Decentralized Constructed Wetlands for Wastewater Treatment in Rural and Remote Areas of Semi-arid Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pilot Plant Design
2.2. Filling Material
2.3. Cultivation Process
3. Results and Discussion
3.1. Impact of Paulownia on Wastewater Treatment
3.1.1. Efficiency of Biochemical Oxygen Demand Removal
3.1.2. Efficiency of Chemical Oxygen Demand Removal
3.2. Impact of Phragmites Australis on Wastewater Treatment
3.2.1. Efficiency of Biochemical Oxygen Demand Removal
3.2.2. Efficiency of Chemical Oxygen Demand Removal
3.3. Impact of Control Unit on Wastewater Treatment
3.3.1. Efficiency of Biochemical Oxygen Demand Removal
3.3.2. Efficiency of Chemical Oxygen Demand Removal
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment: A Review. Water 2011, 3, 47–71. [Google Scholar]
- Babatunde, A.O.; Zhao, Y.Q.; Zhao, X.H.; Li, X.M. Constructed wetlands for environmental pollution control: A review of developments, research and practice in Ireland. Environ. Sci. Pollut. Res. 2010, 17, 531–551. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Geissen, V.; Gallego-Schmid, A. The potential of constructed wetlands for the removal of pharmaceuticals, personal care products, and endocrine-disrupting chemicals from wastewater. Crit. Rev. Environ. Sci. Technol. 2014, 44, 940–996. [Google Scholar]
- Zhou, H.; Luo, J.; Wang, Y.; Guo, J.; Zhang, H.; Zhang, J. Nutrient removal from synthetic domestic wastewater by Paulownia Tomentosa in horizontal subsurface-flow constructed wetlands. Ecol. Eng. 2019, 127, 311–317. [Google Scholar]
- Liu, X.; Zhang, C.; Zhang, Y.; Guo, J.; Liu, G.; Zhang, Y.; Yin, J. Performance and microbial communities of a hybrid constructed wetland system for the treatment of domestic wastewater. J. Environ. Manag. 2017, 188, 228–236. [Google Scholar]
- Wang, H.; Xie, H.; Peng, X.; Li, F.; Wang, Y.; Liu, X.; Li, G. Growth and nutrient removal performance of Phragmites Australis under different hydrological conditions in a constructed wetland. Water Sci. Technol. 2017, 76, 1296–1304. [Google Scholar]
- Gao, Y.; Li, X.; Li, M.; Chen, Y.; Li, G.; Liao, Y. Nitrogen and phosphorus removal in a constructed wetland with pre-treated sewage: Effects of macrophytes and hydraulic loading rate. Water Sci. Technol. 2016, 74, 2699–2707. [Google Scholar]
- Biswas, S.; Shinde, V.B.; Khairnar, K. Comparative study of different substrates on performance of domestic wastewater treatment. J. Environ. Manag. 2017, 196, 15–23. [Google Scholar]
- Chen, Z.; Chen, Z.; Yu, W. Effects of porous media properties on the removal of organic matter and nitrogen. Water Sci. Technol. 2017, 76, 1305–1312. [Google Scholar]
- Jia, H.; Xiong, Z.; Zhang, Y. Enhanced nitrogen removal and biomass production in a vertical flow constructed wetland with Paulownia for sewage treatment. Sci. Total Environ. 2018, 628–629, 694–701. [Google Scholar]
- Liu, Y.; Zhang, J.; Zhang, Y. Cost-benefit analysis of constructed wetlands for domestic wastewater treatment with Paulownia in China. J. Clean. Prod. 2020, 259, 120827. [Google Scholar]
- Yang, L.; Yu, H. Research progress on wastewater treatment with vertical-flow constructed wetland. J. Environ. Sci. 2019, 76, 368–383. [Google Scholar]
- Li, J.; Xiong, Z.; Zhang, Y. The effects of plant species and influent wastewater characteristics on nitrogen and phosphorus removal. Sci. Total Environ. 2019, 672, 884–891. [Google Scholar]
