Full-Scale Constructed Wetlands Planted with Ornamental Species and PET as a Substitute for Filter Media for Municipal Wastewater Treatment: An Experience in a Mexican Rural Community
Abstract
:1. Introduction
2. Materials and Methods
2.1. Implementation and Description of the System
2.2. Selection of Ornamental Plants for the CW
2.3. Evaluation of Plant Development
2.4. Physical–Chemical Analysis of Samples
2.5. Experimental Design and Statistical Analysis
3. Results
3.1. Environmental Conditions for Vegetation Development
3.1.1. Temperature and Humidity
3.1.2. Light Intensity
3.2. Vegetation Development
3.3. Pollutant Removal
3.3.1. Variation in pH
3.3.2. Variation in Electrical Conductivity
3.3.3. Variation in TDS Concentration
3.3.4. COD and BOD5 Removal
3.3.5. TSS Removal
3.3.6. TN Removal
3.3.7. TP Removal
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, D.Q.; Jinadasa, K.; Gersberg, R.M.; Liu, Y.; Ng, W.J.; Tan, S.K. Application of constructed wetlands for wastewater treatment in developing countries—A review of recent developments (2000–2013). J. Environ. Manag. 2014, 141, 116–131. [Google Scholar] [CrossRef] [PubMed]
- Lutterbeck, C.A.; Kist, L.T.; Lopez, D.R.; Zerwes, F.V.; Machado, L. Life cycle assessment of integrated wastewater treatment systems with constructed wetlands in rural areas. J. Clean. Prod. 2017, 148, 527–536. [Google Scholar] [CrossRef]
- FAO. Framework on Rural Extreme Poverty: Towards Reaching Target 1.1 of the Sustainable Development Goals; FAO: Rome, Italy, 2019; p. 56. [Google Scholar]
- Zamora, S.; Sandoval, L.; Marín-Muñíz, J.L.; Fernández-Lambert, G.; Hernández-Orduña, M.G. Impact of Ornamental Vegetation Type and Different Substrate Layers on Pollutant Removal in Constructed Wetland Mesocosms Treating Rural Community Wastewater. Processes 2019, 7, 531. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, L.; Marín-Muñiz, J.L.; Zamora-Castro, S.A.; Sandoval-Salas, F.; Alvarado-Lassman, A. Evaluation of Wastewater Treatment by Microcosms of Vertical Subsurface Wetlands in Partially Saturated Conditions Planted with Ornamental Plants and Filled with Mineral and Plastic Substrates. Int. J. Environ. Res. Public Health 2019, 16, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín-Muñiz, J.L.; Herazo, L.C.S.; López-Méndez, M.C.; Sandoval-Herazo, M.; Meléndez-Armenta, R.; González-Moreno, H.R.; Zamora, S. Treatment Wetlands in Mexico for Control of Wastewater Contaminants: A Review of Experiences during the Last Twenty-Two Years. Processes 2023, 11, 359. [Google Scholar] [CrossRef]
- Vymazal, J. Plants used in constructed wetlands with horizontal subsurface flow: A review. Hydrobiologia 2011, 674, 133–156. [Google Scholar] [CrossRef]
- Lv, T.; Zhang, Y.; Zhang, L.; Carvalho, P.N.; Arias, C.A.; Brix, H. Removal of the pesticides imazalil and tebuconazole in saturated constructed wetland mesocosms. Water Res. 2016, 91, 126–136. [Google Scholar] [CrossRef]
- Zhang, L.; Lyu, T.; Zhang, Y.; Button, M.; Arias, C.A.; Weber, K.P.; Brix, H.; Carvalho, P.N. Impacts of design configuration and plants on the functionality of the microbial community of mesocosm-scale constructed wetlands treating ibuprofen. Water Res. 2018, 131, 228–238. [Google Scholar] [CrossRef] [Green Version]
- García-Ávila, F.; Avilés-Añazco, A.; Cabello-Torres, R.; Guanuchi-Quito, A.; Cadme-Galabay, M.; Gutiérrez-Ortega, H.; Alvarez-Ochoa, R.; Zhindón-Arévalo, C. Application of ornamental plants in constructed wetlands for wastewater treatment: A scientometric analysis. Case Stud. Chem. Environ. Eng. 2023, 7, 100307. [Google Scholar] [CrossRef]
- Kizito, S.; Lv, T.; Wu, S.; Ajmal, Z.; Luo, H.; Dong, R. Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns: Role of media and tidal operation. Sci. Total Environ. 2017, 592, 197–205. [Google Scholar] [CrossRef]
