Preparation of Chitosan-Diatomite/Calcium Alginate Composite Hydrogel Beads for the Adsorption of Congo Red Dye
Abstract
:1. Introduction
2. Methods and Materials
2.1. Materials
2.2. Purification of DE
2.3. Fabrication of CS-DE
2.4. Preparation of Hydrogel Beads
2.5. Characterization Methods
2.6. Adsorption Investigation
2.7. Regeneration Experiment
3. Results and Discussion
3.1. Characterization of the Samples
3.1.1. FT-IR and XRD Analysis
3.1.2. SEM Analysis
3.1.3. TGA Analysis
3.2. Adsorption Studies
3.2.1. Adsorption Kinetics of CS-DE@CA Beads
3.2.2. The Isotherm Study of CS-DE@CA Beads
3.3. Regeneration Experiment
3.4. Adsorption Mechanism Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gharib, A.; Blumberg, J.; Manning, D.; Goemans, C.; Arabi, M. Assessment of vulnerability to water shortage in semi-arid river basins: The value of demand reduction and storage capacity. Sci. Total Environ. 2023, 871, 161964. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, A.; Gates, K.; Gao, Y.; Zhang, Q.; Han, F.; Begum, S.; Rightsell, C.; Sardar, D.; Ray, C. Composites Composed of Polydopamine Nanoparticles, Graphene Oxide, and ε-Poly-l-lysine for Removal of Waterborne Contaminants and Eradication of Superbugs. ACS Appl. Energy Mater. 2019, 2, 3339–3347. [Google Scholar] [CrossRef]
- Cui, M.; Li, Y.; Sun, Y.; Wang, H.; Li, M.; Li, L.; Xu, W. Study on Adsorption Performance of MgO/Calcium Alginate Composite for Congo Red in Wastewater. J. Polym. Environ. 2021, 29, 3977–3987. [Google Scholar] [CrossRef]
- Huang, W.; Yu, C.; Li, D. La-modified vermiculites for efficient adsorption of Congo red. Asia-Pac. J. Chem. Eng. 2017, 12, 969–979. [Google Scholar] [CrossRef]
- Vignesh, V.; Shanmugam, G. Removal and recovery of hazardous Congo red from aqueous environment by selective natural amino acids in simple processes. Process Biochem. 2023, 127, 99–111. [Google Scholar] [CrossRef]
- Zheng, Y.; Cheng, B.; Fan, J.; Yu, J.; Ho, W. Review on Nickel-based adsorption materials for Congo red. J. Hazard. Mater. 2020, 403, 123559. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H. Catalytic Ozonation for Water and Wastewater Treatment: Recent Advances and Perspective. Sci. Total Environ. 2020, 704, 135249. [Google Scholar] [CrossRef]
- Liu, J.; Wang, N.; Zhang, H.; Baeyens, J. Adsorption of Congo red dye on FexCo3-xO4 nanoparticles. J. Environ. Manag. 2019, 238, 473–483. [Google Scholar] [CrossRef]
- McYotto, F.; Wei, Q.; Macharia, D.; Huang, M.; Shen, C.; Chow, C. Effect of dye structure on color removal efficiency by coagulation. Chem. Eng. J. 2021, 405, 126674. [Google Scholar] [CrossRef]
- Li, K.; Yuan, G.; Dong, L.; Deng, G.; Duan, H.; Jia, Q.; Zhang, H.; Zhang, S. Boehmite aerogel with ultrahigh adsorption capacity for Congo Red removal: Preparation and adsorption mechanism. Sep. Purif. Technol. 2022, 202, 122065. [Google Scholar] [CrossRef]
- Son, D.; Mai, Q.; Du, X.; Phong, H.; Cuong, D.; Khieu, Q. Catalytic wet peroxide oxidation of phenol solution over Fe-Mn binary oxides diatomite composite. J. Porous Mater. 2017, 24, 601–611. [Google Scholar] [CrossRef]
- Song, J.; Cao, X.; Huang, Z. Diatomite-chitosan composite with abundant functional groups as efficient adsorbent for vanadium removal: Key influencing factors and influence of surface functional groups. J. Mol. Liq. 2022, 367, 120428. [Google Scholar] [CrossRef]
