Assessment of Three GPM IMERG Products for GIS-Based Tropical Flood Hazard Mapping Using Analytical Hierarchy Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Description
2.3. Data Processing and Analysis
2.4. Selection of Flooding Hazard Factors
2.4.1. Meteorological Data
Rain Gauge Data
Satellite Datasets
2.4.2. Surface Runoff
2.4.3. Elevation
2.4.4. Slope
2.4.5. Distance to Rivers
2.4.6. Drainage Density
2.4.7. Soil Type
2.4.8. Land Use
2.4.9. Lithology
2.4.10. Road Network Density
2.4.11. Building Density
2.4.12. Population Density
2.5. Assigned Weights of Criterion
2.6. Application of Analytical Hierarchy Process (AHP)
AHP Normalized Pairwise Comparison
2.7. Sensitivity Analysis
2.8. Flood Hazard Index
3. Results
3.1. AHP Sensitivity Analysis
3.2. Statistical Analysis on the Original and Resampled Data of IMERG
3.3. Spatial Pattern of the IMERG Product and Rain Gauges
3.4. Validation of Flood Hazard Index
3.5. Flood Hazard Index Mapping
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jonkman, S.N. Global Perspectives on Loss of Human Life Caused by Floods. Nat. Hazards 2005, 34, 151–175. [Google Scholar] [CrossRef]
- Cred, U.G. The Human Cost of Disasters: An Overview of the Last 20 Years 2000–2019; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2020. [Google Scholar]
- Bubeck, P.; Botzen, W.J.W.; Aerts, J.C.J.H. A Review of Risk Perceptions and Other Factors That Influence Flood Mitigation Behavior. Risk Anal. 2012, 32, 1481–1495. [Google Scholar] [CrossRef] [Green Version]
- Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A Novel Hybrid Artificial Intelligence Approach for Flood Susceptibility Assessment. Environ. Model. Softw. 2017, 95, 229–245. [Google Scholar] [CrossRef]
- Dung, N.B.; Long, N.Q.; An, D.T.; Minh, D.T. Multi-Geospatial Flood Hazard Modelling for a Large and Complex River Basin with Data Sparsity: A Case Study of the Lam River Basin, Vietnam. Earth Syst. Environ. 2022, 6, 715–731. [Google Scholar] [CrossRef]
- Majid, N.A.; Nazi, N.M.; Idris, N.D.M.; Taha, M.R. GIS-Based Livelihood Vulnerability Index Mapping of the Socioeconomy of the Pekan Community. Sustainability 2019, 11, 6935. [Google Scholar] [CrossRef] [Green Version]
- Ullah, K.; Zhang, J. GIS-Based Flood Hazard Mapping Using Relative Frequency Ratio Method: A Case Study of Panjkora River Basin, Eastern Hindu Kush, Pakistan. PLoS ONE 2020, 15, e0229153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seejata, K.; Yodying, A.; Chatsudarat, S.; Chidburee, P.; Mahavik, N.; Kongmuang, C.; Tantanee, S. Assessment of Flood Hazard Using Geospatial Data and Frequency Ratio Model in Sukhothai Province, Thailand. In Proceedings of the 40th Asian Conference on Remote Sensing, ACRS 2019: Progress of Remote Sensing Technology for Smart Future, Daejeon, Republic of Korea, 14–18 October 2019. [Google Scholar]
- Costache, R.; Zaharia, L. Flash-Flood Potential Assessment and Mapping by Integrating the Weights-of-Evidence and Frequency Ratio Statistical Methods in GIS Environment—Case Study: Bâsca Chiojdului River Catchment (Romania). J. Earth Syst. Sci. 2017, 126, 59. [Google Scholar] [CrossRef]
- Nandi, A.; Mandal, A.; Wilson, M.; Smith, D. Flood Hazard Mapping in Jamaica Using Principal Component Analysis and Logistic Regression. Environ. Earth Sci. 2016, 75, 465. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Saeidi, V.; Janizadeh, S.; Shabani, F.; Ahmadi, K.; Shabani, F. Deep Neural Network Utilizing Remote Sensing Datasets for Flood Hazard Susceptibility Mapping in Brisbane, Australia. Remote Sens. 2021, 13, 2638. [Google Scholar] [CrossRef]
- Rahmati, O.; Darabi, H.; Haghighi, A.T.; Stefanidis, S.; Kornejady, A.; Nalivan, O.A.; Bui, D.T. Urban Flood Hazard Modeling Using Self-Organizing Map Neural Network. Water 2019, 11, 2370. [Google Scholar] [CrossRef] [Green Version]
- Kabenge, M.; Elaru, J.; Wang, H.; Li, F. Characterizing Flood Hazard Risk in Data-Scarce Areas, Using a Remote Sensing and GIS-Based Flood Hazard Index. Nat. Hazards 2017, 89, 1369–1387. [Google Scholar] [CrossRef]
- Abu El-Magd, S.A. Flash Flood Hazard Mapping Using GIS and Bivariate Statistical Method at Wadi Bada’a, Gulf of Suez, Egypt. J. Geosci. Environ. Prot. 2019, 7, 372–385. [Google Scholar] [CrossRef] [Green Version]
- Kuenzer, C.; Guo, H.; Huth, J.; Leinenkugel, P.; Li, X.; Dech, S. Flood Mapping and Flood Dynamics of the Mekong Delta: ENVISAT-ASAR-WSM Based Time Series Analyses. Remote Sens. 2013, 5, 687–715. [Google Scholar] [CrossRef] [Green Version]
- Sciance, M.B.; Nooner, S.L. Decadal Flood Trends in Bangladesh from Extensive Hydrographic Data. Nat. Hazards 2018, 90, 115–135. [Google Scholar] [CrossRef]
- Sghaier, M.O.; Hammami, I.; Foucher, S.; Lepage, R. Flood Extent Mapping from Time-Series SAR Images Based on Texture Analysis and Data Fusion. Remote Sens. 2018, 10, 237. [Google Scholar] [CrossRef] [Green Version]
- Norallahi, M.; Seyed Kaboli, H. Urban Flood Hazard Mapping Using Machine Learning Models: GARP, RF, MaxEnt and NB. Nat. Hazards 2021, 106, 119–137. [Google Scholar] [CrossRef]
