
- Zhai, L.-C.; Lü, L.-H.; Dong, Z.-Q.; Zhang, L.-H.; Zhang, J.-T.; Jia, X.-L.; Zhang, Z.-B. The water-saving potential of using micro-sprinkling irrigation for winter wheat production on the North China Plain. J. Integr. Agric. 2021, 20, 1687–1700. [Google Scholar] [CrossRef]
- Badr, M.A.; El-Tohamy, W.A.; Zaghloul, A.M. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 2012, 110, 9–15. [Google Scholar] [CrossRef]
- Koocheki, A.; Mahallati, M.N.; Moradi, R.; Mansouri, H. Optimizing water, nitrogen and crop density in canola cultivation using response surface methodology and central composite design. Soil Sci. Plant Nutr. 2014, 60, 286–298. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Lin, G.; Wang, Y.; Liu, Y.; Zhang, M.; Zhou, J.; Wang, Z.; Zhang, Y. Micro-irrigation improves grain yield and resource use efficiency by co-locating the roots and N-fertilizer distribution of winter wheat in the North China Plain. Sci. Total Environ. 2018, 643, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Zhang, Y.; Mu, Y.; Zhou, Y.; Zhang, C.; Liu, J. The effect of drip irrigation and drip fertigation on N2O and NO emissions, water saving and grain yields in a maize field in the North China Plain. Sci. Total Environ. 2017, 575, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Gheysari, M.; Mirlatifi, S.M.; Homaee, M.; Asadi, M.E.; Hoogenboom, G. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agric. Water Manag. 2009, 96, 946–954. [Google Scholar] [CrossRef]
- Scholberg, J.M.S.; Parsons, L.R.; Wheaton, T.A.; McNeal, B.L.; Morgan, K.T. Soil temperature, nitrogen concentration, and residence time affect nitrogen uptake efficiency in citrus. J. Environ. Qual. 2002, 31, 759–768. [Google Scholar] [CrossRef]
- Sui, J.; Wang, J.; Gong, S.; Xu, D.; Zhang, Y. Effect of nitrogen and irrigation application on water movement and nitrogen transport for a wheat crop under drip irrigation in the North China Plain. Water 2015, 7, 6651–6672. [Google Scholar] [CrossRef]
Depth (cm) | Bulk Density (g cm−3) | Field Capacity (cm3 cm−3) | NH4+-N Content (mg kg−1) | NO3−-N Content (mg kg−1) | Available Phosphorus (mg kg−1) | Available Potassium (mg kg−1) | pH |
---|---|---|---|---|---|---|---|
0–10 | 1.45 | 0.31 | 5.72 | 16.18 | 35.50 | 169.31 | 8.13 |
10–20 | 1.45 | 0.31 | 4.39 | 17.99 | 45.58 | 168.48 | 8.17 |
20–40 | 1.64 | 0.30 | 3.25 | 7.94 | 28.64 | 164.84 | 8.25 |
40–60 | 1.64 | 0.30 | 2.80 | 5.63 | 16.14 | 151.54 | 8.29 |
60–80 | 1.57 | 0.32 | 2.26 | 6.46 | 16.54 | 127.96 | 8.35 |
80–100 | 1.46 | 0.26 | 2.16 | 6.35 | 14.52 | 116.83 | 8.32 |
Years | Treatments | N Frequency | N Rate of Different Growing Stages/kg ha−1 | ||||
---|---|---|---|---|---|---|---|
Base Fertilizer | Regreening | Jointing | Anthesis | Filling | |||
2015–2016 | BC-1 | 1 | 108 | / | 207 | / | / |
FT-1 | 1 | 108 | / | 207 | / | / | |
FT-2 | 2 | 108 | / | 138 | / | 69 | |
