Salinity-Dependent Species Richness of Bacillariophyta in Hypersaline Environments
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Diatom Species’ Composition in the Single Lake Chersonesskoye
3.2. The Diatom Species’ Composition in the Crimean Hypersaline Lakes
3.3. Diatoms in the World’s Hypersaline Waters
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guiry, M.D.; Guiry, G.M. AlgaeBase. In World-Wide Electronic Publication; National University of Ireland: Galway, Ireland, 2023; Available online: https://www.algaebase.org (accessed on 6 February 2023).
- Krembs, C.; Eicken, H.; Junge, K.; Deming, J.W. High concentrations of exopolymeric substances in Arctic winter sea ice: Implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res. Part I Oceanogr. Res. Pap. 2002, 49, 2163–2181. [Google Scholar] [CrossRef]
- Hobbs, W.O.; Wolfe, A.P.; Inskeep, W.P.; Amskold, L.; Konhauser, K.O. Epipelic diatoms from an extreme acid environment. Beowulf Spring, Yellowstone National Park, USA. Nova Hedwig. 2009, 135, 71–83. [Google Scholar]
- Fazlutdinova, A.; Gabidullin, Y.; Allaguvatova, R.; Gaysina, L. Diatoms in Kamchatka’s Hot Spring Soils. Diversity 2020, 12, 435. [Google Scholar] [CrossRef]
- Heine-Fuster, I.; López-Allendes, C.; Aránguiz-Acuña, A.; Véliz, D. Differentiation of diatom guilds in extreme environments in the Andean Altiplano. Front. Environ. Sci. 2021, 9, 266. [Google Scholar] [CrossRef]
- Shadrin, N.; Anufriieva, E. Ecosystems of hypersaline waters: Structure and trophic relations. Zh. Obshch. Biol. 2018, 79, 418–427. (In Russian) [Google Scholar]
- Sacco, M.; White, N.E.; Harrod, C.; Salazar, G.; Aguilar, P.; Cubillos, C.F.; Meredith, K.; Baxter, B.K.; Oren, A.; Anufriieva, E.; et al. Salt to conserve: A review on the ecology and preservation of hypersaline ecosystems. Biol. Rev. 2021, 96, 2828–2850. [Google Scholar] [CrossRef]
- Daniels, L.L. On the Flora of Great Salt Lake. Am. Nat. 1917, 51, 499–506. [Google Scholar] [CrossRef]
- Patrick, R. Some Diatoms of Great Salt Lake. Bull. Torrey Bot. Club 1936, 63, 157–166. [Google Scholar] [CrossRef]
- Nevrova, E.L.; Shadrin, N.V. Benthic diatoms in Crimean saline lakes. Mar. Ecol. J. 2005, 4, 61–71. (In Russian) [Google Scholar]
- Häusler, S.; Weber, M.; de Beer, D.; Ionescu, D. Spatial distribution of diatom and cyanobacterial mats in the Dead Sea is determined by response to rapid salinity fluctuations. Extremophiles 2014, 18, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
- Clavero, E.; Hernández-Mariné, M.; Grimalt, J.O.; Garcia-Pichel, F. Salinity tolerance of diatoms from thalassic hypersaline environments. J. Phycol. 2000, 36, 1021–1034. [Google Scholar] [CrossRef]
- Oren, A. Diversity of organic osmotic compounds and osmotic adaptation in cyanobacteria and algae. In Algae and Cyanobacteria in Extreme Environments; Seckbach, J., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 639–655. [Google Scholar]
- Shadrin, N.V.; Anufriieva, E.V.; Shadrina, S.N. Brief review of phototrophs in the Crimean hypersaline lakes and lagoons: Diversity, ecological role, the possibility of using. Mar. Biol. J. 2017, 2, 80–85. [Google Scholar]
- Nakov, T.; Judy, K.J.; Downey, K.M.; Ruck, E.C.; Alverson, A.J. Transcriptional Response of Osmolyte Synthetic Pathways and Membrane Transporters in a Euryhaline Diatom During Long-term Acclimation to a Salinity Gradient. J. Phycol. 2020, 56, 1712–1728. [Google Scholar] [CrossRef]