- Mudashiru, R.B.; Sabtu, N.; Abustan, I.; Balogun, W. Flood Hazard Mapping Methods: A Review. J. Hydrol. 2021, 603, 126846. [Google Scholar] [CrossRef]
- De Brito, M.M.; Evers, M. Multi-Criteria Decision-Making for Flood Risk Management: A Survey of the Current State of the Art. Nat. Hazards Earth Syst. Sci. 2016, 16, 1019–1033. [Google Scholar] [CrossRef] [Green Version]
- De Brito, M.M.; Evers, M.; Delos Santos Almoradie, A. Participatory Flood Vulnerability Assessment: A Multi-Criteria Approach. Hydrol. Earth Syst. Sci. 2018, 22, 373–390. [Google Scholar] [CrossRef] [Green Version]
- Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science. In Advances in Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Skilodimou, H.D.; Bathrellos, G.D.; Alexakis, D.E. Flood Hazard Assessment Mapping in Burned and Urban Areas. Sustainability 2021, 13, 4455. [Google Scholar] [CrossRef]
- Zzaman, R.U.; Nowreen, S.; Billah, M.; Islam, A.S. Flood Hazard Mapping of Sangu River Basin in Bangladesh Using Multi-Criteria Analysis of Hydro-Geomorphological Factors. J. Flood Risk Manag. 2021, 14, e12715. [Google Scholar] [CrossRef]
- Mahmoody Vanolya, N.; Jelokhani-Niaraki, M. The Use of Subjective–Objective Weights in GIS-Based Multi-Criteria Decision Analysis for Flood Hazard Assessment: A Case Study in Mazandaran, Iran. Geojournal 2021, 86, 379–398. [Google Scholar] [CrossRef]
- Pradhan, B. Flood Susceptible Mapping and Risk Area Delineation Using Logistic Regression, GIS and Remote Sensing. J. Spat. Hydrol. 2009, 9, 1–18. [Google Scholar]
- Ouma, Y.O.; Tateishi, R. Urban Flood Vulnerability and Risk Mapping Using Integrated Multi-Parametric AHP and GIS: Methodological Overview and Case Study Assessment. Water 2014, 6, 1515–1545. [Google Scholar] [CrossRef] [Green Version]
- Youssef, A.M.; Hegab, M.A. Flood-Hazard Assessment Modeling Using Multicriteria Analysis and GIS: A Case Study—Ras Gharib Area, Egypt. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Ajjur, S.B.; Mogheir, Y.K. Flood Hazard Mapping Using a Multi-Criteria Decision Analysis and GIS (Case Study Gaza Governorate, Palestine). Arab. J. Geosci. 2020, 13, 44. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, A. Urban Expansion Induced Vulnerability Assessment of East Kolkata Wetland Using Fuzzy MCDM Method. Remote Sens. Appl. 2019, 13, 191–203. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Jones, S.; Shabani, F.; Martínez-Álvarez, F.; Tien Bui, D. A Novel Ensemble Modeling Approach for the Spatial Prediction of Tropical Forest Fire Susceptibility Using LogitBoost Machine Learning Classifier and Multi-Source Geospatial Data. Appl. Clim. 2019, 137, 637–653. [Google Scholar] [CrossRef]
- Rahmati, O.; Haghizadeh, A.; Stefanidis, S. Assessing the Accuracy of GIS-Based Analytical Hierarchy Process for Watershed Prioritization; Gorganrood River Basin, Iran. Water Resour. Manag. 2016, 30, 1131–1150. [Google Scholar] [CrossRef]
- Elsheikh, R.F.A.; Ouerghi, S.; Elhag, A.R. Flood Risk Map Based on GIS, and Multi Criteria Techniques (Case Study Terengganu Malaysia). J. Geogr. Inf. Syst. 2015, 7, 348–357. [Google Scholar] [CrossRef] [Green Version]
- Dano, U.L.; Balogun, A.L.; Matori, A.N.; Yusouf, K.W.; Abubakar, I.R.; Mohamed, M.A.S.; Aina, Y.A.; Pradhan, B. Flood Susceptibility Mapping Using GIS-Based Analytic Network Process: A Case Study of Perlis, Malaysia. Water 2019, 11, 615. [Google Scholar] [CrossRef] [Green Version]
- Kidd, C. Satellite Rainfall Climatology: A Review. Int. J. Climatol. 2001, 21, 1041–1066. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Wu, X.; Xu, C.Y.; Guo, S.; Chen, X. Toward Monitoring Short-Term Droughts Using a Novel Daily Scale, Standardized Antecedent Precipitation Evapotranspiration Index. J. Hydrometeorol. 2020, 21. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, Z.; Wu, X.; Zscheischler, J.; Guo, S.; Chen, X. A Standardized Index for Assessing Sub-Monthly Compound Dry and Hot Conditions with Application in China. Hydrol Earth Syst Sci 2021, 25. [Google Scholar] [CrossRef]
- Villarini, G.; Mandapaka, P.V.; Krajewski, W.F.; Moore, R.J. Rainfall and Sampling Uncertainties: A Rain Gauge Perspective. J. Geophys. Res. Atmos. 2008, 113, D11102. [Google Scholar] [CrossRef]
- Xie, X.; Xie, B.; Cheng, J.; Chu, Q.; Dooling, T. A Simple Monte Carlo Method for Estimating the Chance of a Cyclone Impact. Natural Hazards 2021, 107, 2573–2582. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, Y.; Wang, L.; Sang, L.; Zhao, K.; Zhang, Z.; Lin, X.; Qiu, D. The Isotopes of Precipitation Have Climate Change Signal in Arid Central Asia. Glob. Planet. Chang 1016, 225, 104103. [Google Scholar] [CrossRef]
- Huffman, G.; Bolvin, D.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.; Sorooshian, S.; Tan, J.; Xie, P. NASA GPM Integrated Multi-SatellitE Retrievals for GPM (IMERG) Algorithm Theoretical Basis Document (ATBD) Version 06; NASA/GSFC: Greenbelt, MD, USA, 2020; p. 29.