- Chang, J.; Zhang, J.; Tan, B.; Wang, Q.; Liu, N.; Xue, Q. New insight into the removal of Cd(II) from aqueous solution by diatomite. Environ. Sci. Pollut. Res. 2020, 27, 9882–9890. [Google Scholar] [CrossRef] [PubMed]
- Vishal, K.; Aruchamy, K.; Sriram, G.; Ching, Y.; Oh, T.; Hegde, G.; Ajeya, K.; Joshi, S.; Sowriraajan, A.; Jung, H.; et al. Engineering a low-cost diatomite with Zn-Mg-Al Layered triple hydroxide (LTH) adsorbents for the effectual removal of Congo red: Studies on batch adsorption, mechanism, high selectivity, and desorption. Colloids Surf. A 2023, 661, 130922. [Google Scholar] [CrossRef]
- Wang, B.; Xiong, M.; Shi, B.; Li, Z.; Zhang, H. Treatment of shale gas flowback water by adsorption on carbonnanotube-nested diatomite adsorbent. J. Water Process Eng. 2021, 42, 102074. [Google Scholar] [CrossRef]
- Shen, W.; An, Q.; Xiao, Z.; Zhai, S.; Hao, J.; Tong, Y. Alginate modified graphitic carbon nitride composite hydrogels for efficient removal of Pb(II), Ni(II) and Cu(II) from water. Int. J. Biol. Macromol. 2020, 147, 1298–1306. [Google Scholar] [CrossRef]
- Xi, H.; Li, Q.; Yang, Y.; Zhang, J.; Guo, F.; Wang, X.; Xu, S.; Ruan, S. Highly effective removal of phosphate from complex water environment with porous Zr-bentonite alginate hydrogel beads: Facile synthesis and adsorption behavior study. Appl. Clay Sci. 2021, 201, 105919. [Google Scholar] [CrossRef]
- Liang, S.; Cai, W.; Dang, C.; Peng, X.; Luo, Z.; Wei, X. Synthesis of sodium alginate/phosphorus tetramethylmethyl sulfate biocomposite beads with exceptional adsorption rate for Cr(VI) removal. J. Environ. Chem. Eng. 2023, 11, 109317. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Zhao, X.; Gao, J. Investigation on ionical cross-linking of alginate by monovalent cations to fabrication alginate gel for biomedical application. React. Funct. Polym. 2023, 183, 105484. [Google Scholar] [CrossRef]
- Godiya, C.; Xiao, Y.; Lu, X. Amine functionalized sodium alginate hydrogel for efficient and rapid removal of methyl blue in water. Int. J. Biol. Macromol. 2020, 144, 671–681. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhang, L.; Wu, L.; Chen, D. Adsorptive removal of Cu(II) from aqueous solutions using a novel macroporous bead adsorbent based on poly(vinyl alcohol)/sodium alginate/KMnO4 modified biochar. J. Taiwan Inst. Chem. Eng. 2019, 102, 110–117. [Google Scholar] [CrossRef]
- Pereira, A.; Rodrigues, F.; Paulino, A.; Martins, A.; Fajardo, A. Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: A review. J. Clean. Prod. 2021, 284, 124703. [Google Scholar] [CrossRef]
- Zhao, D.; Shen, Z.; Shen, X. Dual-functional calcium alginate hydrogel beads for disinfection control and removal of dyes in water. Int. J. Biol. Macromol. 2021, 188, 253–263. [Google Scholar] [CrossRef]
- Fan, D.; Zhu, X.; Xu, M.; Yan, J. Adsorption Properties of Chromium (VI) by Chitosan Coated Montmorillonite. J. Biol. Sci. 2006, 6, 941–945. [Google Scholar]
- Wan, M.W.; Kan, C.C.; Rogel, B.D.; Dalida, M.L.P. Adsorption of Copper(II) and Lead(II) Ions from Aqueous Solution on Chitosan-Coated Sand. Carbohydr. Polym. 2010, 80, 891–899. [Google Scholar] [CrossRef]
