Settlement Behavior of Composite Foundation with Deep Mixed Piles Supporting Highway Subgrades in Water-Rich Flood Plains
Abstract
:1. Introduction
2. Theory of Composite Foundation Settlement
2.1. Mechanism of Composite Foundation Settlement
2.2. Typical Models for Predicting Composite Foundation Settlement
3. Three-Dimensional Finite Difference Simulations
3.1. Basic Assumptions
3.2. Meshing and Boundary Conditions
4. Settlement Behavior of Composite Foundation with Deep Mixed Piles
4.1. Comparison of Settlement Behavior between Natural and Composite Foundations
4.2. Parametric Analysis
5. Optimization Design for Controlling Settlement of Composite Foundation
5.1. Orthogonal Experimental Design
5.2. Results and Interpretation
6. Case Study
6.1. Project Overview
6.2. Numerical Simulations
6.3. Result Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Loktev, A.; Ulanov, I.; Shishkina, I.; Savulidi, M.; Klekovkina, N.; Kuznetsov, A. Determination of settlement parameters of highway embankment and base consolidation time depending on soil characteristics. Transp. Res. Procedia 2022, 63, 946–955. [Google Scholar] [CrossRef]
- Guo, P.P.; Gong, X.N.; Wang, Y.X.; Lin, H.; Zhao, Y.L. Analysis of observed performance of a deep excavation straddled by shallowly buried pressurized pipelines and underneath traversed by planned tunnels. Tunn. Undergr. Space Technol. 2023, 132, 104946. [Google Scholar] [CrossRef]
- Mahdi, I.M.; Ebid, A.M.; Khallaf, R. Decision support system for optimum soft clay improvement technique for highway construction projects. Ain Shams Eng. J. 2020, 11, 213–223. [Google Scholar] [CrossRef]
- Ullah, A.; Kassim, A.; Ahmed, S.; Ullah, R.; Junaid, M.; Zia, M.D. Experimental analysis of embankment on soft soil improved with bottom ash columns. Transp. Geotech. 2022, 37, 100881. [Google Scholar] [CrossRef]
- Jerman, J.; Mašín, D. Evaluation of hypoplastic model for soft clays by modelling of Nicoll highway case history. Comput. Geotech. 2021, 134, 104053. [Google Scholar] [CrossRef]
- Guo, P.P.; Gong, X.N.; Wang, Y.X.; Lin, H.; Zhao, Y.L. Minimum cover depth estimation for underwater shield tunnels. Tunn. Undergr. Space Technol. 2021, 115, 104027. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Chen, Y.K.; Chen, W.X.; Wang, J.C.; Ren, C. The performance of T-shaped deep mixed soil cement column-supported embankments on soft ground. Constr. Build. Mater. 2023, 369, 130578. [Google Scholar] [CrossRef]
- Wang, X.S.; Kim, S.; Wu, Y.P.; Liu, Y.; Liu, T.Y.; Wang, Y.M. Study on the optimization and performance of GFC soil stabilizer based on response surface methodology in soft soil stabilization. Soils Found. 2023, 63, 101278. [Google Scholar] [CrossRef]
- Wu, T.Y.; Jin, H.X.; Guo, L.; Sun, H.L.; Tong, J.H.; Jiang, Y.C.; Wei, P.F. Predicting method on settlement of soft subgrade soil caused by traffic loading involving principal stress rotation and loading frequency. Soil Dyn. Earthq. Eng. 2022, 152, 107023. [Google Scholar] [CrossRef]
