Simulation of Biophysicochemical Characteristics of the Soils Using Geoelectrical Measurements near the Sewage Station, Assiut City, Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Biophysicochemical Analysis
2.2. Geoelectrical Measurements
3. Empirical Relationship and Validation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller-Robbie, L.; Ramaswami, A.; Amerasinghe, P. Wastewater treatment and reuse in urban agriculture: Exploring the food, energy, water, and health nexus in Hyderabad, India. Environ. Res. Lett. 2017, 12, 075005. [Google Scholar] [CrossRef] [Green Version]
- Belhaj, D.; Jerbi, B.; Medhioub, M.; Zhou, J.; Kallel, M.; Ayadi, H. Impact of treated urban wastewater for reuse in agriculture on crop response and soil ecotoxicity. Environ. Sci. Pollut. Res. 2016, 23, 15877–15887. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Kim, H.; Jang, T. Irrigation water quality standards for indirect wastewater reuse in agriculture: A contribution toward sustainable wastewater reuse in South Korea. Water 2016, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Yadav, K.; Singh, P.; Purohit, R. Impacts of wastewater reuse on peri-urban agriculture: Case study in Udaipur city, India. In Balanced Urban Development: Options and Strategies for Liveable Cities; Springer: Berlin/Heidelberg, Germany, 2016; pp. 329–339. [Google Scholar]
- Michailidis, A.; Papadaki-Klavdianou, A.; Apostolidou, I.; Lorite, I.J.; Pereira, F.A.; Mirko, H.; Buhagiar, J.; Shilev, S.; Michaelidis, E.; Loizou, E. Exploring treated wastewater issues related to agriculture in Europe, employing a quantitative swot analysis. Procedia Econ. Financ. 2015, 33, 367–375. [Google Scholar] [CrossRef] [Green Version]
- Kihila, J.; Mtei, K.M.; Njau, K.N. Wastewater treatment for reuse in urban agriculture; the case of Moshi Municipality, Tanzania. Phys. Chem. Earth Parts ABC 2014, 72, 104–110. [Google Scholar] [CrossRef]
- Amerasinghe, P.; Bhardwaj, R.M.; Scott, C.; Jella, K.; Marshall, F. Urban Wastewater and Agricultural Reuse Challenges in India; IWMI: Colombo, Sri Lanka, 2013; Volume 147. [Google Scholar]
- Bao, Z.; Wu, W.; Liu, H.; Chen, H.; Yin, S. Impact of long-term irrigation with sewage on heavy metals in soils, crops, and groundwater—A case study in Beijing. Pol. J. Environ. Stud. 2014, 23, 309–318. [Google Scholar]
- Liu, W.; Zhao, J.; Ouyang, Z.; Söderlund, L.; Liu, G. Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ. Int. 2005, 31, 805–812. [Google Scholar] [CrossRef]
- Abd El-Salam, A.; El-Sheemy, H.; Minaisy, F. Impact of Irrigation Regional Seminar; Waste Water Reclamation and Reuse; FOA: Cairo, Egypt, 2004; pp. 11–16. [Google Scholar]
- Horswell, J.; Speir, T.; Van Schaik, A. Bio-indicators to assess impacts of heavy metals in land-applied sewage Sludge. Soil Biol. Biochem. 2003, 35, 1501–1505. [Google Scholar] [CrossRef]
- Drechsel, P.; Evans, A.E. Wastewater use in irrigated agriculture. Irrig. Drain. Syst. 2010, 24, 1–3. [Google Scholar] [CrossRef]
- Ensink, J.H.; Mahmood, T.; Van der Hoek, W.; Raschid-Sally, L.; Amerasinghe, F.P. A nationwide assessment of wastewater uses in Pakistan: An obscure activity or a vitally important one? Water Policy 2004, 6, 197–206. [Google Scholar] [CrossRef]
- Hussain, I.; Raschid, L.; Hanjra, M.A.; Marikar, F.; van der Hoek, W. A Framework for Analyzing Socioeconomic, Health and Environmental Impacts of Wastewater Use in Agriculture in Developing Countries; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2001; Volume 26. [Google Scholar]
- Blumenthal, U.; Peasey, A.; Ruiz-Palacios, G.; Mara, D. Guidelines for Wastewater Reuse in Agriculture and Aquaculture: Recommended Revisions Based on New Research Evidence; Task No. 68, Part 1; Water and Environmental Health at London and Loughborough (WELL): London, UK, 2000; Available online: https://www.ircwash.org/resources/guidelines-wastewater-reuse-agriculture-and-aquaculture-recommended-revisions-based-new (accessed on 11 May 2023).