- Futalan, C.M.; Kan, C.C.; Dalida, M.L.; Hsien, K.J.; Pascua, C.; Wan, M.W. Comparative and Competitive Adsorption of Copper, Lead, and Nickel Using Chitosan Immobilized on Bentonite. Carbohydr. Polym. 2011, 83, 528–536. [Google Scholar] [CrossRef]
- Boddu, V.M.; Abburi, K.; Randolph, A.J.; Smith, E.D. Removal of copper(II) and nickel (II) ions from aqueous solutions by a composite chitosan biosorbent. Sep. Sci. Technol. 2008, 43, 1365–1380. [Google Scholar] [CrossRef]
- Mokhtari, A.; Mohammad, S.; Hamidrez, A. 3D porous bioadsorbents based on chitosan/alginate/cellulose nanofibers as efficient and recyclable adsorbents of anionic dye. Carbohydr. Polym. 2021, 265, 118075. [Google Scholar] [CrossRef]
- Wang, F.; Gao, J.; Jia, L.; Wang, S.; Ning, P. Green synthesis of a novel functionalized chitosan adsorbent for Cu(II) adsorption from aqueous solution. Environ. Sci. Pollut. Res. 2022, 29, 989–998. [Google Scholar] [CrossRef]
- Wang, P.; Tan, L.; Yuan, G.; Feng, S.; Tang, H.; Wang, G.; Wang, C. ZIF-8 modified polyvinyl alcohol/chitosan composite aerogel for efficient removal of Congo red. J. Solid State Chem. 2022, 316, 123628. [Google Scholar] [CrossRef]
- Lva, J.; Sun, B.; Jin, J.; Jiang, W. Mechanical and slow-released property of poly(acrylamide) hydrogel reinforced by diatomite. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 99, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Biao, L.; Tan, S.; Wang, Y.; Guo, X.; Fua, Y.; Xu, F.; Zu, Y.; Liu, Z. Synthesis, characterization and antibacterial study on the chitosan-functionalized Ag nanoparticles. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 76, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Christopher, L. Natural Cellulose-Chitosan Cross-Linked Super absorbent Hydrogels with Superior Swelling Properties. ACS Sustain. Chem. Eng. 2018, 6, 8736–8742. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Hu, X.; Feng, H.; Xiong, W.; Guo, W.; Zhou, J.; Mosa, A.; Peng, Y. Multicavity triethylenetetramine-chitosan/alginate composite beads for enhanced Cr(VI) removal. J. Clean. Prod. 2019, 231, 733–745. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, Y.; Wu, J.; Shao, Y.; Cai, A.; Dong, L. Ultralong Hydroxyapatite Nanowire-Based Filter Paper for High-Performance Water Purification. ACS Appl. Mater. Interfaces 2019, 11, 4288–4301. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Xu, Y.; Yu, P. Removal of nitrobenzene from aqueous solution by using modified magnetic diatomite. Sep. Purif. Technol. 2020, 242, 116792. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, J.; Yu, Y.; Zhang, Q.; Chen, T.; Ni, L. Layer-by-layer assembled diatomite based on chitosan and ammonium polyphosphate to increase the fire safety of unsaturated polyester resins. Powder Technol. 2020, 364, 36–48. [Google Scholar] [CrossRef]
- Sanchez, L.; Alvarez, V.; Ollier, R. Acid-treated Bentonite as filler in the development of novel composite PVA hydrogels. J. Appl. Polym. Sci. 2019, 136, 47663. [Google Scholar] [CrossRef]
- Lessa, E.; Gularte, M.; Garcia, E.; Fajardo, A. Orange waste: A valuable carbohydrate source for the development of beads with enhanced adsorption properties for cationic dyes. Carbohydr. Polym. 2017, 157, 660–668. [Google Scholar] [CrossRef]