- Abdullahi, A.S.; Underwood, G.J.; Gretz, M.R. Extracellular matrix assembly in diatoms (Bacillariophyceae). V. Environmental effects on polysaccharide synthesis in the model diatom, Phaeodactylum tricornutum. J. Phycol. 2006, 42, 363–378. [Google Scholar] [CrossRef]
- Steele, D.J.; Franklin, D.J.; Underwood, G.J. Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms. Biofouling 2014, 30, 987–998. [Google Scholar] [CrossRef] [Green Version]
- Gaignard, C.; Laroche, C.; Pierre, G.; Dubessay, P.; Delattre, C.; Gardarin, C.; Gourvil, P.; Probert, I.; Dubuffet, A.; Michaud, P. Screening of marine microalgae: Investigation of new exopolysaccharide producers. Algal Res. 2019, 44, 101711. [Google Scholar] [CrossRef]
- Abid, O.; Sellami-Kammoun, A.; Ayadi, H.; Drira, Z.; Bouain, A.; Aleya, L. Biochemical adaptation of phytoplankton to salinity and nutrient gradients in a coastal solar saltern, Tunisia. Estuar. Coast. Shelf Sci. 2008, 80, 391–400. [Google Scholar] [CrossRef]
- Nikitashina, V.; Stettin, D.; Pohnert, G. Metabolic adaptation of diatoms to hypersalinity. Phytochemistry 2022, 4, 113267. [Google Scholar] [CrossRef] [PubMed]
- Lebeau, T.; Robert, J.M. Diatom cultivation and biotechnologically relevant products. Part I: Cultivation at various scales. Appl. Microbiol. Biotechnol. 2003, 60, 612–623. [Google Scholar] [CrossRef] [PubMed]
- de Jesús Paniagua-Michel, J.; Olmos-Soto, J.; Morales-Guerrero, E.R. Algal and microbial exopolysaccharides: New insights as biosurfactants and bioemulsifiers. Adv. Food Nutr. Res. 2014, 73, 221–257. [Google Scholar]
- Anufriieva, E.V. How can saline and hypersaline lakes contribute to aquaculture development? A review. J. Oceanol. Limnol. 2018, 36, 2002–2009. [Google Scholar] [CrossRef]
- Wilson, S.E.; Cumming, B.F.; Smol, J.P. Diatom-salinity relationships in 111 lakes from the Interior Plateau of British Columbia, Canada: The development of diatom-based models for paleosalinity reconstructions. J. Paleolimnol. 1994, 12, 197–221. [Google Scholar] [CrossRef]
- Taukulis, F.E. Diatom Communities in Lakes and Streams of Varying Salinity from South-West Western Australia: Distribution and Predictability. Ph.D. Thesis, Curtin University of Technology, Perth, Australia, 2007. [Google Scholar]
- Round, F.E. Benthic marine diatoms. Oceanogr. Mar. Biol. Annu. Rev. 1971, 9, 83–139. [Google Scholar]
- Siqueiros-Beltrones, D. Benthic diatoms from Laguna Figueroa, Baja California. Cienc. Mar. 1988, 14, 85–112. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, A. Atlas of the Inland-Water Diatom Flora of Israel; Geological Survey of Israel, Israel Academy of Sciences and Humanities: Jerusalem, Israel, 1995; 166p. [Google Scholar]
- Prazukin, A.; Shadrin, N.; Balycheva, D.; Firsov, Y.; Lee, R.; Anufriieva, E. Cladophora spp. (Chlorophyta) modulate environment and create a habitat for microalgae in hypersaline waters. Eur. J. Phycol. 2021, 56, 231–243. [Google Scholar] [CrossRef]
- Senicheva, M.I.; Gubelit, Y.I.; Prazukin, A.V.; Shadrin, N.V. Phytoplankton of hypersaline lakes of Crimea. In Microalgae of the Black Sea: Problems of Biodiversity Preservation and Biotechnological Use; Tokarev, Y.N., Finenko, Z.Z., Shadrin, N.V., Eds.; EKOSI-Gidrophyzika: Sevastopol, Russia, 2008; pp. 93–99. (In Russian) [Google Scholar]
