Driving Factors of the Hydrological Response of a Tropical Watershed: The Ankavia River Basin in Madagascar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Watershed Attributes
2.3. Hydrometeorological Datasets
2.4. Catchment Descriptors (CD) Analysis
2.5. Streamflow Analysis
with hs = R × T/M × g
2.6. Hydrological Signatures (HS) Analysis
2.6.1. Event Identification
2.6.2. Hydrograph Separation
2.7. Hydrological Signatures Analysis
HS (Unit) | Descriptions | Calculation | References |
---|---|---|---|
BFI (-) | Ratio of total baseflow (Qbf) to total discharge (Q) during the observation period; hydrograph separation performed according to [55]. | BFI = | [55] |
rc (mm/mm) | The ratio of the quickflow volume (Qf) of a specific runoff event [mm] to the corresponding rainfall (Ri). Mean of all events [mm]. | rc = | [60] |
Qp (mm/h) | Highest value of the discharge during an event (mean value). | [61] | |
ts (h/km) | Ratio between quickflow volume (Qf) [mm] and the peak discharge (Qp) [mm/h] multiplied by the length of the main river (Lc) [km] (mean of all events). | ts = | |
Q5 (mm/day) | 5th percentile of the flow duration curve (high flows). | ||
Q95 (mm/day) | 95th percentile of the flow duration curve (low flows). | ||
q_mean (mm/day) | Mean daily discharge |
2.8. Linking Hydrological Signature and Catchment Descriptors
3. Results
3.1. Catchment Descriptor Characteristics
3.1.1. Hypsometric Curves
3.1.2. Correlation between CDs
3.2. Hydrological Signatures and Their Spatial Patterns
3.2.1. Rainfall Characteristics
3.2.2. Streamflow Characteristics
3.2.3. Streamflow Characteristics
3.2.4. Hydrological Signatures
3.2.5. Correlation between Hydrological Signatures
3.3. Correlation between Selected CDs and HSs
4. Discussion
4.1. General Hydrological Characteristics
4.2. Catchment Descriptors
4.3. Which Catchment Descriptors Are the Best Predictors for Each Hydrological Signature?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Wu, Q.; Ke, L.; Wang, J.; Pavelsky, T.M.; Allen, G.H.; Sheng, Y.; Duan, X.; Zhu, Y.; Wu, J.; Wang, L. Satellites Reveal Hotspots of Global River Extent Change. Nat. Commun. 2023, 14, 1587. [Google Scholar] [CrossRef] [PubMed]
- Papa, F.; Crétaux, J.-F.; Grippa, M.; Robert, E.; Trigg, M.; Tshimanga, R.M.; Kitambo, B.; Paris, A.; Carr, A.; Fleischmann, A.S. Water Resources in Africa under Global Change: Monitoring Surface Waters from Space. Surv. Geophys. 2023, 44, 43–93. [Google Scholar] [CrossRef] [PubMed]
- Group, A.H.; Vörösmarty, C.; Askew, A.; Grabs, W.; Barry, R.G.; Birkett, C.; Döll, P.; Goodison, B.; Hall, A.; Jenne, R. Global Water Data: A Newly Endangered Species. Eos Trans. Am. Geophys. Union 2001, 82, 54–58. [Google Scholar]
- Godinez-Madrigal, J.; Van Cauwenbergh, N.; van der Zaag, P. Production of Competing Water Knowledge in the Face of Water Crises: Revisiting the IWRM Success Story of the Lerma-Chapala Basin, Mexico. Geoforum 2019, 103, 3–15. [Google Scholar] [CrossRef]
- Bezerra, M.O.; Vollmer, D.; Souter, N.J.; Shaad, K.; Hauck, S.; Marques, M.C.; Mtshali, S.; Acero, N.; Zhang, Y.; Mendoza, E. Stakeholder Engagement and Knowledge Co-Production for Better Watershed Management with the Freshwater Health Index. Curr. Res. Environ. Sustain. 2023, 5, 100206. [Google Scholar] [CrossRef]