- Mohammad, M.J.; Mazahreh, N. Changes in soil fertility parameters in response to irrigation of forage crops with secondary treated wastewater. Commun. Soil Sci. Plant Anal. 2003, 34, 1281–1294. [Google Scholar] [CrossRef]
- Friedel, J.; Langer, T.; Siebe, C.; Stahr, K. Effects of long-term waste water irrigation on soil organic matter, soil microbial biomass and its activities in central Mexico. Biol. Fertil. Soils 2000, 31, 414–421. [Google Scholar] [CrossRef]
- Al-Rashidi, R.; Rusan, M.; Obaid, K. Changes in plant nutrients, and microbial biomass in different soil depths after long-term surface application of secondary treated wastewater. Environ. Clim. Technol. 2013, 11, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Manios, T.; Moraitaki, G.; Mantzavinos, D. Survival of total coliforms in lawn irrigated with secondary wastewater and chlorinated effluent in the Mediterranean region. Water Environ. Res. 2006, 78, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Malkawi, H.; Mohammad, M. Survival and accumulation of microorganisms in soils irrigated with secondary treated wastewater. J. Basic Microbiol. 2003, 43, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tao, S. Spatial structures and relations of heavy metal content in wastewater irrigated agricultural soil of Beijing’s eastern farming regions. Bull. Environ. Contam. Toxicol. 1998, 61, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Gupta, A.; Bhatt, K.; Pandey, K.; Rai, U.; Singh, K. Distribution of metals in the edible plants grown at Jajmau, Kanpur (India) receiving treated tannery wastewater: Relation with physico-chemical properties of the soil. Environ. Monit. Assess. 2006, 115, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Pandey, K.; Gupta, A.; Bhatt, K. Accumulation of metals in vegetables and crops grown in the area irrigated with river water. Bull. Environ. Contam. Toxicol. 2005, 74, 210–218. [Google Scholar] [CrossRef]
- Singh, K.P.; Mohan, D.; Sinha, S.; Dalwani, R. Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area. Chemosphere 2004, 55, 227–255. [Google Scholar] [CrossRef]
- Madyiwa, S.; Chimbari, M.; Nyamangara, J.; Bangira, C. Cumulative effects of sewage sludge and effluent mixture application on soil properties of a sandy soil under a mixture of star and kikuyu grasses in Zimbabwe. Phys. Chem. Earth Parts ABC 2002, 27, 747–753. [Google Scholar] [CrossRef]
- Sidhu, J.; Hanna, J.; Toze, S. Survival of enteric microorganisms on grass surfaces irrigated with treated effluent. J. Water Health 2008, 6, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Wu, W.; Zhou, L.; Liang, J.; Jiang, T. Interactive effect of dissolved organic matter and phenanthrene on soil enzymatic activities. J. Environ. Sci. 2010, 22, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Marcato-Romain, C.-E.; Guiresse, M.; Cecchi, M.; Cotelle, S.; Pinelli, E. New direct contact approach to evaluate soil genotoxicity using the Vicia Faba micronucleus test. Chemosphere 2009, 77, 345–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Wang, C.; Wang, Z.; Huang, S. Assessment of the contamination and genotoxicity of soil irrigated with wastewater. Plant Soil 2004, 261, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Aleem, A.; Malik, A. Genotoxic hazards of long-term application of wastewater on agricultural soil. Mutat. Res. Toxicol. Environ. Mutagen. 2003, 538, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Aziz, O.; Inam, A.; Samiullah, A. Utilization of petrochemical industry waste water for agriculture. Water Air Soil Pollut. 1999, 115, 321–335. [Google Scholar] [CrossRef]