- Shadrin, N.; Balycheva, D.; Anufriieva, E. Microphytobenthos in the Hypersaline Water Bodies, the Case of Bay Sivash (Crimea): Is Salinity the Main Determinant of Species Composition? Water 2021, 13, 1542. [Google Scholar] [CrossRef]
- Guslyakov, N.E.; Zakordonets, O.A.; Gerasimyuk, V.P. Atlas of Diatoms in the Benthos of the Northwestern Part of the Black Sea and Adjacent Water Bodies; Naukova Dumka: Kyiv, Ukraine, 1992; 112p. (In Russian) [Google Scholar]
- Shichalyeyeva, G.N.; Gerasimiuk, V.P.; Kiryushkina, A.N.; Ennan, A.A.; Tsarenko, P. Algofloristic studies of the Kuyalnik Estuary and temporary water bodies of its vicinities (Northwestern Black Sea Coast, Ukraine). Algologia 2017, 27, 277–298. [Google Scholar] [CrossRef] [Green Version]
- Bulatov, S.A. Summary data on the algoflora of the Kara-Bogaz-Gol Bay of the Caspian Sea. In VIII Scientific-Practical Conference with International Participation. “Problems of Preserving the Caspian Ecosystem in the Conditions of Development of Oil and Gas Fields”; VNIRO: Astrakhan, Russia, 2021; pp. 48–56. (In Russian) [Google Scholar]
- Nemtseva, N.V.; Selivanova, E.A.; Yatsenko-Stepanova, T.N.; Ignatenko, M.E. The structure of algoplankton in the Sol-Iletsk lakes with different levels of salinity. Izv. Penz. Gos. Pedagog. Univ. Im. V. G. Belinskogo Yestestvennyye Nauk. 2011, 25, 535–541. (In Russian) [Google Scholar]
- Proshkina-Lavrenko, A.I.; Glezer, Z.I.; Jouse, A.P.; Makarova, I.P.; Sheshukova-Poretskaya, V.S. Diatoms of the USSR: Fossil and Modern; Nauka: Leningrad, Russia, 1974; Volume 1, 403p. (In Russian) [Google Scholar]
- Sapozhnikov, F.V.; Ivanishcheva, P.S.; Simakova, U.V. Modern assemblage changes of benthic algae as a result of hypersalinization of the Aral Sea. J. Mar. Syst. 2009, 76, 343–358. [Google Scholar] [CrossRef]
- Zavyalov, P.O.; Arashkevich, E.G.; Bastida, I.; Ginzburg, A.I.; Dikarev, S.N.; Zhitina, J.C.; Izhitsky, A.C.; Ishniyazov, D.P.; Kostyanoy, A.G.; Kravtsova, V.I.; et al. The Large Aral Sea in the Beginning of Century 21: Physics, Biology, Chemistry; Nauka: Moscow, Russia, 2012; 252p. (In Russian) [Google Scholar]
- Sapozhnikov, F.V.; Kalinina, O.Y.; Kurbaniyazov, A.K.; Yusupov, B.; Mukhitdinova, S.; Abdimutalip, N.A. About the condition of the microphytobenthos of reservoirs of system of the Aral Sea on researches of the complex international expedition. News Natl. Acad. Sci. Repub. Kazakhstan Ser. Biol. Med. Sci. 2017, 3, 171–176. (In Russian) [Google Scholar]
- Reed, J. A diatom-conductivity transfer function for Spanish salt lakes. J. Paleolimnol. 1998, 19, 399–416. [Google Scholar] [CrossRef]
- Moreno, D.F.; Sánchez-Castillo, P.M.; Delgado, C.; Almeida, S.F. Diatom Species That Characterize Saline Ponds (South of Spain) with the Description of a New Navicula Species. Res. Sq. 2021, preprint. [Google Scholar] [CrossRef]
- Siqueiros-Beltrones, D. Association Structure of Benthic Diatoms in A Hypersaline Environment. Cienc. Mar. 1990, 16, 101–127. [Google Scholar] [CrossRef]
- Dor, I.; Ehruch, A. The Effect of Salinity and Temperature Gradients on the Distribution of Littoral Microalgae in Experimental Solar Ponds, Dead Sea Area, Israel. Mar. Ecol. 1987, 8, 193–205. [Google Scholar] [CrossRef]