- Kong, M.; Zhao, J.; Zang, C.; Li, Y.; Deng, J. Characteristics and Driving Mechanism of Water Resources Trend Change in Hanjiang River Basin. Int. J. Environ. Res. Public Health 2023, 20, 3764. [Google Scholar] [CrossRef]
- Blöschl, G.; Sivapalan, M. Scale Issues in Hydrological Modelling: A Review. Hydrol. Process. 1995, 9, 251–290. [Google Scholar] [CrossRef]
- Blöschl, G.; Sivapalan, M.; Wagener, T. Runoff Prediction in Ungauged Basins; Cambridge University Press: Cambridge, UK, 2013; p. 492. [Google Scholar]
- Merz, R.; Blöschl, G.; Parajka, J. Regionalization Methods in Rainfall–Runoff Modelling Using Large Catchment Samples; IAHS Publication: Oxfordshire, UK, 2006; 9p. [Google Scholar]
- van Soesbergen, A.; Mulligan, M. Uncertainty in Data for Hydrological Ecosystem Services Modelling: Potential Implications for Estimating Services and Beneficiaries for the CAZ Madagascar. Ecosyst. Serv. 2018, 33, 175–186. [Google Scholar] [CrossRef]
- Eckstein, D.; Künzel, V.; Schäfer, L. Global Climate Risk Index 2021. Who Suffers Most from Extreme Weather Events? In Weather-Related Loss Events in 2019 and 2000 to 2019; Germanwatch eV: Bonn, Germany, 2021. [Google Scholar]
- Qazi, N. Hydrological Functioning of Forested Catchments, Central Himalayan Region, India. For. Ecosyst. 2020, 7, 63. [Google Scholar] [CrossRef]
- Fritsch, J.-M. Les Effets Hydrologiques Du Déboisement de La Forêt Amazonienne et d’utilisations Alternatives Du Sol. In Colloques et Séminaires-Institut Français de Recherche Scientifique pour le Développement en Coopération; Bibliothèque Populaire du Développement: Dakar, Senegal, 1995; pp. 411–424. [Google Scholar]
- Wu, S.; Zhao, J.; Wang, H.; Sivapalan, M. Regional Patterns and Physical Controls of Streamflow Generation Across the Conterminous United States. Water Resour. Res. 2021, 57, e2020WR028086. [Google Scholar] [CrossRef]
- Choubin, B.; Solaimani, K.; Rezanezhad, F.; Habibnejad Roshan, M.; Malekian, A.; Shamshirband, S. Streamflow Regionalization Using a Similarity Approach in Ungauged Basins: Application of the Geo-Environmental Signatures in the Karkheh River Basin, Iran. CATENA 2019, 182, 104128. [Google Scholar] [CrossRef]
- Ochoa-Tocachi, B.F.; Buytaert, W.; De Bièvre, B. Regionalization of Land-Use Impacts on Streamflow Using a Network of Paired Catchments. Water Resour. Res. 2016, 52, 6710–6729. [Google Scholar] [CrossRef] [Green Version]
- Gay-des-Combes, J.M.; Robroek, B.J.M.; Hervé, D.; Guillaume, T.; Pistocchi, C.; Mills, R.T.E.; Buttler, A. Slash-and-Burn Agriculture and Tropical Cyclone Activity in Madagascar: Implication for Soil Fertility Dynamics and Corn Performance. Agric. Ecosyst. Environ. 2017, 239, 207–218. [Google Scholar] [CrossRef]
- Baumann, J. Tropical Watersheds, Hydrological Processes. In Encyclopedia of Agrophysics; Gliński, J., Horabik, J., Lipiec, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 937–938. ISBN 978-90-481-3585-1. [Google Scholar]
- Bruijnzeel, L.A. Hydrological Functions of Tropical Forests: Not Seeing the Soil for the Trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, M.; Meng, Z.; Liu, S.; Sun, P.; Yang, T. Assessing the Impact of Forest Change and Climate Variability on Dry Season Runoff by an Improved Single Watershed Approach: A Comparative Study in Two Large Watersheds, China. Forests 2018, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- D’Almeida, C.; Vörösmarty, C.J.; Hurtt, G.C.; Marengo, J.A.; Dingman, S.L.; Keim, B.D. The Effects of Deforestation on the Hydrological Cycle in Amazonia: A Review on Scale and Resolution. Int. J. Climatol. A J. R. Meteorol. Soc. 2007, 27, 633–647. [Google Scholar] [CrossRef]
