Analysis of the Asymmetric Characteristic of Extreme Rainfall Erosivity in 8 Provinces of Southern China during 1961–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Source
2.2. Methodology
2.2.1. Rainfall Erosivity Model
2.2.2. Calculation of the Asymmetric Change Index in Rainfall Erosivity
2.2.3. Trend and Correlation Analysis
3. Results
3.1. Asymmetric Statistics of Rainfall Erosivity
3.2. Spatial Characteristics of the Rainfall Erosivity Asymmetric Change Index
3.3. Trend of the Rainfall Erosivity Asymmetric Change Index at Different Time Scales
3.3.1. Monthly Variation Trend of the Rainfall Erosivity ACI
3.3.2. Annual Variation Trend of the Rainfall Erosivity ACI
3.3.3. Trend Analysis of the ACIs in Provinces
3.4. Correlation Analysis of the ACI
3.4.1. Correlation Analysis between the ACI and Associate Elements
3.4.2. Correlation Analysis of the Monthly ACI Value
4. Discussion
4.1. Comparison of the Influences of Extreme Rainfall Erosion
4.2. Possible Influence of ENSO and Tropical Cyclones on Extreme Rainfall Erosion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pennock, D. Soil Erosion: The Greatest Challenge to Sustainable Soil Management; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; p. 100. [Google Scholar]
- Pablo, A.; Garcia-Chevesich, P.H.D. Erosion Control and Land Restoration; Outskirts Press: Parker, CO, USA, 2016. [Google Scholar]
- Lukić, T.; Lukić, A.; Basarin, B.; Ponjiger, T.M.; Blagojević, D.; Mesaroš, M.; Milanović, M.; Gavrilov, M.; Pavić, D.; Zorn, M.; et al. Rainfall erosivity and extreme precipitation in the Pannonian basin. Open Geosci. 2019, 11, 664–681. [Google Scholar] [CrossRef]
- Goebes, P.; Seitz, S.; Geißler, C.; Lassu, T.; Peters, P.; Seeger, M.; Nadrowski, K.; Scholten, T. Momentum or kinetic energy—How do substrate properties influence the calculation of rainfall erosivity? J. Hydrol. 2014, 517, 310–316. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Rainfall energy and its relationship to soil loss. Trans. Am. Geophys. Union 1958, 39, 285–291. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Mccool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); USDA: Washington, DC, USA, 1997. [Google Scholar]
- Li, Y.L.; He, Y.; Zhang, Y.R.; Jia, L.P. Spatiotemporal evolutionary analysis of rainfall erosivity during 1901–2017 in Beijing, China. Environ. Sci. Pollut. Res. 2022, 29, 2510–2522. [Google Scholar] [CrossRef] [PubMed]
- Brychta, J.; Podhrázská, J.; Šťastná, M. Review of methods of spatio-temporal evaluation of rainfall erosivity and their correct application. Catena 2022, 217, 106454. [Google Scholar] [CrossRef]
- Verstraeten, G.; Poesen, J.; Demarée, G.; Salles, C. Long-term (105 years) variability in rain erosivity as derived from 10-min rainfall depth data for Ukkel (Brussels, Belgium): Implications for assessing soil erosion rates. J. Geophys. Res. 2006, 111, D22109. [Google Scholar] [CrossRef]
- Hanel, M.; Máca, P.; Bašta, P.; Vlnas, R.; Pech, P. The rainfall erosivity factor in the Czech Republic and its uncertainty. Hydrol. Earth Syst. Sci. 2016, 20, 4307–4322. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.Q.; Nearing, M.A.; Borrelli, P.; Xue, X.C. Rainfall Erosivity: An Overview of Methodologies and Applications. Vadose Zone J. 2017, 16, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Yin, S.Q.; Liu, B.Y.; Nearing, M.A.; Zhao, Y. Models for estimating daily rainfall erosivity in China. J. Hydrol. 2016, 535, 547–558. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Yu, B. Validation of Rainfall Erosivity Estimators for Mainland China. Trans. ASABE 2015, 58, 61–71. [Google Scholar] [CrossRef]
- Zhu, D.Y.; Xiong, K.N.; Xiao, H. Multi-time scale variability of rainfall erosivity and erosivity density in the karst region of southern China, 1960–2017. Catena 2021, 197, 104977. [Google Scholar] [CrossRef]