- Laut, L.; Figueiredo, M.S.; Lorini, M.L.; Belart, P.; Clemente, I.; Martins, M.V.A.; Filho, J.G.M.; Laut, V. Diatoms from the most hypersaline lagoon in Brazil: Vermelha lagoon. Cont. Shelf Res. 2019, 181, 111–123. [Google Scholar] [CrossRef]
- Sylvestre, F.; Beck-Eichler, B.; Duleba, W.; Debenay, J.-P. Modern benthic diatom distribution in a hypersaline coastal lagoon: The Lagoa de Araruama (R.J.), Brazil. Hydrobiologia 2001, 443, 213–231. [Google Scholar] [CrossRef]
- Kirkwood, A.E.; Henley, W.J. Algal community dynamics and halotolerance in a terrestrial, hypersaline environment. J. Phycol. 2006, 42, 537–547. [Google Scholar] [CrossRef]
- Kociolek, J.P.; Herbst, D.B. Taxonomy and Distribution of Benthic Diatoms from Mono Lake, California, U.S.A. Trans. Am. Micros. Soc. 1992, 111, 338–355. [Google Scholar] [CrossRef]
- Nagasathya, A.; Thajuddin, N. Diatom Diversity in Hypersaline Environment. J. Fish. Aquat. Sci. 2008, 3, 328–333. [Google Scholar] [CrossRef] [Green Version]
- Bae, H.; Park, J.; Ahn, H.; Khim, J.S. Shift in Benthic Diatom Community Structure and Salinity Thresholds in a Hypersaline Environment of Solar Saltern, Korea. Algae 2020, 35, 361–373. [Google Scholar] [CrossRef]
- Dolapsakis, N.P.; Tafas, T.; Abatzopoulos, T.J.; Ziller, S.; Economou-Amilli, A. Abundance and growth response of microalgae at Megalon Embolon solar saltworks in northern Greece: An aquaculture prospect. J. Appl. Phycol. 2005, 17, 39–49. [Google Scholar] [CrossRef]
- Wilson, S.E.; Cumming, B.F.; Smol, J.P. Assessing the reliability of salinity inference models from diatom assemblages: An examination of a 219-lake data set from western North America. Can. J. Fish. Aquat. Sci. 1996, 53, 1580–1594. [Google Scholar] [CrossRef]
- Hodgson, D.A.; Vyverman, W.; Sabbe, K. 2001. Limnology and biology of saline lakes in the Rauer Islands, Eastern Antarctica. Antarct. Sci. 2001, 13, 255–270. [Google Scholar] [CrossRef] [Green Version]
- Shadrin, N.; Balycheva, D.; Anufriieva, E. Spatial and temporal variability of microphytobenthos in a marine hypersaline lake (Crimea): Are there some general patterns? J. Sea Res. 2021, 177, 102121. [Google Scholar] [CrossRef]
- Krishtofovich, A.N. Diatom Analysis. Volume. 3. Key to Fossil and Modern Diatoms; Gosgeolizdat: Leningrad, Russia, 1950; 398p. (In Russian) [Google Scholar]
- Proshkina-Lavrenko, A.I. Planktonic Diatoms of the Black Sea; AN USSR: Moscow-Leningrad, Russia, 1955; 222p. (In Russian) [Google Scholar]
- Proshkina-Lavrenko, A.I. Diatoms of the Black Sea benthos; AN USSR: Moscow-Leningrad, Russia, 1963; 243p. (In Russian) [Google Scholar]
- Witkowski, A.; Lange-Bertalot, H.; Metzeltin, D. Diatom Flora of Marine Coasts I. Iconongraphia Diatomologica, 7; A.R.G. Gantner Verlag K.G.: Ruggell, Liechtenstein, 2000; 950p. [Google Scholar]
- Taylor, J.C.; Harding, W.R.; Archibald, C.G. An Illustrated Guide to Some Common Diatom Species from South Africa; Water Research Commission: Pretoria, South Africa, 2007; 188p. [Google Scholar]
- Krakhmalny, A.F. Dinophyta of Ukraine (Illustrated Book for Identification); Alterpres: Kiev, Ukraine, 2011; 444p. (In Russian) [Google Scholar]
- Ryabushko, L.I.; Begun, A.A. Diatoms of the Microphytobenthos of the Sea of Japan. Book 2; PK «KIA» Publishers: Sevastopol, Russia, 2016; 324p. (In Russian) [Google Scholar]
- Cristóbal, G.; Blanco, S.; Bueno, G. Modern Trends in Diatom Identification; Springer: Cham, Switzerland, 2020; 294p. [Google Scholar]