- Cui, X.; Graf, H.-F.; Langmann, B.; Chen, W.; Huang, R. Hydrological Impacts of Deforestation on the Southeast Tibetan Plateau. Earth Interact. 2007, 11, 1–18. [Google Scholar] [CrossRef]
- Arias, M.E.; Lee, E.; Farinosi, F.; Pereira, F.F.; Moorcroft, P.R. Decoupling the Effects of Deforestation and Climate Variability in the T Apajós River Basin in the B Razilian A Mazon. Hydrol. Process. 2018, 32, 1648–1663. [Google Scholar] [CrossRef]
- Thanapakpawin, P.; Richey, J.; Thomas, D.; Rodda, S.; Campbell, B.; Logsdon, M. Effects of Landuse Change on the Hydrologic Regime of the Mae Chaem River Basin, NW Thailand. J. Hydrol. 2007, 334, 215–230. [Google Scholar] [CrossRef]
- Wilk, J.; Andersson, L.; Plermkamon, V. Hydrological Impacts of Forest Conversion to Agriculture in a Large River Basin in Northeast Thailand. Hydrol. Process. 2001, 15, 2729–2748. [Google Scholar] [CrossRef]
- Sivapalan, M.; Takeuchi, K.; Franks, S.W.; Gupta, V.K.; Karambiri, H.; Lakshmi, V.; Liang, X.; Mcdonnell, J.J.; Mendiondo, E.M.; O’Connell, P.E.; et al. IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an Exciting Future for the Hydrological Sciences. Hydrol. Sci. J. 2003, 48, 857–880. [Google Scholar] [CrossRef] [Green Version]
- WMO. Climate Change Increased Extreme Rainfall in Southeast Africa Storms—Madagascar. Available online: https://reliefweb.int/report/madagascar/climate-change-increased-extreme-rainfall-southeast-africa-storms (accessed on 2 October 2022).
- Rabefitia, Z. Le Changement Climatique à Madagascar; Direction Générale de la Météorologie: Antananarivo, Madagascar, 2008; 32p. [Google Scholar]
- AFD. Madagascar—Rural Drinking Water Supply and Sanitation Programme—Appraisal Report; African Development Fund: Tunis, Tunisia, 2005; p. 75. [Google Scholar]
- Ralaingita, M.; Ennis, G.; Russell-Smith, J.; Sangha, K.; Razanakoto, T. The Kere of Madagascar: A Qualitative Exploration of Community Experiences and Perspectives. Ecol. Soc. 2022, 27, 42. [Google Scholar] [CrossRef]
- Tadross, M.; Randriamarolaza, L.; Rabefitia, Z.; Zheng, K.Y. Climate Change in Madagascar; Recent Past and Future; World Bank: Washington, DC, USA, 2008; p. 18. [Google Scholar]
- Aubert, S.; Razafiarison, S.; Bertrand, A. Déforestation et Systèmes Agraires à Madagascar: Les Dynamiques Des Tavy Sur La Côte Orientale; Editions Quae: Versailles, France, 2003. [Google Scholar]
- Pereira, D.d.R.; Almeida, A.Q.d.; Martinez, M.A.; Rosa, D.R.Q. Impacts of Deforestation on Water Balance Components of a Watershed on the Brazilian East Coast. Rev. Bras. De Ciência Do Solo 2014, 38, 1350–1358. [Google Scholar] [CrossRef] [Green Version]
- Gade, D.W. Deforestation and Its Effects in Highland Madagascar. Mt. Res. Dev. 1996, 16, 101–116. [Google Scholar] [CrossRef]
- CPGU. Atlas de La Vulnérabilité Sectorielle de La Région SAVA; Cellule de Prevention et de la Gestion des Urgences: Antananarivo, Madagascar, 2012. [Google Scholar]
- INSTAT. Résultats Globaux Du Recensement Général de La Population et de l’habitation de 2018 de Madagascar. Available online: https://madagascar.unfpa.org/sites/default/files/pub-pdf/resultat_globaux_rgph3_tome_01.pdf (accessed on 21 November 2022).