- Wang, J.; Petersen, W.A.; Wolff, D.B. Validation of Satellite-Based Precipitation Products from TRMM to GPM. Remote Sens. 2021, 13, 1745. [Google Scholar] [CrossRef]
- Das, S.; Gupta, A. Multi-Criteria Decision Based Geospatial Mapping of Flood Susceptibility and Temporal Hydro-Geomorphic Changes in the Subarnarekha Basin, India. Geosci. Front. 2021, 12, 101206. [Google Scholar] [CrossRef]
- Pradhan, R.K.; Markonis, Y.; Vargas Godoy, M.R.; Villalba-Pradas, A.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M.; Rahim, A.; Tapiador, F.J.; Hanel, M. Review of GPM IMERG Performance: A Global Perspective. Remote Sens. Environ. 2022, 268, 112754. [Google Scholar] [CrossRef]
- Ma, M.; Wang, H.; Jia, P.; Tang, G.; Wang, D.; Ma, Z.; Yan, H. Application of the GPM-IMERG Products in Flash Flood Warning: A Case Study in Yunnan, China. Remote Sens. 2020, 12, 1954. [Google Scholar] [CrossRef]
- Parsian, S.; Amani, M.; Moghimi, A.; Ghorbanian, A.; Mahdavi, S. Flood Hazard Mapping Using Fuzzy Logic, Analytical Hierarchy Process, and Multi-Source Geospatial Datasets. Remote Sens. 2021, 13, 4761. [Google Scholar] [CrossRef]
- Jiang, S.; Ren, L.; Xu, C.Y.; Yong, B.; Yuan, F.; Liu, Y.; Yang, X.; Zeng, X. Statistical and Hydrological Evaluation of the Latest Integrated Multi-SatellitE Retrievals for GPM (IMERG) over a Midlatitude Humid Basin in South China. Atmos. Res. 2018, 214, 418–429. [Google Scholar] [CrossRef]
- Tan, M.L.; Liang, J.; Samat, N.; Chan, N.W.; Haywood, J.M.; Hodges, K. Hydrological Extremes and Responses to Climate Change in the Kelantan River Basin, Malaysia, Based on the CMIP6 Highresmip Experiments. Water 2021, 13, 1472. [Google Scholar] [CrossRef]
- Alias, N.E.; Mohamad, H.; Chin, W.Y.; Yusop, Z. Rainfall Analysis of the Kelantan Big Yellow Flood 2014. J. Teknol. 2016, 78, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Baharuddin, K.A.; Wahab, S.F.A.; Rahman, N.H.N.A.; Mohamad, N.A.N.; Kamauzaman, T.H.T.; Noh, A.Y.M.; Majid, M.R.A. The Record-Setting Flood of 2014 in Kelantan: Challenges and Recommendations from an Emergency Medicine Perspective and Why the Medical Campus Stood Dry. Malays. J. Med. Sci. 2015, 22, 1. [Google Scholar]
- Xie, X.; Tian, Y.; Wei, G. Deduction of Sudden Rainstorm Scenarios: Integrating Decision Makers’ Emotions, Dynamic Bayesian Network and DS Evidence Theory. Nat. Hazards 2022, 2935–2955. [Google Scholar] [CrossRef]
- Shadmehri Toosi, A.; Calbimonte, G.H.; Nouri, H.; Alaghmand, S. River Basin-Scale Flood Hazard Assessment Using a Modified Multi-Criteria Decision Analysis Approach: A Case Study. J. Hydrol. 2019, 574, 660–671. [Google Scholar] [CrossRef]
- Seejata, K.; Yodying, A.; Wongthadam, T.; Mahavik, N.; Tantanee, S. Assessment of Flood Hazard Areas Using Analytical Hierarchy Process over the Lower Yom Basin, Sukhothai Province. Procedia Eng. 2018, 212, 340–347. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Chua, V.P.; Chan, N.W. Climate Change Impacts under CMIP5 RCP Scenarios on Water Resources of the Kelantan River Basin, Malaysia. Atmos. Res. 2017, 189, 1–10. [Google Scholar] [CrossRef]
- Field, H.L.; Solie, J.B. Introduction to Agricultural Engineering Technology: A Problem Solving Approach; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Bunya, S.; Dietrich, J.C.; Westerink, J.J.; Ebersole, B.A.; Smith, J.M.; Atkinson, J.H.; Jensen, R.; Resio, D.T.; Luettich, R.A.; Dawson, C.; et al. A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part I: Model Development and Validation. Mon. Weather. Rev. 2010, 138, 345–377. [Google Scholar] [CrossRef] [Green Version]
- Radmehr, A.; Araghinejad, S. Flood Vulnerability Analysis by Fuzzy Spatial Multi Criteria Decision Making. Water Resour. Manag. 2015, 29, 4427–4445. [Google Scholar] [CrossRef]
- Sahana, M.; Patel, P.P. A Comparison of Frequency Ratio and Fuzzy Logic Models for Flood Susceptibility Assessment of the Lower Kosi River Basin in India. Environ. Earth Sci. 2019, 78, 289. [Google Scholar] [CrossRef]
- Hu, S.; Cheng, X.; Zhou, D.; Zhang, H. GIS-Based Flood Risk Assessment in Suburban Areas: A Case Study of the Fangshan District, Beijing. Nat. Hazards 2017, 87, 1525–1543. [Google Scholar] [CrossRef]
- Singh, S.K.; Srivastava, P.K.; Pandey, A.C. Fluoride Contamination Mapping of Groundwater in Northern India Integrated with Geochemical Indicators and GIS. Water Sci. Technol. Water Supply 2013, 13, 1513–1523. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Ulloa, J.; Ballari, D.; Campozano, L.; Samaniego, E. Two-Step Downscaling of TRMM 3b43 V7 Precipitation in Contrasting Climatic Regions with Sparse Monitoring: The Case of Ecuador in Tropical South America. Remote Sens. 2017, 9, 758. [Google Scholar] [CrossRef] [Green Version]
- Tolche, A.D.; Gurara, M.A.; Pham, Q.B.; Anh, D.T. Modelling and Accessing Land Degradation Vulnerability Using Remote Sensing Techniques and the Analytical Hierarchy Process Approach. Geocarto Int. 2021, 37, 7122–7142. [Google Scholar] [CrossRef]