- Prazukin, A.V.; Anufriieva, E.V.; Shadrin, N.V. Cladophora mats in a Crimean hypersaline lake: Structure, dynamics, and inhabiting animals. J. Oceanol. Limnol. 2018, 36, 1930–1940. [Google Scholar] [CrossRef]
- Ryabushko, L.I. Microphytobenthos of the Black Sea; EKOSI-Gidrofizica: Sevastopol, Russia, 2013; 416p. (In Russian) [Google Scholar]
- Semkin, B.I. On the relation between mean values of two measures of inclusion and measures of similarity. Bull. Bot. Sada-Inst. DVO RAN 2009, 3, 91–101. (In Russian) [Google Scholar]
- Shadrin, N.; Kolesnikova, E.; Revkova, T.; Latushkin, A.; Chepyzhenko, A.; Drapun, I.; Dyakov, N.; Anufriieva, E. Do separated taxa react differently to a long-term salinity increase? The meiobenthos changes in Bay Sivash, largest hypersaline lagoon worldwide. Knowl. Manag. Aquat. Ecosyst. 2019, 420, 36. [Google Scholar] [CrossRef] [Green Version]
- Shadrin, N.; Kolesnikova, E.; Revkova, T.; Latushkin, A.; Chepyzhenko, A.; Dyakov, N.; Anufriieva, E. Macrostructure of benthos along a salinity gradient: The case of Sivash Bay (the Sea of Azov), the largest hypersaline lagoon worldwide. J. Sea Res. 2019, 154, 101811. [Google Scholar] [CrossRef]
- Hotos, G.N. A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W. Greece). Diversity 2021, 13, 270. [Google Scholar] [CrossRef]
- Servant-Vildary, S.; Roux, M. Multivariate analysis of diatoms and water chemistry in Bolivian saline lakes. Hydrobiologia 1990, 197, 267–290. [Google Scholar] [CrossRef]
- Nübel, U.; Garcia-Pichel, F.; Clavero, E.; Muyzer, G. Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environ. Microbiol. 2000, 2, 217–226. [Google Scholar] [CrossRef]
- Lebeau, T.; Robert, J.M. Diatom cultivation and biotechnologically relevant products. Part II: Current and putative products. Appl. Microbiol. Biotechnol. 2003, 60, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Rea, I.; De Stefano, L. Special Issue on New Frontiers in Diatom Nanotechnology. Appl. Sci. 2022, 12, 10332. [Google Scholar] [CrossRef]
- Roychoudhury, P.; Bose, R.; Dabek, P.; Witkowski, A. Photonic Nano-/Microstructured Diatom Based Biosilica in Metal Modification and Removal—A Review. Materials 2022, 15, 6597. [Google Scholar] [CrossRef] [PubMed]
- Tramontano, C.; Chianese, G.; Terracciano, M.; De Stefano, L.; Rea, I. Nanostructured biosilica of diatoms: From water world to biomedical applications. Appl. Sci. 2020, 10, 6811. [Google Scholar] [CrossRef]
- Tramontano, C.; De Stefano, L.; Terracciano, M.; Chianese, G.; Rea, I. Diatomite-based nanoparticles: Fabrication strategies for medical applications. In Algae Biotechnology: Integrated Algal Engineering for Bioenergy, Bioremediation, and Biomedical Applications; Ahmad, A., Banat, F., Taher, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 427–446. [Google Scholar]
- Aizdaicher, N.A.; Markina, Z.V. The effect of decrease in salinity on the dynamics of abundance and the cell size of Corethron hystrix (Bacillariophyta) in laboratory culture. Ocean Sci. J. 2010, 45, 1–5. [Google Scholar] [CrossRef]