- Randriamaherisoa, A.; Binard, M. Régionalisation Des Paramètres Du Modèle Maillé: Impact de La Déforestation Sur Le Régime Hydrologique de La Lokoho (Madagascar). In Acte des VIII Journées Hydrologiques de l’ORSTOM: Régionalisation en Hydrologie-Application au Développement; ORSTOM: Montpellier, France, 1992; pp. 223–232. [Google Scholar]
- CREAM. Monographie de La Région SAVA. 2013. Available online: https://www.pseau.org/outils/ouvrages/mg_mef_monographie-region-sava_2014.pdf (accessed on 23 July 2022).
- Bauer, W.; Walsh, G.J.; De Waele, B.; Thomas, R.J.; Horstwood, M.S.; Bracciali, L.; Schofield, D.I.; Wollenberg, U.; Lidke, D.J.; Rasaona, I.T. Cover Sequences at the Northern Margin of the Antongil Craton, NE Madagascar. Precambrian Res. 2011, 189, 292–312. [Google Scholar] [CrossRef]
- Palm, C.A.; Swift, M.J.; Woomer, P.L. Soil Biological Dynamics in Slash-and-Burn Agriculture. Agric. Ecosyst. Environ. 1996, 58, 61–74. [Google Scholar] [CrossRef]
- Earth Resources Observation and Science (EROS) Center Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global. 2017. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1 (accessed on 3 June 2022).
- Bontemps, S.; Defourny, P.; Van Bogaert, E.; Team, E.S.A.; Arino, O.; Kalogirou, V.; Perez, J.R. GLOBCOVER 2009 Products Description and Validation Report; European Space Agency: Paris, France, 2009. [Google Scholar]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [Green Version]
- Ross, C.W.; Prihodko, L.; Anchang, J.; Kumar, S.; Ji, W.; Hanan, N.P. HYSOGs250m, Global Gridded Hydrologic Soil Groups for Curve-Number-Based Runoff Modeling. Sci. Data 2018, 5, 180091. [Google Scholar] [CrossRef]
- Ramahaimandimby, Z.; Randriamaherisoa, A.; Jonard, F.; Vanclooster, M.; Bielders, C.L. Reliability of Gridded Precipitation Products for Water Management Studies: The Case of the Ankavia River Basin in Madagascar. Remote Sens. 2022, 14, 3940. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.-L.; Joyce, R.J.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J. Integrated Multi-Satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). In Satellite Precipitation Measurement; Springer: Berlin/Heidelberg, Germany, 2020; pp. 343–353. [Google Scholar]
- Horton, R.E. Drainage-Basin Characteristics. Trans. AGU 1932, 13, 350. [Google Scholar] [CrossRef]
- Strahler, A.N. Hypsometric (Area-Altitude) Analysis of Erosional Topography. GSA Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Schumm, S.A. Evolution of Drainage Systems and Slopes in Badlands at Perth Amboy, New Jersey. Geol Soc Am. Bull 1956, 67, 597. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative Analysis of Watershed Geomorphology. Eos Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.K.; Singh, V.P. Soil Conservation Service Curve Number (SCS-CN) Methodology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 42, ISBN 94-017-0147-4. [Google Scholar]
- Zhang, Y.; Liu, H. Generation Mechanisms of the Water Surface Elevation Induced by a Moving Atmospheric Pressure Disturbance. Ocean Eng. 2022, 255, 111469. [Google Scholar] [CrossRef]
- Addor, N.; Nearing, G.; Prieto, C.; Newman, A.J.; Le Vine, N.; Clark, M.P. A Ranking of Hydrological Signatures Based on Their Predictability in Space. Water Resour. Res. 2018, 54, 8792–8812. [Google Scholar] [CrossRef] [Green Version]
- Eckhardt, K. How to Construct Recursive Digital Filters for Baseflow Separation. Hydrol. Process. Int. J. 2005, 19, 507–515. [Google Scholar] [CrossRef]
