Hydrological Dynamics of the Pantanal, a Large Tropical Floodplain in Brazil, Revealed by Analysis of Sentinel-2 Satellite Imagery
Abstract
:1. Introduction
2. Material and Methods
Study Site
3. Methods
3.1. Data Sources
3.1.1. Hydrological Data
3.1.2. Water Index and Supervised Classification Data
3.2. Preprocessing
3.2.1. Atmospheric Correction
3.2.2. Resampling Bands
3.3. Digital Processing Image (DPI)
3.3.1. Spectral Water Index
3.3.2. Supervised Classification
3.3.3. Error Matrix and Kappa Index
3.4. Digital Elevation Model
3.5. Data Analysis
4. Results
4.1. River Discharge
4.2. Hypsometric Mapping
4.3. Supervised Classification Land Cover
4.4. Water Indices
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dinnin, M.; Van de Noort, R. Wetland Habitats, their Resource Potential and Exploitation: A Case Study from the Humber Wetlands. 1999, pp. 69–78. Available online: http://hdl.handle.net/10036/29874 (accessed on 21 January 2023).
- Acreman, M.; Holden, J. How wetlands affect floods. Wetlands 2013, 33, 773–786. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- de Groot, D.; Brander, L.; Max Finlayson, C. Wetland ecosystem services. Wetl. B. I Struct. Funct. Manag. Methods 2018, 13, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Stefanidis, S.; Alexandridis, V.; Theodoridou, T. Flood Exposure of Residential Areas and Infrastructure in Greece. Hydrology 2022, 9, 145. [Google Scholar] [CrossRef]
- Pricope, N.G.; Shivers, G. Wetland Vulnerability Metrics as a Rapid Indicator in Identifying Nature-Based Solutions to Mitigate Coastal Flooding. Hydrology 2022, 9, 218. [Google Scholar] [CrossRef]
- Junk, W.J.; Nunes da Cunha, C.; da Silva, C.J.; Wantzen, K.M. The Pantanal: Ecology, Biodiversity and Sustainable Management of a Large Neotropical Seasonal Wetland; Junk, W.J., Nunes da Cunha, C., da Silva, C.J., Wantzen, K.M., Eds.; Pensoft: Sofia, Bulgaria; Moscow, Russia, 2011; ISBN 978-9546424921. Available online: https://hdl.handle.net/11858/00-001M-0000-000F-D3D6-4 (accessed on 27 March 2023).
- de Magalhães Neto, N.; Evangelista, H. Human Activity Behind the Unprecedented 2020 Wildfire in Brazilian Wetlands (Pantanal). Front. Environ. Sci. 2022, 10, 848. [Google Scholar] [CrossRef]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The flood pulse concept in river-Floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci. 1989, 106, 110–127. [Google Scholar]
- Hamilton, S.K.; de Souza, O.C.; Coutinho, M.E. Dynamics of floodplain inundation in the alluvial fan of the Taquari River (Pantanal, Brazil). SIL Proc. 1922–2010 1998, 26, 916–922. [Google Scholar] [CrossRef]
- Fantin-Cruz, I.; Pedrollo, O.; Castro, N.M.R.; Girard, P.; Zeilhofer, P.; Hamilton, S.K. Historical reconstruction of floodplain inundation in the Pantanal (Brazil) using neural networks. J. Hydrol. 2011, 399, 376–384. [Google Scholar] [CrossRef]
- Girard, P. Hydrology of surface and groundwaters in the Pantanal floodplains. In The Pantanal: Ecology, Biodiversity and Sustainable Management of a Large Neotropical Seasonal Wetland; 2011; pp. 103–126. Available online: https://www.amazon.com.br/Pantanal-Biodiversity-Sustainable-Management-Neotropical/dp/9546424927 (accessed on 27 March 2023).
