Enhanced Photocatalytic Degradation of the Antidepressant Sertraline in Aqueous Solutions by Zinc Oxide Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis and Characterization of Nano-Sized Zinc Oxide
2.2.1. Synthesis
2.2.2. ZnO-NPs Characterization
2.3. Photoreactor and Actinometry
2.4. Photocatalytic Degradation Procedure
2.5. Analytical Procedures
2.6. Kinetic Analysis
3. Results and Discussion
3.1. Characterization of ZnO-NPs
3.2. Removal of SERT by H2O2/UV, ZnO-NPs/H2O2/UV, and ZnO-NPs/UV Processes
3.2.1. Effect of pH
3.2.2. Effect of Initial Drug Concentration
3.2.3. Effect of ZnO-NP Dose
3.2.4. Effect of Hydrogen Peroxide
3.2.5. Comparison of the Catalytic Activity of ZnO-NPs and Bulk ZnO in Photodegradation of SERT
3.3. Kinetics for the Removal of SERT Using ZnO-NPs/UV
3.4. Mineralization of SERT by ZnO-NPs/UV and Bulk ZnO/UV Processes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kayode-Afolayan, S.D.; Ahuekwe, E.F.; Nwinyi, O.C. Impacts of pharmaceutical effluents on aquatic ecosystems. Sci. Afr. 2022, 17, e01288. [Google Scholar] [CrossRef]
- Sörengård, M.; Campos Pereira, H.M.; Ullberg, F.Y.; Lai, O.; Golovko, A.L. Mass loads, source apportionment, and risk estimation of organic micropollutants from hospital and municipal wastewater in recipient catchments. Chemosphere 2019, 234, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Moreira, D.G.; Aires, A.; de Lourdes Pereira, M.; Oliveira, M. Levels and effects of antidepressant drugs to aquatic organisms. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 256, 109322. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, J.; Xu, P.; Xiang, J.; Xu, D.; Cheng, P.; Chen, Z. Antidepressants as emerging contaminants: Occurrence in wastewater treatment plants and surface waters in Hangzhou, China. Front. Public Health 2022, 10, 963257. [Google Scholar] [CrossRef]
- Valdez-Carrillo, M.; Abrell, L.J.; Ramírez-Hernández, J.; Reyes-López, A.; Carreón-Diazconti, C. Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: A review. Environ. Sci. Pollut. Res. 2020, 27, 44863–44891. [Google Scholar] [CrossRef] [PubMed]
- Minagh, E.; Hernan, R.; O’Rourke, K.; Lyng, F.M.; Davoren, M. Aquatic ecotoxicity of the selective serotonin reuptake inhibitor sertraline hydrochloride in a battery of freshwater test species. Ecotoxicol. Environ. Saf. 2009, 72, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Mole, R.A.; Brooks, B.W. Global scanning of selective serotonin reuptake inhibitors: Occurrence, wastewater treatment and 440 hazards in aquatic systems. Environ. Pollut. 2019, 250, 1019–1031. [Google Scholar] [CrossRef]
- Valdivia, M.T.; Taggart, M.A.; Pap, S.; Kean, A.; Pfleger, S.; Megson, I.L. Photocatalytic metallic nanomaterials immobilised onto porous structures: Future perspectives for pharmaceutical removal from hospital wastewater and potential benefits over existing technologies. J. Water Process Eng. 2023, 52, 103553. [Google Scholar] [CrossRef]
- Isai, K.A.; Shrivastava, V.S. Photocatalytic degradation of methylene blue using ZnO and 2% Fe–ZnO semiconductor nano-materials synthesized by sol–gel method: A comparative study. SN Appl. Sci. 2019, 1, 1247. [Google Scholar] [CrossRef]