- Lim, K.J.; Engel, B.A.; Tang, Z.; Choi, J.; Kim, K.-S.; Muthukrishnan, S.; Tripathy, D. Automated Web GIS Based Hydrograph Analysis Tool, WHAT 1. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 1407–1416. [Google Scholar] [CrossRef]
- Eckhardt, K. A Comparison of Baseflow Indices, Which Were Calculated with Seven Different Baseflow Separation Methods. J. Hydrol. 2008, 352, 168–173. [Google Scholar] [CrossRef]
- Eckhardt, K. Technical Note: Analytical Sensitivity Analysis of a Two Parameter Recursive Digital Baseflow Separation Filter. Hydrol. Earth Syst. Sci. 2012, 16, 451–455. [Google Scholar] [CrossRef] [Green Version]
- McMillan, H.; Westerberg, I.; Branger, F. Five Guidelines for Selecting Hydrological Signatures. Hydrol. Process. 2017, 31, 4757–4761. [Google Scholar] [CrossRef] [Green Version]
- Castellarin, A.; Botter, G.; Hughes, D.A.; Liu, S.; Ouarda, T.; Parajka, J.; Post, D.A.; Sivapalan, M.; Spence, C.; Viglione, A. Prediction of Flow Duration Curves in Ungauged Basins. In Runoff Prediction in Ungauged Basins: Synthesis across Processes, Places and Scales; Cambridge University Press: Cambridge, UK, 2013; pp. 135–162. [Google Scholar]
- Sawicz, K.; Wagener, T.; Sivapalan, M.; Troch, P.A.; Carrillo, G. Catchment Classification: Empirical Analysis of Hydrologic Similarity Based on Catchment Function in the Eastern USA. Hydrol. Earth Syst. Sci. Discuss. 2011, 15, 2895–2911. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Shrestha, P. Examine the Impact of Land Use and Land Cover Changes on Peak Discharges of a Watershed in the Midwestern United States Using the HEC-HMS Model. Pap. Appl. Geogr. 2020, 6, 101–118. [Google Scholar] [CrossRef]
- Macron, C.; Richard, Y.; Garot, T.; Bessafi, M.; Pohl, B.; Ratiarison, A.; Razafindrabe, A. Intraseasonal Rainfall Variability over Madagascar. Mon. Weather Rev. 2016, 144, 1877–1885. [Google Scholar] [CrossRef]
- Nassor, A.; Jury, M.R. Intra-Seasonal Climate Variability of Madagascar. Part 1: Mean Summer Conditions. Meteorol. Atmos. Phys. 1998, 65, 31–41. [Google Scholar] [CrossRef]
- Chaperon, P.; Danloux, J.; Ferry, L. Fleuves et Rivières de Madagascar. In Monographies Hydrologiques ORSTOM; ORSTOM: Paris, France, 1993; pp. 14–854. [Google Scholar]
- Ghimire, U.; Agarwal, A.; Shrestha, N.K.; Daggupati, P.; Srinivasan, G.; Than, H.H. Applicability of Lumped Hydrological Models in a Data-Constrained River Basin of Asia. J. Hydrol. Eng. 2020, 25, 05020018. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.U. Quantification of Hydrological Responses Due to Climate Change and Human Activities over Various Time Scales in South Korea. Water 2017, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Kazemzadeh, M.; Malekian, A. Homogeneity Analysis of Streamflow Records in Arid and Semi-Arid Regions of Northwestern Iran. J. Arid Land 2018, 10, 493–506. [Google Scholar] [CrossRef] [Green Version]
- Abreu, M.C.; Fraga, M.d.S.; Almeida, L.T.d.; Silva, F.B.; Cecílio, R.A.; Lyra, G.B.; Delgado, R.C. Streamflow in the Sapucaí River Watershed, Brazil: Probabilistic Modeling, Reference Streamflow, and Regionalization. Phys. Chem. Earth Parts A/B/C 2022, 126, 103133. [Google Scholar] [CrossRef]
- Jayapadma, J.; Wickramaarachchi, T.N.; Silva, G.; Ishidaira, H.; Magome, J.; Souma, K. Impact of Land Use Change on Flood Peak Discharges and Runoff Volumes at the Catchment Scale. In Proceedings of the 18th Annual Meeting of the Asia Oceania Geosciences Society (AOGS 2021), Singapore, 1–6 August 2021; World Scientific: Singapore, 2022; pp. 79–81. [Google Scholar]