- Singh, A.K.; Rai, S.P. Performance evaluation of hybrid constructed wetlands for sewage treatment using Phragmites australis and Typha angustifolia. J. Water Process Eng. 2019, 28, 182–189. [Google Scholar]
- Zhang, J.; Liu, Y.; Zhang, Y. Effects of influent characteristics and plant species on the performance of constructed wetlands for domestic wastewater treatment. Sci. Total Environ. 2020, 710, 136232. [Google Scholar]
- Kuschk, P.; Stottmeister, U.; Wießner, A.; Kappelmeyer, U.; Kästner, M.; Bederski, O. Constructed wetlands for contaminated water treatment. Environ. Sci. Pollut. Res. 2008, 15, 8–18. [Google Scholar]
- American Water Works Association. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar]
- Kadlec, R.H.; Knight, R.L. Treatment Wetlands; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Naeem, M.A.; Al-Hamadani YA, J.; Abdulredha, M.M. The effect of gravel-sand media grading on hydraulic conductivity and COD removal efficiency. J. Water Reuse Desalination 2019, 9, 474–482. [Google Scholar]
- Aksu, S.; Sarı, S.; Çakmakcı, M.; Çetinkaya, A.Y.; Yılmaz, F. Performance evaluation of a vertical flow constructed wetland planted with Paulownia tomentosa for the treatment of domestic wastewater. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2017, 75, 2721–2731. [Google Scholar] [CrossRef]
- Wu, Y.; Fan, Z.; Wang, J.; Liu, Y.; Jiang, W.; Guo, J. Treatment of landfill leachate by vertical flow constructed wetland planted with Paulownia fortunei. Environ. Technol. 2019, 40, 2514–2524. [Google Scholar] [CrossRef]
- Li, X.; Xing, L.; Xie, H.; Ni, J. Vertical flow constructed wetland planted with Paulownia hybrid for treating synthetic wastewater: Performance and microbial community diversity. Bioresour. Technol. 2018, 268, 578–585. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, J.; Wu, Y.; Peng, X.; Dong, R. Effects of the plant species, hydraulic loading rate and wastewater strength on the performance. J. Environ. Sci. 2017, 59, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Lei, Z.; Wu, Y.; Wu, X.; Cao, Y. Enhanced performance of a horizontal subsurface flow constructed wetland system for wastewater treatment using Paulownia tomentosa. J. Clean. Prod. 2018, 198, 1539–1548. [Google Scholar]
- Wu, S.; Li, X.; Yang, S.; Zhang, X.; Li, G.; Li, D. Domestic wastewater treatment in rural areas of China: A review. Environ. Sci. Pollut. Res. 2018, 25, 16687–16698. [Google Scholar]
- Liu, X.; Xu, J.; Wei, Y.; Liu, Y. Application of constructed wetland technology in treatment of livestock wastewater. Environ. Sci. Pollut. Res. 2017, 24, 18408–18417. [Google Scholar]
- Singh, S.; Rai, J.P.N.; Singh, R. A sustainable approach for wastewater treatment. In Sustainable Wastewater Treatment Technologies; Springer: Berlin/Heidelberg, Germany, 2021; pp. 183–209. [Google Scholar]
- Li, L.; Wang, X.; Li, H.; Li, C.; Li, Y.; Zhang, H.; Li, Z. Phragmites Australis based constructed wetland for domestic wastewater treatment in a rural area. J. Environ. Manag. 2018, 213, 282–290. [Google Scholar]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment: History, Design Principles, Performance, and Case Studies; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Ji, G.; Li, W.; Li, S.; Xu, X.; Li, X.; Zhang, J.; Liu, Y. Influence of hydraulic loading rate and plant species on COD and BOD removal in a constructed wetland. J. Environ. Manag. 2018, 222, 291–298. [Google Scholar]