- Chen, Z.F.; Shi, D.M.; He, W.; Xia, J.R.; Jin, H.F.; Lou, Y.B. Spatial-temporal Distribution and Trend of rainfall Erosivity in Yunnan Province. Trans. CSAM 2017, 48, 209–219. [Google Scholar]
- Oliveira, P.T.S.; Wendland, E.; Nearing, M.A. Rainfall erosivity in Brazil: A review. Catena 2013, 100, 139–147. [Google Scholar] [CrossRef]
- Qin, W.; Guo, Q.K.; Zuo, C.Q.; Shan, Z.J.; Ma, L.; Sun, G. Spatial distribution and temporal trends of rainfall erosivity in mainland China for 1951–2010. Catena 2016, 147, 177–186. [Google Scholar] [CrossRef]
- Ballabio, C.; Borrelli, P.; Spinoni, J.; Meusburger, K.; Michaelides, S.; Beguería, S.; Klik, A.; Petan, S.; Janeček, M.; Olsen, P.; et al. Mapping monthly rainfall erosivity in Europe. Sci. Total Environ. 2017, 579, 1298–1315. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.Y.; Kim, T.; Heo, J.H.; Lee, J.H. Spatial and temporal variations in rainfall erosivity and erosivity density in South Korea. Catena 2019, 176, 125–144. [Google Scholar] [CrossRef]
- de Mello, C.R.; Alves, G.J.; Beskow, S.; Norton, L.D. Daily rainfall erosivity as an indicator for natural disasters: Assessment in mountainous regions of southeastern Brazil. Nat. Hazards 2020, 103, 947–966. [Google Scholar] [CrossRef]
- Riquetti, N.B.; Mello, C.R.; Beskow, S.; Viola, M.R. Rainfall erosivity in South America: Current patterns and future perspectives. Sci. Total Environ. 2020, 724, 138315. [Google Scholar] [CrossRef] [PubMed]
- Yue, T.Y.; Yin, S.Q.; Xie, Y.; Yu, B.F.; Liu, B.Y. Rainfall erosivity mapping over mainland China based on high-density hourly rainfall records. Earth Syst. Sci. Data 2022, 14, 665–682. [Google Scholar] [CrossRef]
- Yang, F.B.; Lu, C.H. Spatiotemporal variation and trends in rainfall erosivity in China’s dryland region during 1961–2012. Catena 2015, 133, 362–372. [Google Scholar] [CrossRef]
- Gao, G.; Yin, S.Q.; Chen, T.; Huang, D.P.; Wang, W.T. Spatiotemporal variation and cause analysis of rainfall erosivity in the Yangtze River Basin of China. Trans. CSAE 2022, 38, 84–92. [Google Scholar]
- Xu, Z.H.; Pan, B.; Han, M.; Zhu, J.Q.; Tian, L.X. Spatial–temporal distribution of rainfall erosivity, erosivity density and correlation with El Niño–Southern Oscillation in the Huaihe River Basin, China. Ecol. Inform. 2019, 52, 14–25. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K. Spatio-temporal analysis of rainfall erosivity and erosivity density in Greece. Catena 2016, 137, 161–172. [Google Scholar] [CrossRef]
- Chen, S.F.; Tian, G.Z.; Li, H.F.; Zhang, Q.J.; Bai, Y.H.; Wang, L.Y. Impacts of TyphoonMangosteenNo.1822 on Rainfall Erosivity in Guangdong Province. J. Soil Water Conserv. 2019, 39, 231–236. [Google Scholar] [CrossRef]
- Lu, X.Q.; Yu, H.; Ying, M.; Zhao, B.K.; Zhang, S.; Lin, L.M.; Bai, L.N.; Wan, R.J. Western North Pacific Tropical Cyclone Database Created by the China Meteorological Administration. Adv. Atmos. Sci. 2021, 38, 690–699. [Google Scholar] [CrossRef]
- Yu, B.; Rosewell, C.J. A Robust Estimate of the R-Factor for the Universal Soil Loss Equation. Trans. ASABE 1996, 39, 559–561. [Google Scholar] [CrossRef]
- He, Y.L. The Mechanism of the Seasonal Asymmetric Warming over Mid-High Latitude of Northern Hemisphere. Master’s Thesis, Lanzhou University, Lanzhou, China, 2017. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Xu, X.M.; Lyu, D.; Lei, X.J.; Huang, T.; Li, Y.L.; Yi, H.J.; Guo, J.W.; He, L.; He, J.; Yang, X.H.; et al. Variability of extreme precipitation and rainfall erosivity and their attenuated effects on sediment delivery from 1957 to 2018 on the Chinese Loess Plateau. J. Soils Sediments 2021, 21, 3933–3947. [Google Scholar] [CrossRef]
- Wang, W.; Yin, S.; Gao, G.; Papalexiou, S.M.; Wang, Z. Increasing trends in rainfall erosivity in the Yellow River basin from 1971 to 2020. J. Hydrol. 2022, 610, 127851. [Google Scholar] [CrossRef]