- Sandeep, P.; Reddy, G.P.O.; Jegankumar, R.; Arun Kumar, K.C. Modeling and Assessment of Land Degradation Vulnerability in Semi-Arid Ecosystem of Southern India Using Temporal Satellite Data, AHP and GIS. Environ. Model. Assess. 2021, 26, 143–154. [Google Scholar] [CrossRef]
- Malav, L.C.; Yadav, B.; Tailor, B.L.; Pattanayak, S.; Singh, S.V.; Kumar, N.; Reddy, G.P.O.; Mina, B.L.; Dwivedi, B.S.; Jha, P.K. Mapping of Land Degradation Vulnerability in the Semi-Arid Watershed of Rajasthan, India. Sustainability 2022, 14, 10198. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Chen, C.; Chen, Q.; Zhang, Y.; Ma, N.; Zaman, Q. Effects of Temporal Scales and Space Mismatches on the TRMM 3B42 v7 Precipitation Product in a Remote Mountainous Area. Hydrol. Process. 2017, 31, 4315–4327. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Z.; Yin, L.; Zheng, W. Statistical Analysis of Regional Air Temperature Characteristics before and after Dam Construction. Urban Clim. 2022, 41, 101085. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, J.; Li, J.; Mao, D.; Zhang, Y.; Huang, Y.; Yang, J. Fast Inverse-Scattering Reconstruction for Airborne High-Squint Radar Imagery Based on Doppler Centroid Compensation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Tan, M.L.; Duan, Z. Assessment of GPM and TRMM Precipitation Products over Singapore. Remote Sens. 2017, 9, 720. [Google Scholar] [CrossRef] [Green Version]
- Dai, X. The Effects of Image Misregistration on the Accuracy of Remotely Sensed Change Detection. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1566–1577. [Google Scholar] [CrossRef] [Green Version]
- Ab. Ghani, A.; Chang, C.K.; Leow, C.S.; Zakaria, N.A. Sungai Pahang Digital Flood Mapping: 2007 Flood. Int. J. River Basin Manag. 2012, 10, 139–148. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, K.; Li, Z.; Liu, Z.; Wang, J.; Huang, P. A Hybrid Runoff Generation Modelling Framework Based on Spatial Combination of Three Runoff Generation Schemes for Semi-Humid and Semi-Arid Watersheds. J. Hydrol. 2020, 590, 125440. [Google Scholar] [CrossRef]
- Pradhan, B.; Youssef, A.M. A 100-Year Maximum Flood Susceptibility Mapping Using Integrated Hydrological and Hydrodynamic Models: Kelantan River Corridor, Malaysia. J. Flood Risk Manag. 2011, 4, 189–202. [Google Scholar] [CrossRef]
- Wen, J.; Liu, Q.; Xiao, Q.; Liu, Q.; You, D.; Hao, D.; Wu, S.; Lin, X. Characterizing Land Surface Anisotropic Reflectance over Rugged Terrain: A Review of Concepts and Recent Developments. Remote Sens. 2018, 10, 370. [Google Scholar] [CrossRef] [Green Version]
- Fernández, D.S.; Lutz, M.A. Urban Flood Hazard Zoning in Tucumán Province, Argentina, Using GIS and Multicriteria Decision Analysis. Eng. Geol. 2010, 111, 90–98. [Google Scholar] [CrossRef]
- Shahabi, H.; Shirzadi, A.; Ghaderi, K.; Omidvar, E.; Al-Ansari, N.; Clague, J.J.; Geertsema, M.; Khosravi, K.; Amini, A.; Bahrami, S.; et al. Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach: Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier. Remote Sens. 2020, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Nazaruddin, D.A.; Fadilah, N.S.; Zulkarnain, Z. Geological Review of the Rafflesia Trail, Near Kampung Jedip, Lojing Highlands: Inputs for a Nature-Based Tourism Site in Kelantan, Malaysia. J. Trop. Resour. Sustain. Sci. 2015, 3, 86–97. [Google Scholar] [CrossRef]
- Towfiqul Islam, A.R.M.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood Susceptibility Modelling Using Advanced Ensemble Machine Learning Models. Geosci. Front. 2021, 12, 101075. [Google Scholar] [CrossRef]
- Bilskie, M.V.; Hagen, S.C. Defining Flood Zone Transitions in Low-Gradient Coastal Regions. Geophys. Res. Lett. 2018, 45, 2761–2770. [Google Scholar] [CrossRef]
- Abah, R. Clement An Application of Geographic Information System in Mapping Flood Risk Zones in a North Central City in Nigeria. Afr. J. Environ. Sci. Technol. 2013, 7, 365–371. [Google Scholar] [CrossRef]
- Yousefi, S.; Mirzaee, S.; Keesstra, S.; Surian, N.; Pourghasemi, H.R.; Zakizadeh, H.R.; Tabibian, S. Effects of an Extreme Flood on River Morphology (Case Study: Karoon River, Iran). Geomorphology 2018, 304, 30–39. [Google Scholar] [CrossRef]
- Zhou, Z.; Stefanon, L.; Olabarrieta, M.; D’Alpaos, A.; Carniello, L.; Coco, G. Analysis of the Drainage Density of Experimental and Modelled Tidal Networks. Earth Surf. Dyn. 2014, 2, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Sajedi-Hosseini, F.; Choubin, B.; Solaimani, K.; Cerdà, A.; Kavian, A. Spatial Prediction of Soil Erosion Susceptibility Using a Fuzzy Analytical Network Process: Application of the Fuzzy Decision Making Trial and Evaluation Laboratory Approach. Land Degrad. Dev. 2018, 29, 3092–3103. [Google Scholar] [CrossRef]
- Lalitha Muthu, A.C.; Helen Santhi, M. Estimation of Surface Runoff Potential Using SCS-CN Method Integrated with GIS. Indian J. Sci. Technol. 2015, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Qi, B.; Xu, P.; Wu, C. Analysis of the Infiltration and Water Storage Performance of Recycled Brick Mix Aggregates in Sponge City Construction. Water 2023, 15, 363. [Google Scholar] [CrossRef]