- Pupim, F.D.N. Geomorfologia e Paleo-Hidrologia dos Megaleques dos Rios Cuiabá e São Lourenço, Quaternário da Bacia do Pantanal; Universidade Estadual Paulista: Rio Claro, Brazil, 2014. [Google Scholar]
- Fassoni-Andrade, A.C.; Fleischmann, A.S.; Papa, F.; de Paiva, R.C.D.; Wongchuig, S.; Melack, J.M.; Moreira, A.A.; Paris, A.; Ruhoff, A.; Barbosa, C.; et al. Amazon Hydrology From Space: Scientific Advances and Future Challenges. Rev. Geophys. 2021, 59, 97. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; Sheng, C.; Xu, J.; Wu, L. A review of wetland remote sensing. Sensors 2017, 17, 777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melack, J.M.; Hess, L.L. Remote Sensing of the Distribution and Extent of Wetlands in the Amazon Basin. In Amazonian Floodplain Forests: Ecophysiology, Biodiversity and Sustainable Managemen; Springer: Dordrecht, The Netherlands, 2010; Volume 210, pp. 43–59. ISBN 9789048187256. [Google Scholar]
- Dong, J.; Metternicht, G.; Hostert, P.; Fensholt, R.; Chowdhury, R.R. Remote sensing and geospatial technologies in support of a normative land system science: Status and prospects. Curr. Opin. Environ. Sustain. 2019, 38, 44–52. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Mallinis, G. A cloud-based mapping approach for assessing spatiotemporal changes in erosion dynamics due to biotic and abiotic disturbances in a Mediterranean Peri-Urban forest. CATENA 2022, 218, 106564. [Google Scholar] [CrossRef]
- Hamilton, S.K.; Sippel, S.J.; Melack, J.M. Inundation patterns in the Pantanal wetland of South America determined from passive microwave remote sensing. Arch. Hydrobiol. 1996, 137, 1–23. [Google Scholar] [CrossRef]
- Papa, F.; Prigent, C.; Aires, F.; Jimenez, C.; Rossow, W.B.; Matthews, E. Interannual variability of surface water extent at the global scale, 1993–2004. J. Geophys. Res. Atmos. 2010, 115, 1–17. [Google Scholar] [CrossRef]
- Dettmering, D.; Schwatke, C.; Boergens, E.; Seitz, F. Potential of ENVISAT radar altimetry for water level monitoring in the Pantanal wetland. Remote Sens. 2016, 8, 596. [Google Scholar] [CrossRef] [Green Version]
- Evans, T.L.; Costa, M.; Telmer, K.; Silva, T.S.F. Using ALOS/PALSAR and RADARSAT-2 to Map Land Cover and Seasonal Inundation in the Brazilian Pantanal. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 560–575. [Google Scholar] [CrossRef]
- Padovani, C.R. Dinâmica Espaço-Temporal das Inundações do Pantanal; Universidade de São Paulo (USP): São Paulo, Brazil, 2010. [Google Scholar]
- da Paz, A.R.; Collischonn, W.; Tucci, C.E.M.; Padovani, C.R. Large-scale modelling of channel flow and floodplain inundation dynamics and its application to the Pantanal (Brazil). Hydrol. Process. 2011, 25, 1498–1516. [Google Scholar] [CrossRef]
- da Cunha, C.N.; Junk, W.J.; Fiuza, A.G.; Bononi, J.; de Arruda, E.C. Sítio Ransar | Sesc Pantanal; Cuibá, 2019. [Google Scholar]
- Lacerda Filho, J.V.D.; Abreu Filho, W.; Valente, C.R.; Oliveira, C.C.D.; Albuquerque, M.C.D. Geologia e Recursos Minerais do Estado de Mato Grosso; Programa Geologia do Brasil: Cuiabá, Brazil, 2004; p. 1976. [Google Scholar]
- Luis, M. Sedimentação na bacia do Pantanal Mato-Grossense, Centro-Oeste do Brasil. 2003. x, 106 f. Tese (livre-docência)—Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas. 2003. Available online: http://hdl.handle.net/11449/108382 (accessed on 27 March 2023).
- Nunes da Cunha, C.; Piedade, M.T.F.; Junk, W.J. Classificação e Delineamento das Áreas Úmidas Brasileiras e de seus Macrohabitats; EdUFMT: Cuiabá, Brazil, 2015; Volume 1, ISBN 9788578110796. [Google Scholar]
- ESA ESA’s Optical High-Resolution Mission for GMES Operational Services; European Space Agency: Paris, France, 2015; ISBN 9789292214197.