- Taourati, R.; Khaddor, M.; El Kasmi, A. Stable ZnO nanocatalysts with high photocatalytic activity for textile dye treatment. Nano-Struct. Nano-Objects 2019, 18, 100303. [Google Scholar] [CrossRef]
- Latif, S.; Liaqat, A.; Imran, M.; Javaid, A.; Hussain, N.; Jesionowski, T.; Bilal, M. Development of zinc ferrite nanoparticles with enhanced photocatalytic performance for remediation of environmentally toxic pharmaceutical waste diclofenac sodium from wastewater. Environ. Res. 2023, 216, 114500. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Swarnalal, A.; Das, D.; Midhina, K.; Saji, V.S.; Shibli, S.M.A. A review on transition metal oxides based photo-catalysts for degradation of synthetic organic pollutants. J. Environ. Sci. 2023, in press. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, Y.; Mayers, B.; Gates, B.; Yin, Y. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 5, 353–389. [Google Scholar] [CrossRef]
- Mohammed, R.; Ali, M.E.M.; Gomaa, E.; Mohsen, M. Green ZnO nanorod material for dye degradation and detoxification of pharmaceutical wastes in water. J. Environ. Chem. Eng. 2020, 8, 104295. [Google Scholar] [CrossRef]
- Samadi, M.; Zirak, M.; Naseri, A.; Kheirabadi, M.; Ebrahimi, M.; Moshfegh, A.Z. Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: A review. Res. Chem. Intermed. 2019, 45, 2197–2254. [Google Scholar] [CrossRef]
- Fatima, J.; Shah, A.N.; Tahir, M.B.; Mehmood, T.; Shah, A.A.; Tanveer, T.; Nazir, R.; Jan, B.L.; Alansi, S. Tunable 2D Nanomaterials; Their Key Roles and Mechanisms in Water Purification and Monitoring, Frontiers in Environmental Science. Front. Environ. Sci. 2022, 10, 766743–766765. [Google Scholar] [CrossRef]
- Amin, A.; Dessouki, H.; Moustafa, M.; Ghoname, M. Spectrophotometric methods for sertraline hydrochloride and/or clidinium bromide determination in bulk and pharmaceutical preparations. Chem. Pap. 2009, 63, 716–722. [Google Scholar] [CrossRef]
- Trussell, C.G. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: New York, NY, USA, 1989. [Google Scholar]
- Petrović, Ž.; Ristić, M.; Musić, S.; Sepiol, B.; Peterlik, H. The formation of ZnO nanoparticles from zinc gluconate. Ceram. Int. 2015, 41, 4975–4981. [Google Scholar] [CrossRef]
- Carvalho, A.L.F.; Freitas, D.F.S.; Mariano, D.M.; Mattos, G.C.; Mendes, L.C. The influence of zinc gluconate as an intercalating agent on the structural, thermal, morphologic, and molecular mobility of lamellar nanofiller. Colloid Polym. Sci. 2018, 296, 1079–1086. [Google Scholar] [CrossRef]
- Shamhari, N.M.; Wee, B.S.; Chin, S.F.; Kok, K.Y. Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution. Acta Chim. Slov. 2018, 65, 578–585. [Google Scholar] [CrossRef]
- Datta, A.; Patra, C.; Bharadwaj, H.; Kaur, S.; Dimri, N.; Khajuria, R. Green Synthesis of zinc oxide nanoparticles using Parthenium hysterophorus leaf extract and evaluation of their antibacterial properties. J. Biotechnol. Biomater. 2017, 7, 271–276. [Google Scholar] [CrossRef]
- Ristić, M.; Musić, S.; Ivanda, M.; Popović, S. Sol-gel synthesis and characterization of nanocrystalline ZnO powders. J. Alloys Compd. 2005, 397, L1–L4. [Google Scholar] [CrossRef]
- Musić, S.; Dragčević, D.; Popović, S. Influence of synthesis route on the formation of ZnO particles and their morphologies. J. Alloys Compd. 2007, 429, 242–249. [Google Scholar] [CrossRef]