- Cassalho, F.; Beskow, S.; Vargas, M.M.; Moura, M.M.d.; Ávila, L.F.; Mello, C.R.d. Hydrological Regionalization of Maximum Stream Flows Using an Approach Based on L-Moments. RBRH 2017, 22, e27. [Google Scholar] [CrossRef]
- Guzha, A.C.; Nobrega, R.L.B.; Kovacs, K.; Rebola-Lichtenberg, J.; Amorim, R.S.S.; Gerold, G. Characterizing Rainfall-Runoff Signatures from Micro-Catchments with Contrasting Land Cover Characteristics in Southern Amazonia. Hydrol. Process. 2015, 29, 508–521. [Google Scholar] [CrossRef] [Green Version]
- Tarigan, S.; Wiegand, K.; Sunarti; Slamet, B. Minimum Forest Cover Required for Sustainable Water Flow Regulation of a Watershed: A Case Study in Jambi Province, Indonesia. Hydrol. Earth Syst. Sci. 2018, 22, 581–594. [Google Scholar] [CrossRef] [Green Version]
- Taufik, M. Baseflow Index Analysis for Bengawan Solo River, Indonesia. Agromet 2022, 36, 70–78. [Google Scholar] [CrossRef]
- Ditthakit, P.; Nakrod, S.; Viriyanantavong, N.; Tolche, A.D.; Pham, Q.B. Estimating Baseflow and Baseflow Index in Ungauged Basins Using Spatial Interpolation Techniques: A Case Study of the Southern River Basin of Thailand. Water 2021, 13, 3113. [Google Scholar] [CrossRef]
- Khomsiati, N.L.; Suryoputro, N.; Yulistyorini, A.; Idfi, G.; Alias, N.E.B. The Effect of Forest Area Change in Tropical Islands towards Baseflow and Streamflow. IOP Conf. Ser. Earth Environ. Sci. 2021, 847, 012032. [Google Scholar] [CrossRef]
- Giertz, S.; Junge, B.; Diekkrüger, B. Assessing the Effects of Land Use Change on Soil Physical Properties and Hydrological Processes in the Sub-Humid Tropical Environment of West Africa. Phys. Chem. Earth Parts A/B/C 2005, 30, 485–496. [Google Scholar] [CrossRef]
- Machado, R.E.; Cardoso, T.O.; Mortene, M.H. Determination of Runoff Coefficient (C) in Catchments Based on Analysis of Precipitation and Flow Events. Int. Soil Water Conserv. Res. 2022, 10, 208–216. [Google Scholar] [CrossRef]
- Katimon, A.; Wahab, A.K.A. Hydrologic Characteristics of a Drained Tropical Peat Catchment: Runoff Coefficients, Water Table and Flow Duration Curves. J. Teknol. 2003, 38, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Abdulkareem, J.H.; Pradhan, B.; Sulaiman, W.N.A.; Jamil, N.R. Development of Lag Time and Time of Concentration for a Tropical Complex Catchment under the Influence of Long-Term Land Use/Land Cover (LULC) Changes. Arab. J. Geosci. 2019, 12, 101. [Google Scholar] [CrossRef]
- Abdulkareem, J.H.; Sulaiman, W.N.A.; Pradhan, B.; Jamil, N.R. Relationship between Design Floods and Land Use Land Cover (LULC) Changes in a Tropical Complex Catchment. Arab. J. Geosci. 2018, 11, 376. [Google Scholar] [CrossRef]
- Shamsuddin, S.A.; Yusop, Z.; Noguchi, S. Influence of Plantation Establishment on Discharge Characteristics in a Small Catchment of Tropical Forest. Int. J. For. Res. 2014, 2014, e408409. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Bao, A.; Liu, T.; Ndayisaba, F.; He, D.; Kurban, A.; De Maeyer, P. Meteorological Drought Analysis in the Lower Mekong Basin Using Satellite-Based Long-Term CHIRPS Product. Sustainability 2017, 9, 901. [Google Scholar] [CrossRef] [Green Version]
- Adamson, P.T.; Rutherfurd, I.D.; Peel, M.C.; Conlan, I.A. The Hydrology of the Mekong River. In The Mekong; Elsevier: Amsterdam, The Netherlands, 2009; pp. 53–76. [Google Scholar]
- Tarasova, L.; Basso, S.; Zink, M.; Merz, R. Exploring Controls on Rainfall-Runoff Events: 1. Time Series-Based Event Separation and Temporal Dynamics of Event Runoff Response in Germany. Water Resour. Res. 2018, 54, 7711–7732. [Google Scholar] [CrossRef]