- Yung, M.M.; Wong, S.W.; Kwok, K.W.; Liu, F.Z.; Leung, Y.H.; Chan, W.T.; Li, X.Y.; Djurišić, A.B.; Leung, K.M. Salinity-dependent toxicities of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana. Aquat. Toxicol. 2015, 165, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Lundholm, N.; Ellegaard, M. Effects of abiotic factors on the nanostructure of diatom frustules—Ranges and variability. Appl. Microbiol. Biotechnol. 2018, 102, 5889–5899. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, B.; Duan, D.; Pan, K. Salinity-dependent nanostructures and composition of cell surface and its relation to Cd toxicity in an estuarine diatom. Chemosphere 2019, 215, 807–814. [Google Scholar] [CrossRef]
№ | Water Body | Salinity, g·L−1 | The Number of Found Diatom Species | References |
---|---|---|---|---|
1 | Lake Chersonesskoye, Crimea | 27–340 | 51 | (New data, [10,29,30]) |
2 | Lagoon Sivash, The Sea of Azov, Crimea | 140–200 | 27 | [31] |
3 | Lake Bakalskoye, Crimea | 60–110 | 57 | [10] |
4 | Small lake near Bay Cozachyia, Crimea | 20–50 | 6 | [10] |
5 | Lake Marfovskoye, Crimea | 270–300 | 10 | [10] |
6 | Lake Koyashskoye, Crimea | 240–350 | 10 | [10] |
7 | Lake Tobechikskoye, Crimea | 160–290 | 20 | [10] |
8 | Lake Shimakhanskoye, Crimea | 30–360 | 3 | [10] |
9 | Lake Kirkoyashskoye, Crimea | 16–360 | 1 | [10] |
10 | Lake Achi, Crimea | 116–158 | 0 | [10] |
11 | Lagoon Kuyalnitsky Liman, NW coast of the Black Sea | 56–285 | 39 | [32,33] |
12 | Kara-Bogaz-Gol Bay, Caspian Sea | 40–272 | 67 | [34] |
13 | Sal-Iletsk Lakes (Razval, Dunino, and Tuzluchnoye), Orenburg Oblast, Russia | 110–290 | 12 | [35,36] |
14 | The Aral Sea | 82–130 | 83 | [37,38,39] |
15 | Hypersaline lakes of Spain | 40–174 | 19 | [40,41] |
16 | La Poza Pond, Mexico | 55–105 | 49 | [42] |
17 | Hypersaline evaporation ponds and tidal channels of Guerrero Negro Baja, California Sur, Mexico | 40–130 | 19 | [12] |
18 | Experimental Solar Ponds, Dead Sea | 58–128 | 11 | [43] |
19 | Lakes and streams from south-west Western Australia | 50–156 | 43 | [25] |
20 | Vermelho lagoon, Brazil | 50–63 | 23 | [44] |
21 | Araruama Lagoon, Brazil | 40–69 | 45 | [45] |
22 | Great Salt Plains, USA | 159–311 | 31 | [46] |
23 | Great Salt Lake, USA | >200 | 56 | [9] |
24 | Mono Lake, USA | 95 | 25 | [47] |
25 | Saltpans of the southern coasts of India | 98–150 | 56 | [48] |
26 | Salterns from Korea | 65–324 | 41 | [49] |
27 | Megalon Embolon solar saltworks, northern Greece | 60–144 | 23 | [50] |
28 | Lakes from the Kamloops and Cariboo/Chilcotin regions of British Columbia, Canada | 58–369 | 14 | [24,51] |
29 | Hypersaline lakes in the Rauer Islands, eastern Antarctica | 50–66 | 17 | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balycheva, D.; Anufriieva, E.; Lee, R.; Prazukin, A.; Shadrin, N. Salinity-Dependent Species Richness of Bacillariophyta in Hypersaline Environments. Water 2023, 15, 2252. https://doi.org/10.3390/w15122252
Balycheva D, Anufriieva E, Lee R, Prazukin A, Shadrin N. Salinity-Dependent Species Richness of Bacillariophyta in Hypersaline Environments. Water. 2023; 15(12):2252. https://doi.org/10.3390/w15122252
Chicago/Turabian StyleBalycheva, Daria, Elena Anufriieva, Raisa Lee, Alexander Prazukin, and Nickolai Shadrin. 2023. "Salinity-Dependent Species Richness of Bacillariophyta in Hypersaline Environments" Water 15, no. 12: 2252. https://doi.org/10.3390/w15122252
APA StyleBalycheva, D., Anufriieva, E., Lee, R., Prazukin, A., & Shadrin, N. (2023). Salinity-Dependent Species Richness of Bacillariophyta in Hypersaline Environments. Water, 15(12), 2252. https://doi.org/10.3390/w15122252