- Khayyun, T.S.; Alwan, I.A.; Hayder, A.M. Hydrological Model for Hemren Dam Reservoir Catchment Area at the Middle River Diyala Reach in Iraq Using ArcSWAT Model. Appl. Water Sci. 2019, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Vieux, B.E.; Cui, Z.; Gaur, A. Evaluation of a Physics-Based Distributed Hydrologic Model for Flood Forecasting. J. Hydrol. 2004, 298, 155–177. [Google Scholar] [CrossRef]
- Chow, V. Bibliography: 1) Handbook of Applied Hydrology. Int. Assoc. Sci. Hydrol. Bull. 1965, 10, 82–83. [Google Scholar] [CrossRef]
- Barnes, K.B.; Iii, J.M.M.; Roberge, M.C.; Roberge, M. Impervious Surfaces and the Quality of Natural and Built Environments; Department of Geography and Environmental Planning: Towson, MD, USA, 2002. [Google Scholar]
- Starke, P.; Göbel, P.; Coldewey, W.G. Urban Evaporation Rates for Water-Permeable Pavements. Water Sci. Technol. 2010, 62, 1161–1169. [Google Scholar] [CrossRef]
- Ma, X.; Dong, Z.; Quan, W.; Dong, Y.; Tan, Y. Real-Time Assessment of Asphalt Pavement Moduli and Traffic Loads Using Monitoring Data from Built-in Sensors: Optimal Sensor Placement and Identification Algorithm. Mech. Syst. Signal Process. 2023, 187. [Google Scholar] [CrossRef]
- Barnes, K.B.; Morgan, J.; Roberge, M. Impervious Surfaces and the Quality of Natural and Built Environments; Department of Geography and Environmental Planning, Towson University: Towson, MD, USA, 2001. [Google Scholar]
- Sun, R.; Gong, Z.; Gao, G.; Shah, A.A. Comparative Analysis of Multi-Criteria Decision-Making Methods for Flood Disaster Risk in the Yangtze River Delta. Int. J. Disaster Risk Reduct. 2020, 51, 101768. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, B.; Lan, R.; Liu, D.; Wu, B.; Li, Y.; Li, Q.; Zhou, H.; Liu, M.; Liu, W.; et al. Experimental Study on Failure Model of Tailing Dam Overtopping under Heavy Rainfall. Lithosphere 2022, 2022, 5922501. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Bell, V.A.; Davies, H.N.; Heinemeyer, A.; Armsworth, P.R.; Gaston, K.J. The Impact of Projected Increases in Urbanization on Ecosystem Services. Proc. R. Soc. B Biol. Sci. 2011, 278, 3201–3208. [Google Scholar] [CrossRef] [Green Version]
- Hsu, M.H.; Chen, S.H.; Chang, T.J. Inundation Simulation for Urban Drainage Basin with Storm Sewer System. J. Hydrol. 2000, 234, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Kazakis, N.; Kougias, I.; Patsialis, T. Assessment of Flood Hazard Areas at a Regional Scale Using an Index-Based Approach and Analytical Hierarchy Process: Application in Rhodope-Evros Region, Greece. Sci. Total Environ. 2015, 538, 555–563. [Google Scholar] [CrossRef]
- Yahaya, S. Multicriteria Analysis for Flood Vulnerable Areas in Hadejia-Jama’are River Basin, Nigeria. In Proceedings of the American Society for Photogrammetry and Remote Sensing—ASPRS Annual Conference 2008—Bridging the Horizons: New Frontiers in Geospatial Collaboration, Portland, OR, USA, 28 April–2 May 2008; Volume 2, pp. 777–785. [Google Scholar]
- Stillwell, W.G.; Seaver, D.A.; Edwards, W. A Comparison of Weight Approximation Techniques in Multiattribute Utility Decision Making. Organ. Behav. Hum. Perform. 1981, 28, 62–77. [Google Scholar] [CrossRef]
- Eastman, J.R. Idrisi for Windows, Version 2.0: Tutorial Exercises, Graduate School of Geography; Clark University: Worcester, MA, USA, 1997. [Google Scholar]
- Malczewski, J. On the Use of Weighted Linear Combination Method in GIS: Common and Best Practice Approaches. Trans. GIS 2000, 4, 5–22. [Google Scholar] [CrossRef]
- Bandira, P.N.A.; Mahamud, M.A.; Samat, N.; Tan, M.L.; Chan, N.W. Gis-Based Multi-Criteria Evaluation for Potential Inland Aquaculture Site Selection in the George Town Conurbation, Malaysia. Land 2021, 10, 1174. [Google Scholar] [CrossRef]
- Souissi, D.; Souie, A.; Sebei, A.; Mahfoudhi, R.; Zghibi, A.; Zouhri, L.; Amiri, W.; Ghanmi, M. Flood Hazard Mapping and Assessment Using Fuzzy Analytic Hierarchy Process and GIS Techniques in Takelsa, Northeast Tunisia. Arab. J. Geosci. 2022, 15, 1405. [Google Scholar] [CrossRef]
- Arabameri, A.; Rezaei, K.; Cerdà, A.; Conoscenti, C.; Kalantari, Z. A Comparison of Statistical Methods and Multi-Criteria Decision Making to Map Flood Hazard Susceptibility in Northern Iran. Sci. Total Environ. 2019, 660, 443–445. [Google Scholar] [CrossRef]
- Nandi, A.; Shakoor, A. A GIS-Based Landslide Susceptibility Evaluation Using Bivariate and Multivariate Statistical Analyses. Eng. Geol. 2010, 110, 11–20. [Google Scholar] [CrossRef]
- Souissi, D.; Zouhri, L.; Hammami, S.; Msaddek, M.H.; Zghibi, A.; Dlala, M. GIS-Based MCDM–AHP Modeling for Flood Susceptibility Mapping of Arid Areas, Southeastern Tunisia. Geocarto Int. 2020, 35, 991–1017. [Google Scholar] [CrossRef]
- Śliwiński, D.; Konieczna, A.; Roman, K. Geostatistical Resampling of LiDAR-Derived DEM in Wide Resolution Range for Modelling in SWAT: A Case Study of Zgłowiączka River (Poland). Remote Sens. 2022, 14, 1281. [Google Scholar] [CrossRef]