- Guo, P.P.; Gong, X.N.; Wang, Y.X. Displacement and force analyses of braced structure of deep excavation considering unsymmetrical surcharge effect. Comput. Geotech. 2019, 113, 103102. [Google Scholar] [CrossRef]
- Chen, S.Y.; Ye, H.Y.; Zhang, W.F. Settlement analysis of flexible pile composite foundation under embankment load. Rock Soil. Mech. 2020, 41, 3077–3086. [Google Scholar]
- Zheng, J.J.; Abusharar, S.W.; Wang, X.Z. Three-dimensional nonlinear finite element modeling of composite foundation formed by CFG-lime piles. Comput. Geotech. 2007, 35, 637–643. [Google Scholar] [CrossRef]
- Yang, P.; Hu, H.S.; Xu, J.F. Settlement characteristics of pile composite foundation under staged loading. Procedia Environ. Sci. 2012, 12, 1055–1062. [Google Scholar] [CrossRef]
- Qiu, L.; Zhu, N. Settlement analysis of composite foundation with rigid piles under flexible ground. Rock Soil. Mech. 2007, 28, 1964–1968. [Google Scholar]
- Zhao, M.H.; Niu, H.Y.; Liu, M. Pile-soil stress ratio and settlement of composite ground with gravel piles in flexible foundation. Chin. J. Geotech. Eng. 2017, 39, 1549–1556. [Google Scholar]
- Jiang, Y.B.; He, N.; He, B. Distribution of pile-soil stress in centrifugal modelling of composite foundation. Chin. J. Geotech. Eng. 2020, 42, 85–89. [Google Scholar]
- Senjuntichai, T.; Sornpakdee, N.; Keawsawasvong, S.; Phulsawat, B.; Rajapakse, R.K.N.D. Consolidation settlement of vertically loaded pile groups in multilayered poroelastic soils. Transp. Geotech. 2023, 38, 100904. [Google Scholar] [CrossRef]
- Hamderi, M. Comprehensive group pile settlement formula based on 3D finite element analyses. Soils Found. 2018, 58, 1–15. [Google Scholar] [CrossRef]
- Cho, J.; Lee, J.H.; Jeong, S.; Lee, J. The settlement behavior of piled raft in clay soils. Ocean Eng. 2012, 53, 153–163. [Google Scholar] [CrossRef]
- Duba, V.P.; Galashev, Y.V.; Osipova, O.N. More precisely defined methods of foundation-settlement calculation based on tray and in-situ experiments. Soil Mech. Found. Eng. 2011, 48, 114–120. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J. Analysis of features of long and short pile composite foundation in high-rise buildings. Soil Mech. Found. Eng. 2022, 59, 92–101. [Google Scholar] [CrossRef]
- Li, M.Y.; Zeng, Q.J.; Mo, H.H. Optimum design of composite foundation according to settlement control for extension project of expressway. Rock Soil. Mech. 2008, 29, 535–540. [Google Scholar]
- Rui, R.; Han, J.; Zhang, L.; Zhai, Y.X.; Cheng, Z.; Chen, C. Simplified method for estimating vertical stress-settlement responses of piled embankments on soft soils. Comput. Geotech. 2020, 119, 103365. [Google Scholar] [CrossRef]
- Chen, C.F.; Qiu, L.Q.; Mao, F.S. Design optimization of pile-net composite foundation based on perturbation-weighted symbiotic organisms search (PWSOS) algorithm. Rock Soil. Mech. 2019, 40, 4477–4485. [Google Scholar]