- van Meerveld, H.J.; Jones, J.P.; Ghimire, C.P.; Zwartendijk, B.W.; Lahitiana, J.; Ravelona, M.; Mulligan, M. Forest Regeneration Can Positively Contribute to Local Hydrological Ecosystem Services: Implications for Forest Landscape Restoration. J. Appl. Ecol. 2021, 58, 755–765. [Google Scholar] [CrossRef]
- Rodriguez-Martínez, J.; Santiago, M. The Effects of Forest Cover on Base Flow of Streams in the Mountainous Interior of Puerto Rico, 2010; U.S. Geological Survey: Reston, VA, USA, 2017. [Google Scholar]
- Ogden, F.L.; Crouch, T.D.; Stallard, R.F.; Hall, J.S. Effect of Land Cover and Use on Dry Season River Runoff, Runoff Efficiency, and Peak Storm Runoff in the Seasonal Tropics of Central Panama. Water Resour. Res. 2013, 49, 8443–8462. [Google Scholar] [CrossRef] [Green Version]
- Ramaroson, V.H.; Becquer, T.; Sá, S.O.; Razafimahatratra, H.; Delarivière, J.L.; Blavet, D.; Vendrame, P.R.S.; Rabeharisoa, L.; Rakotondrazafy, A.F.M. Mineralogical Analysis of Ferralitic Soils in Madagascar Using NIR Spectroscopy. CATENA 2018, 168, 102–109. [Google Scholar] [CrossRef]
- Martinez, P.; Souza, I.F. Genesis of Pseudo-Sand Structure in Oxisols from Brazil—A Review. Geoderma Reg. 2020, 22, e00292. [Google Scholar] [CrossRef]
Attributes | Data | Spatial Resolution/Map Scale | Sources (Accessed on January 2022) | References |
---|---|---|---|---|
Topography | DEM (Digital Elevation Model) | 30 m | https://earthexplorer.usgs.gov/ | [41] |
Land Cover | GlobCover v2 | 300 m | https://maps.elie.ucl.ac.be/CCI/viewer/ | [42] |
Soil Texture | SoilGRIDs | 250 m | https://soilgrids.org/ | [43] |
Dominant Soil Orders | Soil World Reference Base (WRB) | 250 m | https://soilgrids.org/ | [43] |
Hydrological Soil Group | HYSOGs | 250 m | https://daac.ornl.gov/SOILS/guides/Global_Hydrologic_Soil_Group.html | [44] |
Geology | PRGM | 1/100,000 | https://www.brgm.fr/fr/reference-projet-acheve/synthese-geologique-miniere-madagascar |
Groups | Variables | Label (Units) | Calculation/Description | Reference |
---|---|---|---|---|
Topography-morphometry (T) | Drainage area | A (km2) | GIS calculation 1: area calculation | [47] |
Perimeter | P (km) | GIS calculation: perimeter calculation | [47] | |
Basin length | Lb (km) | GIS calculation: spatial analyst tool/hydrology | ||
Mean slope | Sl (°) | GIS calculation: spatial analyst tool/surface | ||
Elevation range | Hmin, Hmax (m) | Hmin is the minimum elevation; Hmax is the maximum elevation. | ||
Hypsometric curve | The shape of a hypsometric curve is an indicator of dominant geomorphic processes at work in a watershed area. A convex curve indicates that a greater part of the watershed’s area is held relatively high in the watershed. A concave curve indicates that the bulk of the watershed’s area resides at a relatively low elevation. | [48] | ||
Gravelius coefficient | Kg (-) | Kg = P/(2(πA)1/2) 1 < Kg < 1.5: circular shape 1.5 < Kg < 1.9: elongated shape | ||
Effective basin width | Rb (km) | Rb = A/Lb where A is the watershed area and Lb is the watershed length | ||
Elongation ratio | Re | Re= 2(A/π)0.5/Lb Re is the ratio of the diameter of a circle having the same area as the watershed to the maximum watershed length. Re < 0.7: more elongated 0.8 < Re <0.9: oval Re > 0.9: circular | [49] | |
Unit shape factor | Ru | Ru = Lb/A½ Ru is the ratio of the length of the watershed to the square root of the area. | ||
Total relief | Rr (km) | Rr = Hmax − Hmin Rr is the maximum vertical distance between the lowest (outlet) and the highest (divide) points on the valley floor of a watershed. | ||