- Qadir, M.; Wichelns, D.; Minhas, P.; McCornick, P.; Abaidoo, R.; Attia, F.; El-Guindy, S.; Ensink, J.; Jiménez, B.; Kijne, J.; et al. Agricultural Use of Marginal-Quality Water—Opportunities and Challenges; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2007. [Google Scholar]
- Corwin, D.L. Past, Present, and Future Trends of Soil Electrical Conductivity Measurements Using Geophysical Methods; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: New York, NY, USA, 2008. [Google Scholar]
- Friedman, S.P. Soil properties influencing apparent electrical conductivity: A review. Comput. Electron. Agric. 2005, 46, 45–70. [Google Scholar] [CrossRef]
- Corwin, D.; Lesch, S. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- El-Desoky, M.; Faragallah, M.; Khalifa, E.; El-Ansary, M. Soil fabric change induced by prolonge irrigation with sewage effluent at Assiut, Egypt. J. Agric. Sci. Assiut Univ. 2010, 15, 297–321. [Google Scholar]
- Tbassum, D.; Azad, S.; Inam, A. Utility of city wastewater as a source of irrigation water for mustard. J. Ind. Pollut. Cont 2007, 23, 391–396. [Google Scholar]
- Ramsdale, T.M.; Fairweather, P.G. A calibration equation for combining dry-sieving and laser-diffraction techniques for assessing grain-size distributions of beach sands. J. Coast. Res. 2016, 32, 206–212. [Google Scholar]
- Rodríguez, J.G.; Uriarte, A. Laser diffraction and dry-sieving grain size analyses undertaken on fine-and medium-grained sandy marine sediments: A note. J. Coast. Res. 2009, 251, 257–264. [Google Scholar] [CrossRef]
- Lindholm, R.C. A Practical Approach to Sedimentology, Grain Size; Springer: Berlin/Heidelberg, Germany, 1987; p. 276. [Google Scholar]
- Eshel, G.; Levy, G.; Mingelgrin, U.; Singer, M. Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Sci. Soc. Am. J. 2004, 68, 736–743. [Google Scholar] [CrossRef]
- Beuselinck, L.; Govers, G.; Poesen, J.; Degraer, G.; Froyen, L. Grain-size analysis by laser diffractometry: Comparison with the sieve-pipette method. Catena 1998, 32, 193–208. [Google Scholar] [CrossRef]
- Konert, M.; Vandenberghe, J. Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction. Sedimentology 1997, 44, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Indorante, S.; Hammer, R.; Koenig, P.; Follmer, L. Particle-size analysis by a modified pipette procedure. Soil Sci. Soc. Am. J. 1990, 54, 560–563. [Google Scholar] [CrossRef]
- Schoeneberger, P.J. Field Book for Describing and Sampling Soils; Government Printing Office: Washington, DC, USA, 2012. [Google Scholar]
- Rice, A.K. Predicting Hydraulic Response: Comparison of Textural and Response Clustering Approaches to Soil Classification; The University of Arizona: Tucson, AZ, USA, 2009. [Google Scholar]
- Metternicht, G.; Stott, J. Trivariate spectral encoding: A prototype system for automated selection of colours for soil maps based on soil textural composition. In Proceedings of the 21st International Cartographic Conference, Durban, South Africa, 10–16 August 2003. [Google Scholar]