- Getirana, A.; Kirschbaum, D.; Mandarino, F.; Ottoni, M.; Khan, S.; Arsenault, K. Potential of GPM IMERG Precipitation Estimates to Monitor Natural Disaster Triggers in Urban Areas: The Case of Rio de Janeiro, Brazil. Remote Sens. 2020, 12, 4095. [Google Scholar] [CrossRef]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR Satellite Precipitation Products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Anjum, M.N.; Ding, Y.; Shangguan, D.; Ahmad, I.; Ijaz, M.W.; Farid, H.U.; Yagoub, Y.E.; Zaman, M.; Adnan, M. Performance Evaluation of Latest Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) over the Northern Highlands of Pakistan. Atmos. Res. 2018, 205, 134–146. [Google Scholar] [CrossRef]
- Tan, M.L.; Samat, N.; Chan, N.W.; Roy, R. Hydro-Meteorological Assessment of Three GPM Satellite Precipitation Products in the Kelantan River Basin, Malaysia. Remote Sens. 2018, 10, 1011. [Google Scholar] [CrossRef] [Green Version]
- Pah, T.; Syed, R.; Ismail, H. Perubahan Gunatanah Dan Kejadian Banjir di Lembangan Saliran Kelantan. Geogr. Malays. J. Soc. Space 2016, 12, 118–128. [Google Scholar]
- Hadi, L.A.; Naim, W.M.; Adnan, N.A.; Nisa, A.; Said, E.S. GIS Based Multi-Criteria Decision Making for Flood Vulnerability Index Assessment. J. Telecommun. Electron. Comput. Eng. 2017, 9, 7–11. [Google Scholar]
- Rincón, D.; Khan, U.T.; Armenakis, C. Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geosciences 2018, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Veloria, A.; Perez, G.J.; Tapang, G.; Comiso, J. Improved Rainfall Data in the Philippines through Concurrent Use of GPM IMERG and Ground-Based Measurements. Remote Sens. 2021, 13, 2859. [Google Scholar] [CrossRef]
- Da Silva, N.A.; Webber, B.G.M.; Matthews, A.J.; Feist, M.M.; Stein, T.H.M.; Holloway, C.E.; Abdullah, M.F.A.B. Validation of GPM IMERG Extreme Precipitation in the Maritime Continent by Station and Radar Data. Earth Space Sci. 2021, 8, e2021EA001738. [Google Scholar] [CrossRef]
- Chen, C.; Hu, B.; Li, Y. Easy-to-Use Spatial Random-Forest-Based Downscaling-Calibration Method for Producing Precipitation Data with High Resolution and High Accuracy. Hydrol. Earth Syst. Sci. 2021, 25, 5667–5682. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and Other Precipitation Products against Gauge Data under Different Topographic and Climatic Conditions in Iran: Preliminary Results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Liu, G.; Chen, T.; Chen, Y.; Xia, C. Evaluation of GPM IMERG Precipitation Products with the Point Rain Gauge Records over Sichuan, China. Atmos. Res. 2020, 246, 105101. [Google Scholar] [CrossRef]
- Hirpa, F.A.; Gebremichael, M.; Hopson, T. Evaluation of High-Resolution Satellite Precipitation Products over Very Complex Terrain in Ethiopia. J. Appl. Meteorol. Clim. 2010, 49, 1044–1051. [Google Scholar] [CrossRef]
- Fang, J.; Yang, W.; Luan, Y.; Du, J.; Lin, A.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG Products for Extreme Precipitation Analysis over China. Atmos. Res. 2019, 223, 24–38. [Google Scholar] [CrossRef]
- Wei, G.; Lü, H.; Crow, W.T.; Zhu, Y.; Wang, J.; Su, J. Evaluation of Satellite-Based Precipitation Products from IMERG V04A and V03D, CMORPH and TMPA with Gauged Rainfall in Three Climatologic Zones in China. Remote Sens. 2018, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Asong, Z.E.; Razavi, S.; Wheater, H.S.; Wong, J.S. Evaluation of Integrated Multisatellite Retrievals for GPM (IMERG) over Southern Canada against Ground Precipitation Observations: A Preliminary Assessment. J. Hydrometeorol. 2017, 18, 1033–1050. [Google Scholar] [CrossRef]
- Zhao, N.; Jiao, Y. A New HASM-Based Downscaling Method for High-Resolution Precipitation Estimates. Remote Sens. 2021, 13, 2693. [Google Scholar] [CrossRef]
- Abdollahipour, A.; Ahmadi, H.; Aminnejad, B. A review of downscaling methods of satellite-based precipitation estimates. Earth Sci. Inform. 2022, 15, 1–20. [Google Scholar] [CrossRef]
- Seenirajan, M.; Natarajan, M.; Thangaraj, R.; Bagyaraj, M. Study and Analysis of Chennai Flood 2015 Using GIS and Multicriteria Technique. J. Geogr. Inf. Syst. 2017, 9, 126–140. [Google Scholar] [CrossRef] [Green Version]
- Mohamad Radhi, A.; Rohasliney, H.; Zarul, H. Fish Composition and Diversity in Perak, Galas and Kelantan Rivers (Malaysia) after the Major Flood of 2014. Transylv. Rev. Syst. Ecol. Res. 2017, 19, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Pham, B.T.; Avand, M.; Janizadeh, S.; Van Phong, T.; Al-Ansari, N.; Ho, L.S.; Das, S.; Van Le, H.; Amini, A.; Bozchaloei, S.K.; et al. GIS Based Hybrid Computational Approaches for Flash Flood Susceptibility Assessment. Water 2020, 12, 683. [Google Scholar] [CrossRef] [Green Version]
Criteria | Data Source | Method | Classification Method |
---|---|---|---|
Elevation | SRTM DEM—USGS https://earthexplorer.usgs.gov/ (accessed on 11 January 2022) SRTM DEM—USGS SRTM DEM—USGS SRTM DEM—USGS | An elevation map with a resolution of 30 m was prepared using the SRTM DEM. | Manual |