- Rashidi, H.; Ahmadpour, A.; Bamoharram, F.; Zebarjad, S.M.; Heravi, M.M.; Tayari, F. Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid. Chem. Pap. 2014, 68, 516–524. [Google Scholar] [CrossRef]
- Ismail, M.A.; Taha, K.K.; Modwi, A.; Khezami, L. Zno Nanoparticles: Surface and X-Ray Profile Analysis. J. Ovonic Res. 2018, 14, 381–393. [Google Scholar]
- Wang, J.; Gao, L. Synthesis and characterization of ZnO nanoparticles assembled in one-dimensional order. Inorg. Chem. Commun. 2007, 6, 877–881. [Google Scholar] [CrossRef]
- Mohamed, K.M.; Benitto, J.J.; Vijaya, J.J.; Bououdina, M. Recent Advances in ZnO-Based Nanostructures for the Photocatalytic Degradation of Hazardous. Non-Biodegrad. Med. Cryst. 2023, 13, 329. [Google Scholar]
- La, M.; Sharma, P.; Singh, L.; Ram, C. Photocatalytic degradation of hazardous Rhodamine B dye using sol-gel mediated ultrasonic hydrothermal synthesized of ZnO nanoparticles. Results Eng. 2023, 17, 100890. [Google Scholar]
- Elmorsi, T.M.; Riyad, Y.M.; Mohamed, Z.H.; Abd El Bary, H.M.H. Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment. J. Hazard. Mater. 2010, 174, 352–358. [Google Scholar] [CrossRef]
- Ajmal, A.; Majeed, I.; Malik, R.N.; Idriss, H.; Nadeem, M.A. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Adv. 2014, 4, 37003–37026. [Google Scholar] [CrossRef]
- Giacco, D.; Tiziana, R.G.; Saracino, F.; Stradiotto, M. Counterion effect of cationic surfactants on the oxidative degradation of Alizarin Red-S photocatalysed by TiO2 in aqueous dispersion. J. Photochem. Photobiol. 2017, 332, 546–553. [Google Scholar] [CrossRef]
- Hariharan, C. Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Appl. Catal. A Gen. 2006, 304, 55–61. [Google Scholar] [CrossRef]
- El-Kemary, M.; El-Shamy, H.; El-Mehasseb, I. Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. J. Lumin. 2010, 130, 2327–2331. [Google Scholar] [CrossRef]
- Muruganandham, M.; Swaminathan, M. Photocatalytic decolorizations and degradation of Reactive Orange 4 by TiO2-UV process. Dyes Pigm. 2006, 68, 133–142. [Google Scholar] [CrossRef]
- Deák, K.; Takács-Novák, K.; Tihanyi, K.; Noszá, B. Physico-Chemical Profiling of Antidepressive Sertraline: Solubility, Ionisation, Lipophilicity. Med. Chem. 2006, 2, 385–389. [Google Scholar]
- Akyol, A.; Yatmaz, H.C.; Bayramoglu, M. Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions. Appl. Catal. B Environ. 2004, 54, 19–24. [Google Scholar] [CrossRef]
- Krishnakumar, B.; Swaminathan, M. Influence of operational parameters on photocatalytic degradation of a genotoxic azo dyeAcid Violet 7 in aqueous ZnO suspensions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 81, 739–744. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, Y.; Liu, H.; Zhu, F.; Yin, H. Solar photocatalytic decolorization of C.I. Basic Blue 41 in an aqueous suspension of TiO2-ZnO. Dyes Pigm. 2008, 78, 77–83. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Fu, C.C.; Juang, R.S. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J. Clean. Prod. 2018, 202, 413–427. [Google Scholar] [CrossRef]
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016, 88, 428–448. [Google Scholar] [CrossRef]