- Penha, T.V.; Pletsch, M.A.J.S.; Silva, C.H.L.; Körting, T.S.; Fonseca, L.M.G. Detecção e delimitação automática de corpos hídricos em imagens Sentinel-2: Uma proposta de integração do algoritmo Fmask aos índices espectrais NDWI e MNDWI. In Proceedings of the Anais do XVIII GEOINFO, El Salvador, December 2017; pp. 340–345. [Google Scholar]
- Vanhellemont, Q.; Ruddick, K. Acolite for Sentinel-2: Aquatic applications of MSI imagery. In Proceedings of the 2016 ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; Volume SP-740, pp. 9–13. [Google Scholar]
- Eito-Brun, R.; Ledesma Rodríguez, M. 50 years of space research in Europe: A bibliometric profile of the European Space Agency (ESA). Scientometrics 2016, 109, 551–576. [Google Scholar] [CrossRef]
- McFeeters, S.K. Using the normalized difference water index (ndwi) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sens. 2013, 5, 3544–3561. [Google Scholar] [CrossRef] [Green Version]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Ponzoni, F.J.; Galvão, L.S.; Epiphanio, J.C.N. Spatial resolution influence on the identification of land cover classes in the Amazon environment. An. Acad. Bras. Cienc. 2002, 74, 717–725. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.R. Introdcutory Digital Image Processing: A Remote Sensing Perspective, 3rd ed.; Daniel, E., Kaveney, J.C., Eds.; Inc., Prentice-Hall: Upper Saddle River, NJ, USA, 2005; ISBN 0132058405. [Google Scholar]
- Landis, R.; Koch, G. An Application of Hierarchical Kappa-type Statistics in the Assessment of Majority Agreement among Multiple Observers. Biometrics 1977, 33, 363–374. Available online: https://www.jstor.org/stab (accessed on 23 April 2023). [CrossRef]
- Mohd Razali, N.; Bee Wah, Y. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2011, 2, 21–33. [Google Scholar]
- Girard, P.; Da Silva, C.J.; Abdo, M. River-Groundwater interactions in the Brazilian Pantanal. The case of the Cuiabá River. J. Hydrol. 2003, 283, 57–66. [Google Scholar] [CrossRef]
- Girard, P.; Fantin-Cruz, I.; de Oliveira, S.M.L.; Hamilton, S.K. Small-scale spatial variation of inundation dynamics in a floodplain of the Pantanal (Brazil). Hydrobiologia 2010, 638, 223–233. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Brenner, V.C.; Guasselli, L.A. Índice de Diferença Normalizada da Água (NDWI) para Identificação de Meandros Ativos no Leito do Canal do Rio Gravataí/RS-Brasil; Anais XVII Simpósio Brasileiro de Sensoriamento Remoto-SBSR: João Pessoa, Brasil, 2015; pp. 6381–6388. [Google Scholar]
Method of Estimation | Period | Classes | Area (ha) | Area (%) | Kruskal-Wallis Test |
---|---|---|---|---|---|
Surfaces without water | 63,962.74 | 59.17 | |||
Moderate dryness | 43,525.25 | 40.27 | |||
May 2017 | Humidity/flood | 289.39 | 0.27 | ||
Water surface | 317.95 | 0.29 | |||
NDWI | Surfaces without water | 63,587.85 | 58.83 | ||
Moderate dryness | 44,075.47 | 40.77 | |||
September 2017 | Humidity/flood | 303.71 | 0.28 | ||
water surface | 128.30 | 0.12 | |||
Surfaces without water | 71,377.97 | 66.03 | p-value = 0.4514 | ||
May 2017 | Moderate dryness | 36,038.36 | 33.34 | ||
Humidity/flood | 571.06 | 0.53 | |||
water surface | 107.94 | 0.10 | |||
MNDWI | Surfaces without water | 72,471.26 | 67.04 | ||
Moderate dryness | 35,005.59 | 32.38 | |||
September 2017 | Humidity/flood | 483.15 | 0.45 | ||
water surface | 135.33 | 0.13 | |||
Monodominant forest | 52,742.98 | 48.79 | |||
Shrub | 13,222.49 | 12.23 | |||
Sazonal herbaceous | 9528.17 | 8.81 | |||
Land Cover | May 2017 | Exposed soil | 6794.51 | 6.29 | |
Water | 3325.86 | 3.08 | |||
Humidity/flood | 22,481.45 | 20.80 | |||
Monodominant forest | 29,259.65 | 27.07 | |||
Shrub | 21,794.25 | 20.16 | |||
Land Cover | September 2017 | Sazonal dry field | 32,554.46 | 30.12 | |
Exposed soil | 23,360.45 | 21.61 | |||
Water | 198.03 | 0.18 | |||
Dry field | 526.84 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jean Milien, E.; Nunes, G.M.; Pierre, G.; Hamilton, S.K.; Da Cunha, C.N. Hydrological Dynamics of the Pantanal, a Large Tropical Floodplain in Brazil, Revealed by Analysis of Sentinel-2 Satellite Imagery. Water 2023, 15, 2180. https://doi.org/10.3390/w15122180
Jean Milien E, Nunes GM, Pierre G, Hamilton SK, Da Cunha CN. Hydrological Dynamics of the Pantanal, a Large Tropical Floodplain in Brazil, Revealed by Analysis of Sentinel-2 Satellite Imagery. Water. 2023; 15(12):2180. https://doi.org/10.3390/w15122180
Chicago/Turabian StyleJean Milien, Edelin, Gustavo Manzon Nunes, Girard Pierre, Stephen K. Hamilton, and Catia Núnes Da Cunha. 2023. "Hydrological Dynamics of the Pantanal, a Large Tropical Floodplain in Brazil, Revealed by Analysis of Sentinel-2 Satellite Imagery" Water 15, no. 12: 2180. https://doi.org/10.3390/w15122180
APA StyleJean Milien, E., Nunes, G. M., Pierre, G., Hamilton, S. K., & Da Cunha, C. N. (2023). Hydrological Dynamics of the Pantanal, a Large Tropical Floodplain in Brazil, Revealed by Analysis of Sentinel-2 Satellite Imagery. Water, 15(12), 2180. https://doi.org/10.3390/w15122180