Slope | The slope map was created from the SRTM DEM data using the raster surface analysis in ArcGIS. | Manual | |
Distance to rivers | Stream networks were delineated using the default stream generation in the soil and water assessment tool (SWAT) model. The Euclidian distance approach based on the digital stream was used to construct the distance to rivers map. | Natural breaks | |
Drainage network density | Calculated drainage density using the detailed method (line density) in ArcGIS. | Natural breaks | |
Surface runoff | Surface runoff data from Tan et al. [54]. | A surface runoff distribution map generated using the SWAT model. | Manual |
Soil type | FAO Digital Soil Map of the World (DSMW), http://www.fao.org (accessed on 14 January 2022) | Soil texture classifications were assigned according to USDA standards. The physical characteristics of soil were determined using texture classifications [55]. | Manual |
Land use (2020) | Department of Town and Country Planning (PLANMalaysia) | Interpreted land use according to the hydrological parameter (soil roughness) based on [56]. | Manual |
Lithology | Department of Minerals and Geosciences, Malaysia | Interpreted lithology class to permeability level. | Manual |
Road network density | National Geospatial Centre (PGN) | Road network analysis and calculating density on a road network using the kernel density method within ArcGIS environment. | Quantile |
Building density | National Geospatial Centre (PGN) | Building point analysis and calculating density on a road network using the kernel density method within ArcGIS environment. | Quantile |
Population density | National Geospatial Centre (PGN) | Created a density map by district within an ArcGIS environment. | Quantile |
Hydrological Soil Group | Type of Soil | Runoff Potential | Infiltration Rate (mm/h) |
---|---|---|---|
A | Sand, loamy sand, or sandy loam | Low | >7.5 |
B | Loam, silt loam, or silt | Moderate | 3.8–7.5 |
C | Sandy clay loam | Moderate | 1.3–3.8 |
D | Clay loam, silty clay loam, sandy clay, silty clay, or clay | High | <1.3 |
Description | Manning Roughness Coefficient | Source |
---|---|---|
Water body | 0.030 | [82] |
Built area (urbanization, residential, industrial, commercial, infrastructure) | 0.013 | [81] |
Agriculture | 0.035 | [81] |
Road | 0.016 | [82] |
Forest, open space | 0.100 | [81] |
Lithology Class | Permeability Level | |
---|---|---|
Unconsolidated deposits | Clay, silt, sand (mainly marine), gravel | High |
Sedimentary rocks | Shale, sandstone, conglomerate, mudstone, siltstone, limestone/marble, metasandstone, phyllite, slate, ignimbrite | Moderate |
Metamorphic rocks | Hornfels or calc-silicates facies, schist, and gneiss | Low |
Igneous rocks | Vein quartz, acid, intermediate, basic, and ultrabasic | Very low |
Criteria | Rating | ||||
---|---|---|---|---|---|
Rainfall (mm/day) | 1 | 2 | 3 | 4 | 5 |
Rain gauge (2014) | 1492.0–2455.0 | 2455.1–3037.9 | 3038–3430.8 | 3430.9–3899.6 | 3899.7–4723.2 |
IMERG-E (2014) | 2546.5–2858.1 | 2858.2–3086.7 | 3086.8–3315.3 | 3315.4–3668.5 | 3668.6–4312.6 |
IMERG-L (2014) | 2406.8–2712.3 | 2712.4–2985.6 | 2985.7–3299.2 | 3299.3–3717.3 | 3717.4–4456.9 |
IMERG-F (2014) | 2870.4–3124.8 | 3124.9–3312 | 3312.1–3499.2 | 3499.3–3748.8 | 3748.9–4094.4 |
Rain gauge (2017) | 1889.7–2676.8 | 2676.9–2997.4 | 2997.5–3250 | 3250.1–3628.9 | 3629–4367.4 |
IMERG-E (2017) | 2306.9–2735.7 | 2735.8–2928 | 2928.1–3147.9 | 3148–3389.8 | 3389.9–3708.6 |
IMERG-L (2017) | 2149.4–2616.2 | 2616.3–2869.1 | 2869.2–3135 | 3135.1–3407.3 | 3407.4–3802.9 |
IMERG-F (2017) | 2416.8–2716.9 | 2717–2953 | 2953.1–3194 | 3194.1–3420.2 | 3420.3–3671.1 |
Rain gauge (2020) | 1937–2452.4 | 2452.5–2761.7 | 2761.8–3118.5 | 3118.6–3499.1 | 3499.2–3959 |
IMERG-E (2020 | 2104.3–2428.7 | 2428.8–2617.1 | 2617.2–2795 | 2795.1–3014.7 | 3014.8–3438.6 |
IMERG-L (2020) | 2349–2596.8 | 2596.9–2771.2 | 2771.3–2945.7 | 2945.8–3161.4 | 3161.5–3519.4 |
IMERG-F (2020) | 2621.8–2791.9 | 2792–2922 | 2922.1–3052.1 | 3052.2–3215.5 | 3215.6–3472.3 |
Elevation (m) | 0–20 | 20–50 | 50–100 | 100–150 | >300 |
Surface runoff | 36.9–53.5 | 54.0–65.7 | 67.2–80.8 | 82.7–113.7 | 129.1–154.9 |
Slope (°C) | 25–74.3 | 5–25 | 5–15 | 3-5 | 0–3 |
Distance to rivers (m) | 0–200 | 200–500 | 500–1000 | 1000–2000 | >2000 |
Drainage density (km/sq.km) | 0.00018–0.082 | 0.083–0.15 | 0.16–0.3 | 0.31–0.53 | 0.54–0.72 |
Soil type | Sandy loam | Silty clay | Sandy clay loam | Silty clay | Clay |
Land use | Forest, open space | Infrastructure, road | Agriculture | Built area (urbanization, residential, industrial, commercial) | Water body |
Lithology | Igneous rocks | Intrusive igneous | Metamorphic rocks | Sedimentary rocks | Unconsolidated deposits |
Road network density | 0 | 0.01–0.09 | 0.1–0.14 | 0.15–0.25 | 0.26–4.51 |
Building density | 0 | 0.01–1.02 | 1.03–3.06 | 3.07–13.25 | 13.26–259.91 |
Population density (per km2) | 0 | 0–14.5 | 14.5–56.7 | 56.8–418.3 | 418.4–1551.5 |
Expert Specialists | No. of Experts | Percentage (%) |
---|---|---|