- Shehzad, H.; Ahmed, E.; Sharif, A.; Din, M.; Farooqi, Z.; Nawaz, I.; Bano, R.; Iftikhar, M. Amino-carbamate moiety grafted calcium alginate hydrogel beads for effective biosorption of Ag(I) from aqueous solution: Economically-competitive recovery. Int. J. Biol. Macromol. 2020, 144, 362–372. [Google Scholar] [CrossRef]
- Varaprasad, K.; Nùñez, D.; Ide, W.; Jayaramudu, T.; Sadiku, E. Development of high alginate comprised hydrogels for removal of Pb(II) ions. J. Mol. Liq. 2020, 298, 112087. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, X.; Yin, J.; He, C.; Zhao, W.; Zhao, C. Fast and environmental-friendly approach towards uniform hydrogel particles with ultrahigh and selective removal of anionic dyes. J. Environ. Chem. Eng. 2020, 8, 104352. [Google Scholar] [CrossRef]
- Yap, P.; Auyoong, Y.; Hassan, K.; Farivar, F.; Tran, D.; Mab, J.; Losic, D. Multithiol functionalized graphene bio-sponge via photoinitiated thiol-ene click chemistry for efficient heavy metal ions adsorption. Chem. Eng. J. 2020, 395, 124965. [Google Scholar] [CrossRef]
- Yiğitoğlu, M.; Temocin, Z. Removal of Benzidine-Based Azo Dye from Aqueous Solution using Amide and Amine-Functionalized Poly(ethylene terephthalate) Fibers. Fibers Polym. 2010, 11, 996–1002. [Google Scholar] [CrossRef]
- Aoopngan, C.; Nonkumwong, J.; Phumying, S.; Promjantuek, S.; Maensiri, S.; Noisa, P.; Pinitsoontorn, S.; Ananta, S.; Srisombat, L. Amine-Functionalized and Hydroxyl-Functionalized Magnesium Ferrite Nanoparticles for Congo Red Adsorption. ACS Appl. Nano Mater. 2019, 2, 5329–5341. [Google Scholar] [CrossRef]
- Hou, H.; Zhou, R.; Wu, P.; Wu, L. Removal of Congo Red Dye from Aqueous Solution with Hydroxyapatite/Chitosan Composite. Chem. Eng. J. 2012, 211–212, 336–342. [Google Scholar] [CrossRef]
- Mahmoodi, N.; Khorramfar, S.; Najafi, F. Amine Functionalized Silica Nanoparticle: Preparation, Characterization and Anionic Dye Removal Ability. Desalination 2011, 279, 61–68. [Google Scholar] [CrossRef]
- Yi, X.; Sun, F.; Han, Z.; Han, F.; He, J.; Ou, M.; Gu, J.; Xu, X. Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu (II) and U (VI) removal. Ecotoxicol. Environ. Saf. 2018, 158, 309–318. [Google Scholar] [CrossRef]
- Luo, X.; Lei, X.; Cai, N.; Xie, X.; Xue, Y.; Yu, F. Removal of Heavy Metal Ions from Water by Magnetic Cellulose Based Beads with Embedded Chemically Modified Magnetite Nanoparticles and Activated Carbon. ACS Sustain. Chem. Eng. 2016, 4, 3960–3969. [Google Scholar] [CrossRef]
- Kim, H.; Im, S.; Kim, J.; Hong, W.; Shin, K.; Jeong, H.; Hong, Y. Phytic Acid Doped Polyaniline Nanofibers for Enhanced Aqueous Copper(II) Adsorption Capability. ACS Sustain. Chem. Eng. 2017, 5, 6654–6664. [Google Scholar] [CrossRef]
- Li, W.; Wei, H.; Liu, Y.; Li, S.; Wang, G.; Guo, T.; Han, H. An in situ reactive spray-drying strategy for facile preparation of starch-chitosan based hydrogel microspheres for water treatment application. Chem. Eng. Process. 2021, 168, 108548. [Google Scholar] [CrossRef]
- Hai, Y.; Li, X.; Wu, H.; Zhao, S.; Deligeer, W.; Asuha, S. Modification of acid-activated kaolinite with TiO2 and its use for the removal of azo dyes. Appl. Clay Sci. 2015, 114, 558–567. [Google Scholar] [CrossRef]
- Kumar, R.; Ansari, S.; Barakat, M.; Aljaafari, A.; Cho, M. A polyaniline@MoS2- based organic-inorganic nanohybrid for the removal of Congo red: Adsorption kinetic, thermodynamic and isotherm studies. New J. Chem. 2018, 42, 18802–18809. [Google Scholar] [CrossRef]