- Bai, S.; Lyu, T.; Ding, Y.; Li, Z.; Wang, D.; You, S.; Xie, Q. Campus Sewage Treatment in Multilayer Horizontal Subsurface Flow Constructed Wetlands: Nitrogen Removal and Microbial Community Distribution. CLEAN Soil Air Water 2017, 45, 1700254. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Lyu, T.; Bai, S.; Li, Z.; Ding, H.; You, S.; Xie, Q. Effect of multilayer substrate configuration in horizontal subsurface flow constructed wetlands: Assessment of treatment performance, biofilm development, and solids accumulation. Environ. Sci. Pollut. Res. 2017, 25, 1883–1891. [Google Scholar] [CrossRef] [Green Version]
- Vymazal, J. Do Laboratory Scale Experiments Improve Constructed Wetland Treatment Technology? Environ. Sci. Technol. 2018, 52, 12956–12957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandoval-Herazo, L.C.; Alvarado-Lassman, A.A.; Marín-Muñiz, J.L.; Méndez-Contreras, J.M.; Zamora-Castro, S.A. Effects of the Use of Ornamental Plants and Different Substrates in the Removal of Wastewater Pollutants through Microcosms of Constructed Wetlands. Sustainability 2018, 10, 1594. [Google Scholar] [CrossRef] [Green Version]
- Marín-Muñiz, J.L.; Hernández, M.E.; Gallegos-Pérez, M.P.; Amaya-Tejeda, S.I. Plant growth and pollutant removal from wastewater in domiciliary constructed wetland microcosms with monoculture and polyculture of tropical ornamental plants. Ecol. Eng. 2020, 147, 105658. [Google Scholar] [CrossRef]
- Sandoval-Herazo, L.C.; Alvarado-Lassman, A.; López-Méndez, M.C.; Martínez-Sibaja, A.; Aguilar-Lasserre, A.A.; Zamora-Castro, S.; Marín-Muñiz, J.L. Effects of Ornamental Plant Density and Mineral/Plastic Media on the Removal of Domestic Wastewater Pollutants by Home Wetlands Technology. Molecules 2020, 25, 5273. [Google Scholar] [CrossRef] [PubMed]
- Portillo-Peralta, J.I.; Marín-Muñiz, J.L.; Pérez, M.D.C.C.; Zamora-Castro, S.A. Diagnóstico sobre el funcionamiento y la apropiación social de humedales construidos para el tratamiento de aguas residuales en pastorías, Actopan, Veracruz, México. J. Basic Appl. Sci. 2022, 8, 162–169. [Google Scholar]
- Rodriguez-Dominguez, M.A.; Konnerup, D.; Brix, H.; Arias, C.A. Constructed Wetlands in Latin America and the Caribbean: A Review of Experiences during the Last Decade. Water 2020, 12, 1744. [Google Scholar] [CrossRef]
- Marín-Muñiz, J.L.; García-González, M.C.; Ruelas-Monjardín, L.C.; Moreno-Casasola, P. Influence of Different Porous Media and Ornamental Vegetation on Wastewater Pollutant Removal in Vertical Subsurface Flow Wetland Microcosms. Environ. Eng. Sci. 2018, 35, 88–94. [Google Scholar] [CrossRef]
- Awwa-Wef, A. Standard methods for the examination of water and wastewater. Edición 2005, 21, 5–10. [Google Scholar]
- Villa-Mancera, A.; Reynoso-Palomar, A. High prevalence, potential economic impact, and risk factors of Fasciola hepatica in dairy herds in tropical, dry and temperate climate regions in Mexico. Acta Trop. 2019, 193, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Yu, W.; Schuster, P.F.; Wen, R.; Cai, Z.; Wang, D.; Shao, L.; Cui, J.; Guo, X. Control of seasonal water vapor isotope variations at Lhasa, southern Tibetan Plateau. J. Hydrol. 2020, 580, 124237. [Google Scholar] [CrossRef]
- Metsoviti, M.N.; Papapolymerou, G.; Karapanagiotidis, I.T.; Katsoulas, N. Effect of Light Intensity and Quality on Growth Rate and Composition of Chlorella vulgaris. Plants 2019, 9, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dean, A.P.; Sigee, D.C.; Estrada, B.; Pittman, J.K. Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour. Technol. 2010, 101, 4499–4507. [Google Scholar] [CrossRef]
- Téllez, A.A.C.; Rodríguez, S.S.-F.; De Blas, A.D.; García, L.C.; Garnica-Romo, M.G.; Camacho, M.C.B.; Garnica, G. Evolution in the photosynthetic oxygen rate of a Cd-resistant strain of Dictyosphaerium chlorelloides by changes in light intensity and temperature. Chemosphere 2020, 239, 124672. [Google Scholar] [CrossRef] [PubMed]