- Zuorro, A.; Lavecchia, R.; Monaco, M.M.; Iervolino, G.; Vaiano, V. Photocatalytic Degradation of azo dye reactive violet 5 on Fe-doped titania catalysts under visible light irradiation. Catalysts 2019, 9, 645. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Kader, S.; Islam, M.S. Solar-TiO2 immobilized photocatalytic reactors performance assessment in the degradation of methyl orange dye in aqueous solution. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100514. [Google Scholar] [CrossRef]
- Rejek, M.; Grzechulska-Damszel, J. Degradation of sertraline in water by suspended and supported TiO2. Pol. J. Chem. Technol. 2018, 20, 107–112. [Google Scholar] [CrossRef]
- Calza, P.; Jiménez-Holgado, C.; Coha, M.; Chrimatopoulos, C.; Dal Bello, F.; Medana, C.; Sakkas, V. Study of the photoinduced transformations of sertraline in aqueous media. Sci. Total Environ. 2021, 756, 143805. [Google Scholar] [CrossRef] [PubMed]
- Bojanowska-Czajka, A.; Pyszynska, M.; Majkowska-Pilip, A.; Wawrowicz, K. Degradation of selected antidepressants sertraline and citalopram in ultrapure water and surface water using gamma radiation. Processes 2021, 10, 63. [Google Scholar] [CrossRef]
- Alamier, W.M.; Hasan, N.; Ali, S.K.; Oteef, M.D.Y. Biosynthesis of Ag nanoparticles using carallumaacutangula extract and its catalytic functionality towards degradation of hazardous dye pollutants. Crystals 2022, 12, 1069. [Google Scholar] [CrossRef]
- Pera, S.P.; Tank, S.K. Microbial degradation of Procion Red by Pseudomonas stutzeri. Sci. Rep. 2021, 11, 3075. [Google Scholar]
- Brillas, E.; Sirés, I. Electrochemical removal of pharmaceuticals from water streams: Reactivity elucidation by mass spectrometry. Trends Anal. Chem. 2015, 70, 112–121. [Google Scholar] [CrossRef]
Samples’ Surface Characteristics | Specific Surface Area | Average Pore Diameter | Total Pore Volume |
---|---|---|---|
ZnO-NP | 140.85 m2 g−1 | 10.96 nm | 0.04 cm3 g−1 |
ZnO-Bulk | 4.83 m2 g−1 | <5 micron | ---- |
Kinetic Model | Regression Coefficient (R2) Value | Rate Constant (k) |
---|---|---|
Zero-order | 0.985 | 0.0001 min−1 |
First-order | 0.995 | 0.0678 min−1 |
Second-order | 0.960 | 43.058 min−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, Z.H.; Riyad, Y.M.; Hendawy, H.A.; Abdelbary, H.M.H. Enhanced Photocatalytic Degradation of the Antidepressant Sertraline in Aqueous Solutions by Zinc Oxide Nanoparticles. Water 2023, 15, 2074. https://doi.org/10.3390/w15112074
Mohamed ZH, Riyad YM, Hendawy HA, Abdelbary HMH. Enhanced Photocatalytic Degradation of the Antidepressant Sertraline in Aqueous Solutions by Zinc Oxide Nanoparticles. Water. 2023; 15(11):2074. https://doi.org/10.3390/w15112074
Chicago/Turabian StyleMohamed, Zeinhom H., Yasser M. Riyad, Hassan A. Hendawy, and Hassan M. H. Abdelbary. 2023. "Enhanced Photocatalytic Degradation of the Antidepressant Sertraline in Aqueous Solutions by Zinc Oxide Nanoparticles" Water 15, no. 11: 2074. https://doi.org/10.3390/w15112074
APA StyleMohamed, Z. H., Riyad, Y. M., Hendawy, H. A., & Abdelbary, H. M. H. (2023). Enhanced Photocatalytic Degradation of the Antidepressant Sertraline in Aqueous Solutions by Zinc Oxide Nanoparticles. Water, 15(11), 2074. https://doi.org/10.3390/w15112074