Relief ratio | Rh | Rh = Rr/Lb where Rr is the total relief and Lb is the watershed length Rh indicates the overall steepness of the drainage watershed and the intensity of erosional processes operating on the slope of the watershed. | [49] | |
Total stream length | Lt (km) | GIS calculation: spatial analyst tool/hydrology | [50] | |
Length of main stream | Lc (km) | GIS calculation: spatial analyst tool/hydrology | [50] | |
Total number of stream segments | Nu | GIS calculation: spatial analyst tool/hydrology | ||
Drainage density | Dd (km/km2) | Dd = Lt/A Dd is the stream length per unit area in the watershed. Dd < 2: very coarse density 2 < Dd < 4: coarse density 4 < Dd < 6: moderate density 6 < Dd < 8: fine density Dd > 8: very fine density | [47] | |
Constant of channel maintenance | Cm (km2/km) | Cm = 1/Dd Cm expresses the watershed surface required to encompass a 1 km long stretch of stream. | [49] | |
Ruggedness number | Rn | Rn = Rr × Dd Rn indicates the structural complexity of the terrain in association with relief and drainage density. | [50] | |
Land cover variables (LC) | Land cover | % of catchment area covered by the following land cover types: mosaic crop (cropland, herbaceous cover) and mosaic natural vegetation (Crop)/mosaic tree and shrub (Mos)/tree cover (Tree). | ||
Estimated Curve Number (CN) | CN_est | CN_est = Σ (%land_cover(i) × CN(i))/100) where CNi is the respective CN to land cover, which is based on USDA Curve Number. CN_Crop = 77, CN_Mos = 60, CN_Tree = 55. | [51] | |
Soil variables (S) | Soil texture | % of catchment area covered by soils having the following soil textures: sandy clay (S-C), clay loam (C-L), sandy clay loam (S-C-L). | ||
Soil types | % of catchment area covered by the following soil types: Acrisols (Acri), Ferrasols (Ferra), Lixisols (Lixi), Cambisols (Cambi). | |||
Soil hydrological group | % of catchment area covered by the following hydrological soil group: HSG-C (H-C), HSG-D (H-D). | |||
Organic Carbon density | OC (g/kg) | OC = OC0–5cm × 1/6 + OC5–15cm × 2/6 + OC15–30cm × 1/2 | ||
Grain diameter | Dg (µm) | Dg = %Sand × øsa + %Clay × øsi + %Silt × øc where øsa, øsi, øc are the median particle diameter of sand, silt, clay, which are 900 µm, 25 µm, 1 µm, respectively. | ||
Geological variables (G) | Geological characteristics | % of catchment area covered by the following geological classes: Gneiss (gneiss), Granites (gran.), Shales (shales), Quartzites (quartz.). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramahaimandimby, Z.; Randriamaherisoa, A.; Vanclooster, M.; Bielders, C.L. Driving Factors of the Hydrological Response of a Tropical Watershed: The Ankavia River Basin in Madagascar. Water 2023, 15, 2237. https://doi.org/10.3390/w15122237
Ramahaimandimby Z, Randriamaherisoa A, Vanclooster M, Bielders CL. Driving Factors of the Hydrological Response of a Tropical Watershed: The Ankavia River Basin in Madagascar. Water. 2023; 15(12):2237. https://doi.org/10.3390/w15122237
Chicago/Turabian StyleRamahaimandimby, Zonirina, Alain Randriamaherisoa, Marnik Vanclooster, and Charles L. Bielders. 2023. "Driving Factors of the Hydrological Response of a Tropical Watershed: The Ankavia River Basin in Madagascar" Water 15, no. 12: 2237. https://doi.org/10.3390/w15122237
APA StyleRamahaimandimby, Z., Randriamaherisoa, A., Vanclooster, M., & Bielders, C. L. (2023). Driving Factors of the Hydrological Response of a Tropical Watershed: The Ankavia River Basin in Madagascar. Water, 15(12), 2237. https://doi.org/10.3390/w15122237