- Marín-Muñiz, J.L. Removal of wastewater pollutant in artificial wetlands implemented in Actopan, Veracruz, Mexico. Rev. Mex. Ing. Quím. 2016, 15, 553–563. Available online: http://www.redalyc.org/articulo.oa?id=62046829021 (accessed on 30 January 2023). (In Spanish). [CrossRef]
- Butterworth, E.; Richards, A.; Jones, M.; Brix, H.; Dotro, G.; Jefferson, B. Impact of aeration on macrophyte establishment in sub-surface constructed wetlands used for tertiary treatment of sewage. Ecol. Eng. 2016, 91, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Shih, J.G.; Finkelstein, S.A. Range dynamics and invasive tendencies in Typha latifolia and Typha angustifolia in eastern North America derived from herbarium and pollen records. Wetlands 2008, 28, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Sandoval, L.; Marín-Muñíz, J.L.; Adame-García, J.; Fernández-Lambert, G.; Zurita, F. Effect of Spathiphyllum blandum on the removal of ibuprofen and conventional pollutants from polluted river water, in fully saturated constructed wetlands at mesocosm level. J. Water Health 2020, 18, 224–228. [Google Scholar] [CrossRef]
- Zamora, S.; Marín-Muñíz, J.L.; Nakase-Rodríguez, C.; Fernández-Lambert, G.; Sandoval, L. Wastewater Treatment by Constructed Wetland Eco-Technology: Influence of Mineral and Plastic Materials as Filter Media and Tropical Ornamental Plants. Water 2019, 11, 2344. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, L.; Zamora-Castro, S.A.; Vidal-Álvarez, M.; Marín-Muñiz, J.L. Role of Wetland Plants and Use of Ornamental Flowering Plants in Constructed Wetlands for Wastewater Treatment: A Review. Appl. Sci. 2019, 9, 685. [Google Scholar] [CrossRef] [Green Version]
- Herazo, L.C.S.; Zurita, F.; Nani, G.; Del Ángel-Coronel, O.A.; Aguilar, F.A.A. Treatment of swine effluent mixed with domestic wastewater and vegetation development in monoculture and polyculture horizontal subsurface flow wetlands. Ecol. Eng. 2021, 173, 106432. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, Z.; Sheng, S.; Pan, F.; Chen, F.; Fu, J. Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands. Sci. Total Environ. 2020, 701, 134736. [Google Scholar] [CrossRef]
- Ji, Z.; Tang, W.; Pei, Y. Constructed wetland substrates: A review on development, function mechanisms, and application in contaminants removal. Chemosphere 2022, 286, 131564. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Echeverria, E.; Misantla, T.N.D.M.T.D.; Herazo, L.S.; Zurita, F.; Betanzo-Torres, E.; Sandoval-Herazo, M. Development of Heliconia latispatha in constructed wetlands, for the treatment of swine/domestic wastewater in tropical climates, with PET as a substitute for the filter medium. Rev. Mex. Ing Quim. 2022, 21, IA2811. [Google Scholar] [CrossRef]
- Herazo, L.C.S.; Alvardo-Lassman, A.; Marín-Muñiz, J.L.; Rodríguez-Miranda, J.P.; Fernández-Lambert, G. A critical review of mineral substrates used as filter media in subsurface constructed wetlands: Costs as a selection criterion. Environ. Technol. Rev. 2023, 12, 251–271. [Google Scholar] [CrossRef]
- Zurita, F.; Belmont, M.A.; De Anda, J.; White, J. Seeking a way to promote the use of constructed wetlands for domestic wastewater treatment in developing countries. Water Sci. Technol. 2011, 63, 654–659. [Google Scholar] [CrossRef]
- Kumar, S.; Dutta, V. Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: An overview. Environ. Sci. Pollut. Res. 2019, 26, 11662–11673. [Google Scholar] [CrossRef]
- García-Ávila, F.; Patiño-Chávez, J.; Zhinín-Chimbo, F.; Donoso-Moscoso, S.; del Pino, L.F.; Avilés-Añazco, A. Performance of Phragmites Australis and Cyperus Papyrus in the treatment of municipal wastewater by vertical flow subsurface constructed wetlands. Int. Soil Water Conserv. Res. 2019, 7, 286–296. [Google Scholar] [CrossRef]
- Wang, H.; Sun, J.; Xu, J.; Sheng, L. Study on clogging mechanisms of constructed wetlands from the perspective of wastewater electrical conductivity change under different substrate conditions. J. Environ. Manag. 2021, 292, 112813. [Google Scholar] [CrossRef] [PubMed]