FT-3 | 3 | 108 | 69 | 103.5 | / | 34.5 | |
FT-4 | 4 | 108 | 69 | 69 | 34.5 | 34.5 | |
2016–2017 | BC-1 | 1 | 68 | / | 207 | / | / |
FT-1 | 1 | 68 | / | 207 | / | / | |
FT-2 | 2 | 68 | / | 138 | / | 69 | |
FT-3 | 3 | 68 | 69 | 103.5 | / | 34.5 | |
FT-4 | 4 | 68 | 69 | 69 | 34.5 | 34.5 |
Years | Treatments | Yield (kg ha−1) | HI | WUE (kg m−3) |
---|---|---|---|---|
2015–2016 | BC-1 | 7401.6 ± 150.6 d | 0.38 ± 0.01 b | 1.74 ± 0.31 e |
FT-1 | 7746.7 ± 151.4 cd | 0.39 ± 0.01 b | 1.90 ± 0.31 cd | |
FT-2 | 7748.1 ± 238.5 cd | 0.38 ± 0.02 b | 1.91 ± 0.68 cd | |
FT-3 | 8446.1 ± 449.3 b | 0.42 ± 0.03 ab | 2.01 ± 1.51 ab | |
FT-4 | 9092.3 ± 450.8 a | 0.45 ± 0.02 a | 2.11 ± 0.92 ab | |
2016–2017 | BC-1 | 7639.7 ± 198.1 d | 0.39 ± 0.01 b | 1.79 ± 0.03 de |
FT-1 | 8249.1 ± 58.3 bc | 0.40 ± 0.01 b | 1.97 ± 0.01 bc | |
FT-2 | 8389.6 ± 308.3 b | 0.40 ± 0.02 b | 1.99 ± 0.09 bc | |
FT-3 | 8811.0 ± 251.4 ab | 0.40 ± 0.01 b | 2.02 ± 0.04 ab | |
FT-4 | 9214.5 ± 70.1 a | 0.41 ± 0.00 b | 2.13 ± 0.01 a | |
2015–2017 | ANOVA | * | NS | * |
Years | Treatments | NUtE (kg kg−1) | PFPN (kg kg−1) | NHI (kg kg−1) |
---|---|---|---|---|
2015–2016 | BC-1 | 27.0 ± 0.3 a | 23.5 ± 0.5 f | 0.62 ± 0.05 b |
FT-1 | 27.8 ± 1.0 a | 24.6 ± 0.5 f | 0.64 ± 0.05 b | |
FT-2 | 27.6 ± 2.3 a | 24.6 ± 0.8 f | 0.63 ± 0.04 b | |
FT-3 | 28.4 ± 2.1 a | 26.8 ± 1.4 e | 0.71 ± 0.06 ab | |
FT-4 | 29.2 ± 0.9 a | 28.9 ± 1.4 cd | 0.77 ± 0.01 a | |
2016–2017 | BC-1 | 27.6 ± 1.4 a | 27.8 ± 0.7 de | 0.66 ± 0.01 ab |
FT-1 | 27.2 ± 1.6 a | 30.1 ± 0.2 c | 0.66 ± 0.02 ab | |
FT-2 | 26.6 ± 1.2 a | 30.6 ± 1.1 bc | 0.67 ± 0.02 ab | |
FT-3 | 26.6 ± 0.3 a | 32.1 ± 0.9 ab | 0.67 ± 0.02 ab | |
FT-4 | 27.2 ± 1.1 a | 33.6 ± 0.3 a | 0.71 ± 0.01 ab | |
2015–2017 | ANOVA | NS | * | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, D.; Shoukat, M.R.; Zheng, Y.; Tan, H.; Sun, M.; Yan, H. Improving Wheat Grain Yield and Nitrogen Use Efficiency by Optimizing the Fertigation Frequency Using Center Pivot Irrigation System. Water 2023, 15, 1932. https://doi.org/10.3390/w15101932
Cai D, Shoukat MR, Zheng Y, Tan H, Sun M, Yan H. Improving Wheat Grain Yield and Nitrogen Use Efficiency by Optimizing the Fertigation Frequency Using Center Pivot Irrigation System. Water. 2023; 15(10):1932. https://doi.org/10.3390/w15101932
Chicago/Turabian StyleCai, Dongyu, Muhammad Rizwan Shoukat, Yudong Zheng, Haibin Tan, Mengyao Sun, and Haijun Yan. 2023. "Improving Wheat Grain Yield and Nitrogen Use Efficiency by Optimizing the Fertigation Frequency Using Center Pivot Irrigation System" Water 15, no. 10: 1932. https://doi.org/10.3390/w15101932
APA StyleCai, D., Shoukat, M. R., Zheng, Y., Tan, H., Sun, M., & Yan, H. (2023). Improving Wheat Grain Yield and Nitrogen Use Efficiency by Optimizing the Fertigation Frequency Using Center Pivot Irrigation System. Water, 15(10), 1932. https://doi.org/10.3390/w15101932