- Chen, C.F.; Li, X.; Mao, F.S. Settlement-based optimization design on composite foundation in region with deep soft soils by orthogonal numerical tests. Highw. Eng. 2018, 43, 49–53. [Google Scholar]
- Li, L.; Gong, W.B. Prediction of nonlinear vertical settlement of a pile group consisting of new and existing displacement piles in clay strata. Soils Found. 2019, 59, 1336–1348. [Google Scholar] [CrossRef]
- Xiong, B.L.; Yang, G.Q.; Wang, X.S. Settlement analysis of widening subgrade in the highway considering technology parameter of composite foundation. Int. J. Earth Sci. 2016, 9, 1429–1433. [Google Scholar]
- Sun, H.J.; Zhang, S.Y. A field experimental study of composite foundation with rammed soil-cement pile in collapsible loess area. Adv. Mat. Res. 2014, 3470, 1030–1032. [Google Scholar] [CrossRef]
- Mu, H.S.; Gao, L. Finite element study of settlement of cement mixing composite foundation and non-probabilistic reliability analysis. Appl. Mech. Mater. 2014, 3489, 638–640. [Google Scholar] [CrossRef]
- Tong, J.X.; Sun, X.H.; Luo, P.F.; Jia, N.; Yang, X.H.; Yan, M.L. Study on the design method of different thickness-diameter ratios for composite foundation with rigid long and short piles. Appl. Mech. Mater. 2014, 3307, 580–583. [Google Scholar] [CrossRef]
- Tan, F.Y.; Wang, X.Z. Numerical analysis for bearing performance of flexible piles composite foundation influenced by modulus’ changes. Adv. Mat. Res. 2011, 1278, 261–263. [Google Scholar] [CrossRef]
- Gong, X.N. Generalized composite foundation theory and engineering application. Chin. J. Geotech. Eng. 2007, 29, 1–13. [Google Scholar]
- Yang, L.M.; Guo, J.J.; Han, Y.C. Study on effects of underlying goaf on the subgrade stability. J. Zhengzhou Univ. 2018, 39, 42–46. [Google Scholar]
Soil | z (m) | γ (kN/m3) | c (kPa) | φ (°) | E (MPa) | ν |
---|---|---|---|---|---|---|
Subgrade filling | 4.0 | 20.0 | 25.0 | 39.0 | 50.0 | 0.28 |
Cushion | 0.5 | 22.3 | NA 1 | 30.0 | 50.0 | 0.30 |
Plain filling | 1.0 | 19.8 | 30.0 | 25.0 | 30.0 | 0.30 |
Silty clay I | 4.0 | 19.0 | 28.1 | 14.0 | 11.2 | 0.30 |
Muddy clay | 9.0 | 17.0 | 13.5 | 9.0 | 6.5 | 0.35 |
Clay | 5.0 | 20.3 | 28.1 | 14.0 | 18.0 | 0.30 |
Silty clay II | 6.0 | 19.1 | 44.5 | 13.8 | 14.5 | 0.33 |
Foundation Type | Maximum Settlement Smax (mm) | Maximum Compression of Soft Layer h (mm) | h/Smax (%) |
---|---|---|---|
Natural foundation | 263.86 | 148.36 | 56.23 |
Composite foundation | 127.05 | 37.74 | 29.7 |
Level | Factors | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | F | |
Lp (m) | Dp (m) | s (m) | Ep (MPa) | Ec (MPa) | zc (m) | |
1 | 10 | 0.4 | 1.6 | 100 | 30 | 0.2 |
2 | 12 | 0.5 | 1.8 | 200 | 50 | 0.5 |
3 | 14 | 0.6 | 2.0 | 300 | 70 | 0.6 |
4 | 16 | 0.8 | 2.2 | 400 | 90 | 0.8 |
5 | 18 | 1.0 | 2.4 | 500 | 110 | 1.0 |
Schemes | A | B | C | D | E | F | Smax (mm) | h (mm) |
---|---|---|---|---|---|---|---|---|
1 | 10 | 0.4 | 1.6 | 100 | 30 | 0.2 | 193.68 | 100.56 |
2 | 10 | 0.5 | 2.0 | 400 | 110 | 0.5 | 196.31 | 97.54 |
3 | 10 | 0.6 | 2.4 | 200 | 90 | 0.6 | 198.95 | 100.94 |