- ElBastamy, E.; Ibrahim, L.A.; Ghandour, A.; Zelenakova, M.; Vranayova, Z.; Abu-Hashim, M. Efficiency of Natural Clay Mineral Adsorbent Filtration Systems in Wastewater Treatment for Potential Irrigation Purposes. Sustainability 2021, 13, 5738. [Google Scholar] [CrossRef]
- Rahman, M.M.; Eshaque, M.A.; Rahman, M.M.; Rahman, M.M. Efficiency of unplanted constructed wetland system for wastewater treatment. Environ. Sci. Pollut. Res. 2020, 27, 5299–5309. [Google Scholar]
- Gao, S.; Xu, D.; Sun, X.; Zeng, C.; Chen, X.; Liu, X. Effects of vegetation on microbial communities in constructed wetlands for wastewater treatment. Sci. Total Environ. 2019, 694, 133590. [Google Scholar]
- Korkusuz, E.A.; Ayaz, S.C.; Alkan Uçkun, N.; Tünay, O. Domestic wastewater treatment with (VFCWs): A review. Environ. Sci. Pollut. Res. 2019, 26, 25768–25784. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Zhang, Y.; Li, Y.; Dong, R. Performance and microbial community of for livestock wastewater treatment: Effect of hydraulic loading rate and unplanted period. Bioresour. Technol. 2019, 271, 56–64. [Google Scholar] [CrossRef] [Green Version]
Sample | D10 (mm) | D30 (mm) | D60 (mm) | Cu | Cc |
---|---|---|---|---|---|
Pure sand | 0.19 | 0.33 | 0.70 | 3.68 | 0.82 |
Pure gravel | 1.38 | 2.23 | 3.14 | 2.28 | 1.15 |
MIXTURE SAMPLE 1 (50% sand + 50% gravel) | 0.24 | 0.67 | 1.97 | 8.08 | 0.95 |
MIXTURE SAMPLE 2 (60% sand + 40% gravel) | 0.22 | 0.51 | 1.43 | 6.48 | 0.82 |
MIXTURE SAMPLE 3 (40% sand + 60% gravel) | 0.28 | 0.94 | 2.52 | 9.12 | 1.26 |
MIXTURE SAMPLE 4 (15% sand + 85% gravel) | 0.78 | 1.79 | 2.97 | 3.79 | 1.37 |
MIXTURE SAMPLE 5 (10% sand + 90% gravel) | 0.86 | 1.68 | 2.86 | 3.31 | 1.15 |
Parameter | Unit | Min. | Max. | Average |
---|---|---|---|---|
COD | mg/L | 221.2 | 559.6 | 410.9 |
BOD5 | mg/L | 118.8 | 433.6 | 229.8 |
pH | 6.8 | 7.7 | 7.3 | |
Temp. | °C | 21 | 32 | 27.3 |
TS | mg/L | 855 | 1145 | 1011.9 |
TVS | mg/L | 280 | 705 | 434.0 |
TFS | mg/L | 430 | 705 | 577.9 |
TSS | mg/L | 75 | 217.5 | 180.9 |
Ammonia-N | mg/L | 17.3 | 32.4 | 23.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hendy, I.; Zelenakova, M.; Pietrucha-Urbanik, K.; Salama, Y.; Abu-hashim, M. Decentralized Constructed Wetlands for Wastewater Treatment in Rural and Remote Areas of Semi-arid Regions. Water 2023, 15, 2281. https://doi.org/10.3390/w15122281
Hendy I, Zelenakova M, Pietrucha-Urbanik K, Salama Y, Abu-hashim M. Decentralized Constructed Wetlands for Wastewater Treatment in Rural and Remote Areas of Semi-arid Regions. Water. 2023; 15(12):2281. https://doi.org/10.3390/w15122281
Chicago/Turabian StyleHendy, Ibrahim, Martina Zelenakova, Katarzyna Pietrucha-Urbanik, Yasser Salama, and Mohamed Abu-hashim. 2023. "Decentralized Constructed Wetlands for Wastewater Treatment in Rural and Remote Areas of Semi-arid Regions" Water 15, no. 12: 2281. https://doi.org/10.3390/w15122281
APA StyleHendy, I., Zelenakova, M., Pietrucha-Urbanik, K., Salama, Y., & Abu-hashim, M. (2023). Decentralized Constructed Wetlands for Wastewater Treatment in Rural and Remote Areas of Semi-arid Regions. Water, 15(12), 2281. https://doi.org/10.3390/w15122281