- Minasny, B.; McBratney, A.B. The australian soil texture boomerang: A comparison of the Australian and Usda/Fao soil particle-size classification systems. Soil Res. 2001, 39, 1443–1451. [Google Scholar] [CrossRef]
- FAO. Guidelines for Soil Profile Description. Soil Resources, Management and Conservation Service, Land and Water Development Division; FAO: Rome, Italy, 1990. [Google Scholar]
- Lang, L.Z.; Xiang, W.; Huang, W.; Schanz, T. An experimental study on oven-drying methods for laboratory determination of water content of a calcium-rich bentonite. Appl. Clay Sci. 2017, 150, 153–162. [Google Scholar] [CrossRef]
- O’Kelly, B.C.; Sivakumar, V. Water content determinations for peat and other organic soils using the oven-drying method. Dry. Technol. 2014, 32, 631–643. [Google Scholar] [CrossRef]
- Gardner, W. Water content. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods—Agronomy Monograph; American Society of Agronomy: Madison, WI, USA; Soil Science Society of America: Madison, WI, USA, 1986; Volume 1, pp. 493–544. [Google Scholar]
- Acquarone, C.; Buera, P.; Elizalde, B. Pattern of ph and electrical conductivity upon honey dilution as a complementary tool for discriminating geographical origin of honeys. Food Chem. 2007, 101, 695–703. [Google Scholar] [CrossRef]
- Jones, J.B., Jr. Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- McLean, E. Soil pH and lime requirement. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Soil Science Society of America: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Zahedifar, M.; Dehghani, S.; Moosavi, A.A.; Gavili, E. Temporal variation of total and dtpa-extractable heavy metal contents as influenced by sewage sludge and perlite in a calcareous soil. Arch. Agron. Soil Sci. 2017, 63, 136–149. [Google Scholar] [CrossRef]
- Yadava, N.; Malik, R.S.; Shivakumar, L. Kinetic release behavior of DTPA-extractable manganese in soils of different cropping systems and total manganese content associated with soil texture. Indian J. Agric. Sci. 2017, 87, 603–606. [Google Scholar]
- Gonçalves da Silva, M.A.; Bull, L.T.; Miggiolaro, A.E.; Antonangelo, J.A.; Muniz, A.S. Heavy metals extracted by DTPA and organic acids from soil amended with urban or industrial residues. Commun. Soil Sci. Plant Anal. 2013, 44, 3216–3230. [Google Scholar] [CrossRef]
- Muhlbachova, G. The availability of dtpa extracted heavy metals during laboratory incubation of contaminated soils with glucose amendments. Rostl. Vyrob. 2002, 48, 536–542. [Google Scholar] [CrossRef] [Green Version]
- Jericho, K.; Kozub, G.; Loewen, K.; Ho, J. Comparison of methods to determine the microbiological contamination of surfaces of beef carcasses by hydrophobic grid membrane filters, standard pour plates or flow cytometry. Food Microbiol. 1996, 13, 303–309. [Google Scholar] [CrossRef]
- AS/NZS 4276; Water Microbiology. Heterotrophic Colony Count Methods–Pour Plate Method Using Plate Count Agar. Standards Australia Int.: Strathfield, NSW, Australia, 1995.
- Boetcher, S.; Hildebrandt, G. The precision of colony count techniques. 1. Literature study about the comparison of Koch’s pour plate method with surface plating techniques. Fleischwirtschaft 1991, 71, 596–599. [Google Scholar]
- Mironov, V.; Kim, J.; Park, M.; Lim, S.; Cho, W. Comparison of electrical conductivity data obtained by four-electrode and four-point probe methods for graphite-based polymer composites. Polym. Test. 2007, 26, 547–555. [Google Scholar] [CrossRef]