4 | 10 | 0.8 | 1.8 | 500 | 70 | 0.8 | 189.12 | 96.06 |
5 | 10 | 1.0 | 2.2 | 300 | 50 | 1.0 | 197.80 | 107.25 |
6 | 12 | 0.4 | 2.4 | 400 | 70 | 1.0 | 200.47 | 84.05 |
7 | 12 | 0.5 | 1.8 | 200 | 50 | 0.2 | 162.51 | 68.93 |
8 | 12 | 0.6 | 2.2 | 500 | 30 | 0.5 | 171.46 | 71.47 |
9 | 12 | 0.8 | 1.6 | 300 | 110 | 0.6 | 143.71 | 60.26 |
10 | 12 | 1.0 | 2.0 | 100 | 90 | 0.8 | 165.19 | 74.43 |
11 | 14 | 0.4 | 2.2 | 200 | 110 | 0.8 | 163.79 | 62.94 |
12 | 14 | 0.5 | 1.6 | 500 | 90 | 1.0 | 133.36 | 37.7 |
13 | 14 | 0.6 | 2.0 | 300 | 70 | 0.2 | 139.57 | 37.99 |
14 | 14 | 0.8 | 2.4 | 100 | 50 | 0.5 | 156.02 | 50.6 |
15 | 14 | 1.0 | 1.8 | 400 | 30 | 0.6 | 111.21 | 27.44 |
16 | 16 | 0.4 | 2.0 | 500 | 50 | 0.6 | 124.47 | 28.65 |
17 | 16 | 0.5 | 2.4 | 300 | 30 | 0.8 | 133.70 | 31.86 |
18 | 16 | 0.6 | 1.8 | 100 | 110 | 1.0 | 152.67 | 31.63 |
19 | 16 | 0.8 | 2.2 | 400 | 90 | 0.2 | 110.95 | 12.14 |
20 | 16 | 1.0 | 1.6 | 200 | 70 | 0.5 | 104.65 | 13.02 |
21 | 18 | 0.4 | 1.8 | 300 | 90 | 0.5 | 132.56 | 38.42 |
22 | 18 | 0.5 | 2.2 | 100 | 70 | 0.6 | 156.36 | 62.48 |
23 | 18 | 0.6 | 1.6 | 400 | 50 | 0.8 | 89.21 | 15.68 |
24 | 18 | 0.8 | 2.0 | 200 | 30 | 1.0 | 119.01 | 20.34 |
25 | 18 | 1.0 | 2.4 | 500 | 110 | 0.2 | 77.10 | 7.22 |
Factors | A | B | C | D | E | F | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Smax | h | Smax | h | Smax | h | Smax | h | Smax | h | Smax | h | |
k1 | 195.2 | 167.5 | 163.0 | 104.9 | 132.9 | 75.7 | 164.8 | 106.6 | 145.8 | 83.9 | 136.8 | 75.6 |
k2 | 168.7 | 119.7 | 156.5 | 99.5 | 149.6 | 87.5 | 149.7 | 88.7 | 146.0 | 90.4 | 152.2 | 90.4 |
k3 | 140.8 | 72.2 | 150.4 | 85.9 | 148.9 | 86.3 | 149.5 | 91.9 | 158.0 | 97.9 | 146.9 | 93.3 |
k4 | 125.3 | 39.1 | 143.8 | 79.8 | 160.1 | 105.4 | 141.6 | 79.0 | 148.2 | 87.9 | 148.2 | 93.7 |
k5 | 114.9 | 48.1 | 131.2 | 76.5 | 153.3 | 91.6 | 139.1 | 80.4 | 146.7 | 86.5 | 160.7 | 93.7 |
R | 80.3 | 128.4 | 31.8 | 28.4 | 27.15 | 29.7 | 25.7 | 27.6 | 12.2 | 14.0 | 23.9 | 18.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Guo, P.; Li, X.; Wang, K.; Tang, R.; Wang, Y. Settlement Behavior of Composite Foundation with Deep Mixed Piles Supporting Highway Subgrades in Water-Rich Flood Plains. Water 2023, 15, 2048. https://doi.org/10.3390/w15112048
Liu S, Guo P, Li X, Wang K, Tang R, Wang Y. Settlement Behavior of Composite Foundation with Deep Mixed Piles Supporting Highway Subgrades in Water-Rich Flood Plains. Water. 2023; 15(11):2048. https://doi.org/10.3390/w15112048
Chicago/Turabian StyleLiu, Shuang, Panpan Guo, Xian Li, Kai Wang, Rui Tang, and Yixian Wang. 2023. "Settlement Behavior of Composite Foundation with Deep Mixed Piles Supporting Highway Subgrades in Water-Rich Flood Plains" Water 15, no. 11: 2048. https://doi.org/10.3390/w15112048
APA StyleLiu, S., Guo, P., Li, X., Wang, K., Tang, R., & Wang, Y. (2023). Settlement Behavior of Composite Foundation with Deep Mixed Piles Supporting Highway Subgrades in Water-Rich Flood Plains. Water, 15(11), 2048. https://doi.org/10.3390/w15112048