Hydrology | 4 | 26.7 |
Civil and environmental engineering | 5 | 33.3 |
Geology | 1 | 6.7 |
Urban and regional planning | 3 | 20.0 |
The National Disaster Management Agency (NADMA) | 2 | 13.3 |
Total | 15 | 100 |
Criteria | Rainfall | Surface Runoff | Elevation | Slope | Distance to River | Drainage Density | Soil Texture | Lithology | Land Use | Road Density | Building Density | Population Density | Weight |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rainfall | 0.16 | 0.196 | |||||||||||
Surface runoff | 0.16 | 0.18 | 0.176 | ||||||||||
Elevation | 0.16 | 0.18 | 0.09 | 0.080 | |||||||||
Slope | 0.05 | 0.04 | 0.09 | 0.05 | 0.055 | ||||||||
Distance to rivers | 0.03 | 0.04 | 0.09 | 0.05 | 0.05 | 0.062 | |||||||
Drainage density | 0.03 | 0.04 | 0.09 | 0.05 | 0.05 | 0.05 | 0.067 | ||||||
Soil type | 0.16 | 0.04 | 0.09 | 0.05 | 0.15 | 0.05 | 0.08 | 0.111 | |||||
Lithology | 0.02 | 0.04 | 0.02 | 0.01 | 0.01 | 0.01 | 0.03 | 0.02 | 0.018 | ||||
Land use | 0.16 | 0.18 | 0.09 | 0.05 | 0.05 | 0.05 | 0.08 | 0.06 | 0.09 | 0.086 | |||
Road density | 0.02 | 0.04 | 0.09 | 0.05 | 0.01 | 0.01 | 0.02 | 0.06 | 0.02 | 0.03 | 0.035 | ||
Building density | 0.03 | 0.04 | 0.09 | 0.14 | 0.05 | 0.05 | 0.02 | 0.06 | 0.09 | 0.03 | 0.04 | 0.057 | |
Population density | 0.03 | 0.04 | 0.09 | 0.14 | 0.05 | 0.05 | 0.02 | 0.06 | 0.09 | 0.03 | 0.04 | 0.04 | 0.057 |
Criteria | Saaty 1980 [97] | Ranking Methods [100] | ||
---|---|---|---|---|
Pairwise | Rank Sum (RS) | Rank Reciprocal (RR) | ||
Straight Rank | AHP | (n − rj + 1)/∑(n − rk + 1) | (1/rj)/∑(1/rk) | |
Rainfall | 1 | 0.196 | 0.15 | 0.32 |
Runoff | 2 | 0.176 | 0.13 | 0.16 |
Elevation | 5 | 0.080 | 0.10 | 0.06 |
Slope | 9 | 0.055 | 0.05 | 0.04 |
Distance to rivers | 7 | 0.062 | 0.07 | 0.05 |
Drainage density | 6 | 0.067 | 0.09 | 0.05 |
Soil types | 3 | 0.111 | 0.12 | 0.11 |
Lithology | 11 | 0.018 | 0.02 | 0.03 |
Land use | 4 | 0.086 | 0.11 | 0.08 |
Road density | 10 | 0.035 | 0.04 | 0.03 |
Building density | 8 | 0.057 | 0.06 | 0.04 |
Population | 8 | 0.057 | 0.06 | 0.04 |
Level | No. of Flood Events | |||
---|---|---|---|---|
Rain Gauge | Nearest Neighbor | Bilinear Interpolation | Cubic Convolution | |
Very low | 0 | 0 | 0 | 0 |
Low | 2 | 1 | 2 | 2 |
Moderate | 9 | 13 | 8 | 11 |
High | 71 | 79 | 71 | 70 |
Very high | 20 | 9 | 21 | 19 |
Year | Product | CC | RMSE (mm/day) | RB (%) |
---|---|---|---|---|
2014 | IMERG-E | 0.63 | 11.50 | 4.93 |
IMERG-L | 0.65 | 21.50 | 3.66 | |
IMERG-F | 0.62 | 11.75 | 10.73 | |
2017 | IMERG-E | 0.48 | 28.28 | −2.33 |
IMERG-L | 0.50 | 14.53 | −3.21 | |
IMERG-F | 0.49 | 23.03 | −2.03 | |
2020 | IMERG-E | 0.40 | 11.50 | 4.59 |
IMERG-L | 0.38 | 6.98 | 2.78 | |
IMERG-F | 0.30 | 9.75 | 7.02 |
Year | Product | FHI Level | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Very Low | Low | Moderate | High | Very High | |||||||
% | No. of Events | % | No. of Events | % | No. of Events | % | No. of Events | % | No. of Events | ||
2014 | Rain gauge | 1.5 | 0 | 8.1 | 2 | 30.5 | 9 | 51.8 | 71 | 8.0 | 20 |
IMERG-E | 1.7 | 0 | 7.2 | 2 | 26.2 | 9 | 48.8 | 70 | 16.0 | 21 | |
IMERG-L | 1.7 | 0 | 7.1 | 2 | 26.2 | 8 | 49.1 | 73 | 15.9 | 19 | |
IMERG-F | 1.7 | 0 | 7.8 | 2 | 26.2 | 9 | 47.8 | 72 | 16.5 | 22 | |
2017 | Rain gauge | 1.2 | 0 | 8.9 | 1 | 29.6 | 7 | 50.9 | 71 | 9.5 | 23 |
IMERG-E | 1.0 | 0 | 11.7 | 1 | 27.9 | 13 | 45.9 | 70 | 13.5 | 18 | |
IMERG-L | 1.2 | 0 | 11.6 | 1 | 27.7 | 12 | 45.9 | 69 | 13.6 | 20 | |
IMERG-F | 1.2 | 0 | 10.7 | 2 | 26.3 | 11 | 44.1 | 68 | 17.7 | 21 | |
2020 | Rain gauge | 0.9 | 0 | 11.1 | 2 | 26.5 | 13 | 43.5 | 70 | 18.1 | 17 |
IMERG-E | 1.3 | 0 | 9.0 | 2 | 27.2 | 9 | 50.3 | 73 | 12.1 | 18 | |
IMERG-L | 0.7 | 0 | 8.0 | 1 | 26.6 | 8 | 49.3 | 78 | 15.5 | 16 | |
IMERG-F | 1.9 | 0 | 8.1 | 2 | 25.9 | 13 | 49.4 | 67 | 14.7 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syakira, N.; Tan, M.L.; Zulkafli, Z.; Zhang, F.; Tangang, F.; Chang, C.K.; Ibrahim, W.M.M.W.; Ramli, M.H.P. Assessment of Three GPM IMERG Products for GIS-Based Tropical Flood Hazard Mapping Using Analytical Hierarchy Process. Water 2023, 15, 2195. https://doi.org/10.3390/w15122195
Syakira N, Tan ML, Zulkafli Z, Zhang F, Tangang F, Chang CK, Ibrahim WMMW, Ramli MHP. Assessment of Three GPM IMERG Products for GIS-Based Tropical Flood Hazard Mapping Using Analytical Hierarchy Process. Water. 2023; 15(12):2195. https://doi.org/10.3390/w15122195
Chicago/Turabian StyleSyakira, Nurul, Mou Leong Tan, Zed Zulkafli, Fei Zhang, Fredolin Tangang, Chun Kiat Chang, Wan Mohd Muhiyuddin Wan Ibrahim, and Mohd Hilmi P. Ramli. 2023. "Assessment of Three GPM IMERG Products for GIS-Based Tropical Flood Hazard Mapping Using Analytical Hierarchy Process" Water 15, no. 12: 2195. https://doi.org/10.3390/w15122195
APA StyleSyakira, N., Tan, M. L., Zulkafli, Z., Zhang, F., Tangang, F., Chang, C. K., Ibrahim, W. M. M. W., & Ramli, M. H. P. (2023). Assessment of Three GPM IMERG Products for GIS-Based Tropical Flood Hazard Mapping Using Analytical Hierarchy Process. Water, 15(12), 2195. https://doi.org/10.3390/w15122195