- Shea, P.; Luthin, J. An investigation of the use of the four-electrode probe for measuring soil salinity in situ. Soil Sci. 1961, 92, 331–339. [Google Scholar] [CrossRef]
- Edlefsen, N.; Anderson, A. The four-electrode resistance method for measuring soil-moisture content under field conditions. Soil Sci. 1941, 51, 367–376. [Google Scholar] [CrossRef]
- Gomah, H. Assessment and Evaluation of Certain Heavy Metals in Soils and Plants in Assiut Governorate. Ph. D. Thesis, Faculty of Agriculture, Assiut University, Asyut, Egypt, 2001. [Google Scholar]
- Sys, C.; Verheye, W. Attempt to the Evaluation of Physical Land Characteristics for Irrigation according to the Fao Framework for Land Evaluation; State University of Ghent: Ghent, Belgium, 1978. [Google Scholar]
- Weil, R.R.; Brady, N.C.; Weil, R.R. The Nature and Properties of Soils; Prentice Hall: Upper Saddle River, NJ, USA, 2016. [Google Scholar]
- US Soil Conservation Service. Soil Survey Manual; US Government Printing Office: Washington, DC, USA, 1962. [Google Scholar]
- Roshdy, N. Distribution and Forms of Some Heavy Metals in a Contaminated Soil at Assiut; Faculty of Agriculture, Assiut University: Asyut, Egypt, 2009. [Google Scholar]
- El-Ameen, M.; Farragallah, A.; Essa, M.A. Physical, chemical and macro-micromorphological characteristics of some alluvial soils irrigated with different water resources. Ass. Univ. Bull. Environ. Res. 2005, 8, 51–69. [Google Scholar]
- Gerba, C.P.; Bitton, G. Microbial pollutants: Their survival and transport pattern to groundwater. In Groundwater Pollution Microbiology; John Wiley and Sons: New York, NY, USA, 1984; pp. 65–88. [Google Scholar]
- Pozdnyakova, L.A. Electrical Properties of Soils; University of Wyoming: Laramie, WY, USA, 1999. [Google Scholar]
Property | Relation Coefficient Value (R2) | Empirical Relationship |
---|---|---|
Water content | 0.785 | ER = 209.4e−0.17water content |
EC | 0.613 | ER = 258e−1.32EC |
pH | 0.61 | ER = 276.4(pH) − 2108 |
Sand content | 0.654 | ER = 0.115e0.074sand content |
Silt content | 0.563 | ER = 159.8e−0.04silt content |
Clay content | 0.531 | ER = 129.3e−0.46clay content |
Summation of heavy metals | 0.566 | ER = 221.1e−0.06sum.of heavy metals |
Total coliform | 0.584 | ER = 287.7e−0.01TC |
Profile | Depth | Resistivity | % Water Content | Particle Size Distribution | ||||||
---|---|---|---|---|---|---|---|---|---|---|
% Clay Content | % Silt Content | % Sand Content | ||||||||
No. | (cm) | (ohm·m) | Cal. | Meas. | Cal. | Meas. | Cal. | Meas. | Cal. | Meas. |
A | 0–25 | 50.3829 | 8.376 | 5.857 | 2.04 | 1.58 | 28.85 | 16.97 | 82.28 | 82.54 |
25–60 | 45.9952 | 8.912 | 6.964 | 2.24 | 1.69 | 31.12 | 22.37 | 80.97 | 77.49 | |
60–95 | 45.5413 | 8.971 | 7.296 | 2.26 | 1.73 | 31.37 | 19.93 | 80.84 | 79.15 | |
B | 0–25 | 47.2056 | 8.759 | 6.895 | 2.18 | 1.77 | 30.47 | 18.89 | 81.32 | 80.43 |
25–60 | 42.5153 | 9.376 | 7.651 | 2.4 | 1.84 | 33.1 | 22.41 | 79.91 | 77.75 | |
60–95 | 36.0094 | 10.353 | 9.769 | 2.77 | 2.15 | 37.25 | 30.23 | 77.66 | 68.67 | |
C | 0–25 | 40.2458 | 9.7 | 7.797 | 2.53 | 2.05 | 34.47 | 24.78 | 79.16 | 75.14 |
25–60 | 36.6146 | 10.259 | 9.508 | 2.74 | 2.19 | 36.85 | 29.05 | 77.88 | 70.67 |
Profile | Depth | EC | pH | ||