- Manders, E.M.M.; Verbeek, F.J.; Aten, J.A. Measurement of co-localization of objects in dual-colour confocal images. J. Microsc. 1993, 169, 375–382. [Google Scholar] [CrossRef]
- Chang, Y.M.; Lei, H.M.; Zhou, F.; Yang, D.W. Spatial and temporal variations of rainfall erosivity in the middle Yellow River Basin based on hourly rainfall data. Catena 2022, 216, 106406. [Google Scholar] [CrossRef]
- Bezak, N.; Mikoš, M.; Borrelli, P.; Liakos, L.; Panagos, P. An in-depth statistical analysis of the rainstorms erosivity in Europe. Catena 2021, 206, 105577. [Google Scholar] [CrossRef]
- Martínez-Casasnovas, J.A.; Ramos, M.C.; Ribes-Dasi, M. Soil erosion caused by extreme rainfall events: Mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma 2002, 105, 125–140. [Google Scholar] [CrossRef]
- Cerdà, A.; Keesstra, S.D.; Rodrigo-Comino, J.; Novara, A.; Pereira, P.; Brevik, E.; Giménez-Morera, A.; Fernández-Raga, M.; Pulido, M.; di Prima, S.; et al. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations. J. Environ. Manag. 2017, 202, 268–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Working Group I Contribution to the Sixth Assessment Report (AR6), Climate Change 2021: The Physical Science Basis; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Zhang, Q.; Li, J.F.; Singh, V.P.; Xu, C.Y.; Deng, J.Y. Influence of ENSO on precipitation in the East River basin, south China. J. Geophys. Res. Atmos. 2013, 118, 2207–2219. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Szwed, M.; Pińskwar, I. Climate Variability and Floods—A Global Review. Water 2019, 11, 1399. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Mcphaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.G.; Santoso, A.; et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Chen, S.F.; Zha, X. Effects of the ENSO on rainfall erosivity in the Fujian Province of southeast China. Sci. Total Environ. 2018, 621, 1378–1388. [Google Scholar] [CrossRef]
- Liu, S.Y.; Huang, S.Z.; Xie, Y.Y.; Leng, G.Y.; Huang, Q.; Wang, L.; Xue, Q. Spatial-temporal changes of rainfall erosivity in the loess plateau, China: Changing patterns, causes and implications. Catena 2018, 166, 279–289. [Google Scholar] [CrossRef]
- Zhu, D.Y.; Xiong, K.N.; Xiao, H.; Gu, X.P. Variation characteristics of rainfall erosivity in Guizhou Province and the correlation with the El Niño Southern Oscillation. Sci. Total Environ. 2019, 691, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.C.; Ma, J.S.; Wang, W. A review of studies on the influence of ENSO events on the climate in China. Sci. Agric. Sin. 2005, 25, 212–220. [Google Scholar]
- Nanko, K.; Moskalski, S.M.; Torres, R. Rainfall erosivity–intensity relationships for normal rainfall events an a tropical cyclone on the US southeast coast. J. Hydrol. 2016, 534, 440–450. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.Y.; Yu, H.; Ming, X.; Lei, X.T.; Zeng, F. A simplified index to assess the combined impact of tropical cyclone precipitation and wind on China. Front. Earth Sci. 2019, 13, 672–681. [Google Scholar] [CrossRef]
- Tong, X.W.; Brandt, M.; Yue, Y.M.; Horion, S.; Wang, K.L.; Keersmaecker, W.D.; Tian, F.; Schurgers, G.; Xiao, X.M.; Luo, Y.Q.; et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [Google Scholar] [CrossRef]
- Xiao, H.; Guo, P.; Zhang, Q.H.; Hu, H.; Hong, H.; Zhang, L.; Yang, Y.S.; Xia, Z.Y.; Li, M.Y.; Kang, H.L.; et al. Variation in soil properties and its influence on the dynamic change of soil. Catena 2022, 213, 106141. [Google Scholar] [CrossRef]
Month | Moderate Rainfall Erosivity ACI | Heavy Rainfall Erosivity ACI | Torrential Erosivity ACI | Rainstorm Erosivity ACI |
---|---|---|---|---|
Jan | 126.50 ** | 66.04 ** | 7.66 ** | 4.71 |
Feb | −30.36 | 23.52 | 1.22 | −0.05 |