- Eniola, J.; Kumar, R.; Al-Rashdi, A.; Ansari, M.; Barakat, M. Fabrication of novel Al(OH)3/CuMnAl-layered double hydroxide for detoxification of organic contaminants from aqueous solution. ACS Omega 2019, 4, 18268–18278. [Google Scholar] [CrossRef] [Green Version]
- Harja, M.; Buema, G.; Bucur, D. Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Sci. Rep. 2022, 12, 6087. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.; Amira, M.; Azab, M.; Abdelfattah, A. An innovative amino-magnetite@graphene oxide@amino-manganese dioxide as a nitrogen-rich nanocomposite for removal of Congo red dye. Diam. Relat. Mater. 2022, 121, 108744. [Google Scholar] [CrossRef]
- Alsoaud, M.; Taher, M.; Hamed, A.; Elnouby, M.; Omer, A. Reusable kaolin impregnated aminated chitosan composite beads for efficient removal of Congo red dye: Isotherms, kinetics and thermodynamics studies. Sci. Rep. 2022, 12, 12972. [Google Scholar] [CrossRef]
- Radjai, M.; Ferkous, H.; Jebali, Z.; Majdoub, H.; Bourzami, R.; Raffin, G.; Achour, M.; Gil, A.; Boutahala, M. Adsorptive removal of cationic and anionic dyes on a novel mesoporous adsorbent prepared from diatomite and anionic cellulose nanofibrils: Experimental and theoretical investigations. J. Mol. Liq. 2022, 361, 119670. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Wang, Y.; Zhao, L.; Jiang, Q. Adsorption capability for Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel ferrites. Chem. Eng. J. 2012, 181, 72–79. [Google Scholar] [CrossRef]
- Feng, T.; Wang, H.; Xu, J.; Du, X.; Cheng, X.; Du, Z.; Wang, H. Fabrication of MXene/PEI functionalized sodium alginate aerogel and its excellent adsorption behavior for Cr(VI) and Congo Red from aqueous solution. J. Hazard. Mater. 2021, 416, 125777. [Google Scholar] [CrossRef]
- Zong, E.; Fan, R.; Hua, H.; Yang, J.; Jiang, S.; Dai, J.; Liu, X.; Song, P. A magnetically recyclable lignin-based bio-adsorbent for efficient removal of Congo red from aqueous solution. Int. J. Biol. Macromol. 2023, 226, 443–453. [Google Scholar] [CrossRef] [PubMed]
Samples | Weight Loss (%) | ||
---|---|---|---|
1st Stage (50–150 °C) | 2st Stage (150–300 °C) | 3st Stage (300–600 °C) | |
CA | 2.5–3 | 28–30 | 38–41 |
CS-DE@CA | 1–1.5 | 12–14 | 23–25 |
Temperature | qe,exp (mg/g) | Langmuir Isotherm | Freundlich Isotherm | ||||
---|---|---|---|---|---|---|---|
qe,cal (mg/g) | b (L/mg) | R2 | Kf (L/mg) | n | R2 | ||
20 °C | 47.62 | 48.42 | 0.05 | 0.999 | 15.68 | 4.28 | 0.989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Shen, X. Preparation of Chitosan-Diatomite/Calcium Alginate Composite Hydrogel Beads for the Adsorption of Congo Red Dye. Water 2023, 15, 2254. https://doi.org/10.3390/w15122254
Zhao D, Shen X. Preparation of Chitosan-Diatomite/Calcium Alginate Composite Hydrogel Beads for the Adsorption of Congo Red Dye. Water. 2023; 15(12):2254. https://doi.org/10.3390/w15122254
Chicago/Turabian StyleZhao, Dianjia, and Xizhou Shen. 2023. "Preparation of Chitosan-Diatomite/Calcium Alginate Composite Hydrogel Beads for the Adsorption of Congo Red Dye" Water 15, no. 12: 2254. https://doi.org/10.3390/w15122254
APA StyleZhao, D., & Shen, X. (2023). Preparation of Chitosan-Diatomite/Calcium Alginate Composite Hydrogel Beads for the Adsorption of Congo Red Dye. Water, 15(12), 2254. https://doi.org/10.3390/w15122254