- Valipour, A.; Ahn, Y.-H. Constructed wetlands as sustainable ecotechnologies in decentralization practices: A review. Environ. Sci. Pollut. Res. 2015, 23, 180–197. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Li, X.; Fu, C.; Shi, T.; Yan, P. Effects of influent nitrogen loads on nitrogen and COD removal in horizontal subsurface flow constructed wetlands during different growth periods of Phragmites australis. Sci. Total Environ. 2018, 635, 1360–1366. [Google Scholar] [CrossRef]
- Galve, J.C.A.; Sundo, M.B.; Camus, D.R.D.; De Padua, V.M.N.; Morales, R.D.F. Series Type Vertical Subsurface Flow Constructed Wetlands for Dairy Farm Wastewater Treatment. Civ. Eng. J. 2021, 7, 292–303. [Google Scholar] [CrossRef]
- Haddis, A.; Van der Bruggen, B.; Smets, I. Constructed wetlands as nature based solutions in removing organic pollutants from wastewater under irregular flow conditions in a tropical climate. Ecohydrol. Hydrobiol. 2020, 20, 38–47. [Google Scholar] [CrossRef]
- Saeed, T.; Haque, I.; Khan, T. Organic matter and nutrients removal in hybrid constructed wetlands: Influence of saturation. Chem. Eng. J. 2019, 371, 154–165. [Google Scholar] [CrossRef]
- Wang, H.X.; Xu, J.L.; Sheng, L.X.; Liu, X.J. A Review of Research on Substrate Materials for Constructed Wetlands. Mater. Sci. Forum 2018, 913, 917–929. [Google Scholar]
- Zidan, A.R.A.; El-Gamal, M.M.; Rashed, A.A.; Eid, M.A.A.E.-H. Wastewater treatment in horizontal subsurface flow constructed wetlands using different media (setup stage). Water Sci. 2015, 29, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Zaboon, B.H.; Al-Abbawy, D.A.; Yaseen, D.A. Improving Wastewater Reclamation Using Constructed Wetlands by Artificial Plastic Biofilm Carriers. J. Ecol. Eng. 2022, 23, 241–253. [Google Scholar] [CrossRef]
- Nasr, M.; Ismail, S. Performance evaluation of sedimentation followed by constructed wetlands for drainage water treatment. Sustain. Environ. Res. 2015, 25, 141–150. [Google Scholar]
- García, J.; Rousseau, D.P.L.; Morató, J.; Lesage, E.; Matamoros, V.; Bayona, J.M. Contaminant Removal Processes in Subsurface-Flow Constructed Wetlands: A Review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 561–661. [Google Scholar] [CrossRef]
- Ghrabi, A.; Bousselmi, L.; Masi, F.; Regelsberger, M. Constructed wetland as a low cost and sustainable solution for wastewater treatment adapted to rural settlements: The Chorfech wastewater treatment pilot plant. Water Sci. Technol. 2011, 63, 3006–3012. [Google Scholar] [CrossRef]
- Ben Rebah, F.; Kantardjieff, A.; Yezza, A.; Jones, J.P. Performance of two combined anaerobic–aerobic biofilters packed with clay or plastic media for the treatment of highly concentrated effluent. Desalination 2010, 253, 141–146. [Google Scholar] [CrossRef]
- Su, J.-J.; Chen, Y.-J.; Chang, Y.-C. A study of a pilot-scale biogas bio-filter system for utilization on pig farms. J. Agric. Sci. 2013, 152, 217–224. [Google Scholar] [CrossRef]
- Muliyadi, M.; Purwanto, P.; Sumiyati, S.; Soeprobowati, T.R. Removal of Pollutants in Wastewater using Plastic-Based Media Biofiltration: A Meta-Analysis. Pollution 2023, 9, 421–432. [Google Scholar]
- Tanner, C.C.; Sukias, J.P. Accumulation of organic solids in gravel-bed constructed wetlands. Water Sci. Technol. 1995, 32, 229–239. [Google Scholar] [CrossRef]
- Kataki, S.; Chatterjee, S.; Vairale, M.G.; Dwivedi, S.K.; Gupta, D.K. Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). J. Environ. Manag. 2021, 283, 111986. [Google Scholar] [CrossRef]
- Cervantes, F.J. Environmental Technologies to Treat Nitrogen Pollution; IWA Publishing: London, UK, 2007. [Google Scholar] [CrossRef]
- Cárdenas Calvachi, G.L.; Sánchez Ortiz, I.A. Nitrógeno en aguas residuales: Orígenes, efectos y mecanismos de remoción para preservar el ambiente y la salud pública. Univ. Salud 2013, 15, 72–88. Available online: https://revistas.udenar.edu.co/index.php/usalud/article/view/375 (accessed on 20 February 2023). (In Spanish).