---|---|---|---|---|---|
No. | (cm) | Cal. | Meas. | Cal. | Meas. |
A | 0–25 | 1.20 | 0.96 | 7.81 | 7.84 |
25–60 | 1.30 | 1.05 | 7.79 | 8.08 | |
60–95 | 1.30 | 1.20 | 7.79 | 8.17 | |
B | 0–25 | 1.28 | 1.00 | 7.80 | 7.79 |
25–60 | 1.36 | 1.15 | 7.78 | 7.91 | |
60–95 | 1.49 | 1.39 | 7.76 | 8.24 | |
C | 0–25 | 1.41 | 1.18 | 7.77 | 8.19 |
25–60 | 1.48 | 1.28 | 7.76 | 8.31 |
Profile | Depth | DTPA-Extractable Heavy Metals (ppm) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fe | Mn | Cu | Zn | Co | Pb | Sum. | |||||||||
No. | (cm) | Cal. | Meas. | Cal. | Meas. | Cal. | Meas. | Cal. | Meas. | Cal. | Meas. | Cal. | Meas. | Cal. | Meas. |
A | 0–25 | 11.23 | 10.43 | 5.53 | 5.402 | 2.59 | 1.74 | 2.28 | 1.676 | 0.35 | 0.294 | 2.79 | 2.92 | 24.64 | 22.462 |
25–60 | 11.93 | 10.56 | 5.79 | 5.437 | 2.79 | 1.97 | 2.42 | 1.968 | 0.37 | 0.308 | 3.05 | 2.98 | 26.16 | 23.223 | |
60–95 | 12 | 10.538 | 5.82 | 5.329 | 2.82 | 2.031 | 2.44 | 2.00 | 0.37 | 0.328 | 3.08 | 3.02 | 26.33 | 23.246 | |
B | 0–25 | 11.73 | 10.64 | 5.72 | 5.26 | 2.74 | 2.136 | 2.38 | 1.853 | 0.36 | 0.286 | 2.98 | 2.87 | 25.73 | 23.045 |
25–60 | 12.92 | 10.879 | 6.03 | 5.683 | 2.97 | 2.386 | 2.55 | 2.17 | 0.38 | 0.342 | 3.29 | 3.01 | 27.48 | 24.47 | |
60–95 | 13.82 | 11.624 | 6.5 | 6.23 | 3.34 | 2.959 | 2.83 | 2.406 | 0.41 | 0.386 | 3.77 | 3.52 | 30.24 | 27.125 | |
C | 0–25 | 12.96 | 10.985 | 6.19 | 5.709 | 3.09 | 2.64 | 2.64 | 2.176 | 0.39 | 0.336 | 3.45 | 3.26 | 28.39 | 25.116 |
25–60 | 13.69 | 11.239 | 6.47 | 6.052 | 3.3 | 3.00 | 2.8 | 2.405 | 0.41 | 0.373 | 3.73 | 3.58 | 29.98 | 26.649 |
Profile No. | Depth | Total Coliform | |
---|---|---|---|
No. | (cm) | Cal. | Meas. |
A | 0–25 | 174 | 158 |
25–60 | 183 | 166 | |
60–95 | 184 | 170 | |
B | 0–25 | 181 | 168 |
25–60 | 191 | 178 | |
60–95 | 208 | 198 | |
C | 0–25 | 197 | 190 |
25–60 | 206 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel Aal, G.Z.; Faragallah, M.E.; Abd-Alla, M.H.; Abd El-Rhman, R.S.; Abdel Gowad, A.M.; Abdelhalim, A.; Ahmed, M.S.; Abudeif, A.M.; Mohammed, M.A. Simulation of Biophysicochemical Characteristics of the Soils Using Geoelectrical Measurements near the Sewage Station, Assiut City, Egypt. Water 2023, 15, 2148. https://doi.org/10.3390/w15122148
Abdel Aal GZ, Faragallah ME, Abd-Alla MH, Abd El-Rhman RS, Abdel Gowad AM, Abdelhalim A, Ahmed MS, Abudeif AM, Mohammed MA. Simulation of Biophysicochemical Characteristics of the Soils Using Geoelectrical Measurements near the Sewage Station, Assiut City, Egypt. Water. 2023; 15(12):2148. https://doi.org/10.3390/w15122148
Chicago/Turabian StyleAbdel Aal, Gamal Z., Mohamed E. Faragallah, Mohamed H. Abd-Alla, Reham S. Abd El-Rhman, Ahmed M. Abdel Gowad, Ahmed Abdelhalim, Mohamed S. Ahmed, Abdelbaset M. Abudeif, and Mohammed A. Mohammed. 2023. "Simulation of Biophysicochemical Characteristics of the Soils Using Geoelectrical Measurements near the Sewage Station, Assiut City, Egypt" Water 15, no. 12: 2148. https://doi.org/10.3390/w15122148
APA StyleAbdel Aal, G. Z., Faragallah, M. E., Abd-Alla, M. H., Abd El-Rhman, R. S., Abdel Gowad, A. M., Abdelhalim, A., Ahmed, M. S., Abudeif, A. M., & Mohammed, M. A. (2023). Simulation of Biophysicochemical Characteristics of the Soils Using Geoelectrical Measurements near the Sewage Station, Assiut City, Egypt. Water, 15(12), 2148. https://doi.org/10.3390/w15122148