Mar | 116.62 ** | 56.02 ** | 13.63 * | 15.99 ** |
Apr | −199.05 ** | −41.67 * | −15.38 | −56.06 |
May | −84.41 | −8.82 | −18.51 | 41.25 |
Jun | −34.51 | 16.26 | 87.01 | 433.95 ** |
Jul | −9.42 | 11.34 | 65.81 | 226.15 |
Aug | −150.59 ** | −24.48 | −81.94 | 8.35 |
Sept | −109.13 * | −6.17 | 11.44 | −87.61 |
Oct | −134.11 * | −33.60 * | −24.65 | −29.17 |
Nov | −59.57 | −4.37 | 8.79 | 9.86 |
Dec | −18.63 | 5.07 | 3.69 | 1.77 |
Provinces | Moderate Rainfall Erosivity ACI | Heavy Rainfall Erosivity ACI | Torrential Erosivity ACI | Rainstorm Erosivity ACI |
---|---|---|---|---|
GD | 17.46 | 48.47 | 49.85 | 91.01 |
GX | −59.18 | 22.62 | 19.08 | 60.63 |
GZ | −196.52 ** | −25.54 | −6.61 * | 67.90 |
HB | −85.19 | 3.74 | −24.66 | 77.03 |
HN | −78.40 | 23.50 | 69.08 | 230.06 ** |
SC | −34.65 | −8.70 | −14.76 | 30.14 |
YN | −125.38 ** | −0.80 | −9.82 | 2.80 |
CQ | −24.83 | −4.15 | −23.38 | 9.59 |
Heavy Rainfall Erosivity ACI | Torrential Erosivity ACI | Rainstorm Erosivity ACI | Erosive Rainfall | Rainfall Erosivity | Erosive Rainfall Days | |
---|---|---|---|---|---|---|
Moderate rainfall erosivity ACI | 0.74 *** | 0.46 *** | 0.24 * | 0.78 *** | 0.56 *** | 0.92 *** |
Heavy rainfall erosivity ACI | 0.64 *** | 0.51 *** | 0.89 *** | 0.75 *** | 0.88 *** | |
Torrential erosivity ACI | 0.73 *** | 0.85 *** | 0.93 *** | 0.15 *** | ||
Rainstorm erosivity ACI | 0.67 *** | 0.87 *** | 0.48 *** | |||
Erosive rainfall | 0.93 *** | 0.96 *** | ||||
Rainfall erosivity | 0.80 *** |
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Moderate rainfall erosivity ACI | Erosive rainfall days | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Erosive rainfall | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 | |
Rainfall erosivity | 0.99 | 1.00 | 0.99 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | 1.00 | 0.99 | |
Heavy rainfall erosivity ACI | Erosive rainfall days | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 1.00 | 1.00 |
Erosive rainfall | 1.00 | 1.00 | 0.99 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 1.00 | 1.00 | |
Rainfall erosivity | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 0.98 | 0.97 | 0.99 | 0.99 | |
Torrential erosivity ACI | Erosive rainfall days | 0.99 | 0.99 | 0.95 | 0.97 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.97 | 0.96 | 0.97 |
Erosive rainfall | 0.98 | 0.99 | 0.96 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.97 | 0.98 | |
Rainfall erosivity | 0.97 | 0.99 | 0.98 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.99 | |
Rainstorm erosivity ACI | Erosive rainfall days | 0.98 | 1.00 | 0.98 | 0.90 | 0.88 | 0.94 | 0.95 | 0.96 | 0.96 | 0.96 | 0.83 | 0.99 |
Erosive rainfall | 0.99 | 1.00 | 0.99 | 0.96 | 0.96 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 0.94 | 0.99 | |
Rainfall erosivity | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, D.; Cao, Z.; Zhao, Y.; Chang, H.; Yang, Q.; Xiao, H. Analysis of the Asymmetric Characteristic of Extreme Rainfall Erosivity in 8 Provinces of Southern China during 1961–2020. Water 2023, 15, 2408. https://doi.org/10.3390/w15132408
Zhu D, Cao Z, Zhao Y, Chang H, Yang Q, Xiao H. Analysis of the Asymmetric Characteristic of Extreme Rainfall Erosivity in 8 Provinces of Southern China during 1961–2020. Water. 2023; 15(13):2408. https://doi.org/10.3390/w15132408
Chicago/Turabian StyleZhu, Dayun, Zhen Cao, Yingshan Zhao, Huanhuan Chang, Qian Yang, and Hua Xiao. 2023. "Analysis of the Asymmetric Characteristic of Extreme Rainfall Erosivity in 8 Provinces of Southern China during 1961–2020" Water 15, no. 13: 2408. https://doi.org/10.3390/w15132408
APA StyleZhu, D., Cao, Z., Zhao, Y., Chang, H., Yang, Q., & Xiao, H. (2023). Analysis of the Asymmetric Characteristic of Extreme Rainfall Erosivity in 8 Provinces of Southern China during 1961–2020. Water, 15(13), 2408. https://doi.org/10.3390/w15132408