- Hua, Y.; Peng, L.; Zhang, S.; Heal, K.V.; Zhao, J.; Zhu, D. Effects of plants and temperature on nitrogen removal and microbiology in pilot-scale horizontal subsurface flow constructed wetlands treating domestic wastewater. Ecol. Eng. 2017, 108, 70–77. [Google Scholar] [CrossRef]
- Zhu, H.; Zhou, Q.-W.; Yan, B.-X.; Liang, Y.-X.; Yu, X.-F.; Gerchman, Y.; Cheng, X.-W. Influence of vegetation type and temperature on the performance of constructed wetlands for nutrient removal. Water Sci. Technol. 2017, 77, 829–837. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: De-pendency on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Schwammberger, P.F.; Lucke, T.; Walker, C.; Trueman, S.J. Nutrient uptake by constructed floating wetland plants during the construction phase of an urban residential development. Sci. Total Environ. 2019, 677, 390–403. [Google Scholar] [CrossRef]
- Del Toro Farías, A.; Zurita Martínez, F. Changes in the nitrification-denitrification capacity of pilot-scale partially saturated vertical flow wetlands (with corncob in the free-drainage zone) after two years of operation. Int. J. Phytoremediation 2021, 23, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Torres Bojorges, Á.X.; Hernández Razo, N.A.; Fausto Urquieta, A.A.; Zurita Martínez, F. Evaluación de tres sistemas de humedales híbridos a escala piloto para la remoción de nitrógeno. Rev. Int. Contam. 2017, 33, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Greenway, M. Media for Enhanced Phosphorus Removal from Secondary Wastewater Effluent. In Proceedings of the World Environmental and Water Resources Congress 2016, West Palm Beach, FL, USA, 22–26 May 2016; pp. 408–418. [Google Scholar] [CrossRef] [Green Version]
- Ge, Z.; Feng, C.; Wang, X.; Zhang, J. Seasonal applicability of three vegetation constructed floating treatment wetlands for nutrient removal and harvesting strategy in urban stormwater retention ponds. Int. Biodeterior. Biodegrad. 2016, 112, 80–87. [Google Scholar] [CrossRef] [Green Version]
Serie | Plant | Individuals | Number of Cells | Commercial Value ($ U.S. Dollar) | Investment Cost | Plant Source | Height (cm) |
---|---|---|---|---|---|---|---|
A | Anthurium spp. | 56 | 2 | 12 | $0 | Nearby study area | 5–10 |
B | Canna hybrids | 56 | 2 | 4 | $0 | Nearby study area | 20–30 |
C | Spathiphyllum blandum | 56 | 2 | 10 | $0 | Actopan River Bank | 15–25 |
D | Typha spp. | 56 | 2 | 7 | $0 | Nearby study area | 30–50 |
E | Policultivo | 14 of each species | 2 | $8 | $0 | Nearby study area | 30–50 |
F | Control | No vegetation | 2 | ---- | ---- | ---- | ---- |
Species of Plant | Total Number of Individuals in Monoculture | Average Number of Flowers per Plant in Monoculture | Total Number of Individuals in Polyculture | Average Number of Flowers per Plant in Polyculture |
---|---|---|---|---|
Anturium spp. | 72 | 2 ± 1 | 19 | 3 ± 1 |
Canna hybrids | 209 | 4 ± 2 | 49 | 6 ± 1 |
Spathiphyllum blandum | 104 | 2 ± 1 | 32 | 3 ± 1 |
Thypa spp. | 156 | 1 ± 1 | 56 | 1 ± 1 |
Parameter | Cells Planted with Different Vegetation and the Control Cells | |||||
---|---|---|---|---|---|---|
Canna hybrids | Spathiphyllum blandum | Anturium spp. | Thypa spp. | Polyculture | Control | |
COD | ||||||
IC | 274.65 ± 10.02 | |||||
ECs | 33.79 ± 1.39 | 34.24 ± 1.36 | 34.64 ± 1.31 | 35.62 ± 1.23 | 36.57 ± 1.35 | 51.15 ± 1.95 |
Removal (%) | 87.48 ± 0.53 | 87.27 ± 0.53 | 87.05 ± 0.55 | 86.64 ± 0.55 | 86.40 ± 0.53 | 81.33 ± 0.60 |
BOD5 | ||||||
IC | 116.93 ± 5.94 | |||||
ECs | 21.81 ± 0.67 | 15.35 ± 0.64 | 13.05 ± 0.44 | 13.26 ± 0.43 | 14.03 ± 0.44 | 30.14 ± 0.75 |
Removal (%) | 80.47 ± 0.85 | 86.35 ± 0.61 | 88.47 ± 0.40 | 88.05 ± 0.54 | 87.38 ± 0.56 | 72.86 ± 1.12 |
TSS | ||||||
IC | 137.28 ± 12.08 | |||||
ECs | 50.44 ± 1.78 | 44.39 ± 1.42 | 44.08 ± 0.93 | 42.40 ± 0.99 | 38.26 ± 0.92 | 76.89 ± 4.86 |
Removal (%) | 60.27 ± 1.42 | 64.27 ± 1.53 | 63.92 ± 1.64 | 65.53 ± 1.49 | 69.34 ± 1.13 | 43.68 ± 1.05 |
TP | ||||||
IC | 13.55 ± 0.71 | |||||
ECs | 2.38 ± 0.09 | 2.34 ± 0.09 | 2.18 ± 0.12 | 1.76 ± 0.08 | 1.41 ± 0.07 | 13.01 ± 0.48 |
Removal (%) | 82.41 ± 0.30 | 82.72 ± 0.34 | 84.28 ± 0.59 | 86.99 ± 0.29 | 89.75 ± 0.30 | 3.93 ± 0.12 |
TN | ||||||
IC | 104.54 ± 0.94 | |||||
ECs | 49.52 ± 0.80 | 49.60 ± 0.84 | 49.38 ± 0.93 | 48.75 ± 0.82 | 49.98 ± 0.83 | 72.44 ± 1.86 |
Removal (%) | 52.55 ± 0.82 | 52.39 ± 0.94 | 52.64 ± 0.99 | 53.31 ± 0.79 | 52.04 ± 0.92 | 30.70 ± 1.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandoval Herazo, L.C.; Marín-Muñiz, J.L.; Alvarado-Lassman, A.; Zurita, F.; Marín-Peña, O.; Sandoval-Herazo, M. Full-Scale Constructed Wetlands Planted with Ornamental Species and PET as a Substitute for Filter Media for Municipal Wastewater Treatment: An Experience in a Mexican Rural Community. Water 2023, 15, 2280. https://doi.org/10.3390/w15122280
Sandoval Herazo LC, Marín-Muñiz JL, Alvarado-Lassman A, Zurita F, Marín-Peña O, Sandoval-Herazo M. Full-Scale Constructed Wetlands Planted with Ornamental Species and PET as a Substitute for Filter Media for Municipal Wastewater Treatment: An Experience in a Mexican Rural Community. Water. 2023; 15(12):2280. https://doi.org/10.3390/w15122280
Chicago/Turabian StyleSandoval Herazo, Luis Carlos, José Luis Marín-Muñiz, Alejandro Alvarado-Lassman, Florentina Zurita, Oscar Marín-Peña, and Mayerlin Sandoval-Herazo. 2023. "Full-Scale Constructed Wetlands Planted with Ornamental Species and PET as a Substitute for Filter Media for Municipal Wastewater Treatment: An Experience in a Mexican Rural Community" Water 15, no. 12: 2280. https://doi.org/10.3390/w15122280
APA StyleSandoval Herazo, L. C., Marín-Muñiz, J. L., Alvarado-Lassman, A., Zurita, F., Marín-Peña, O., & Sandoval-Herazo, M. (2023). Full-Scale Constructed Wetlands Planted with Ornamental Species and PET as a Substitute for Filter Media for Municipal Wastewater Treatment: An Experience in a Mexican Rural Community. Water, 15(12), 2280. https://doi.org/10.3390/w15122280