Directing Shallow-Water Waves Using Fixed Varying Bathymetry Designed by Recurrent Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computation of RNN
2.2. Equations of Shallow-Water Waves
2.3. Wave-Equivalent RNN Model
2.3.1. Recurrent Update Equation
2.3.2. Discretized Wave Field
2.3.3. Inputs and Outputs
2.4. Training Setups
2.4.1. Initial Conditions and Training Target
2.4.2. Loss Function and Optimization
2.4.3. Model and Training Parameters
2.5. Workflow
3. Results and Discussion
3.1. Reflection and Refraction
3.2. Evolution of Bathymetry
3.3. Limitations and CFD Verifications
3.3.1. Limitations of the Proposed Method
3.3.2. CFD Numerical Wave Tank Verifications
4. Conclusions
- (1)
- Shallow-water waves can be effectively directed using varying bathymetry, in which Bragg reflection and refraction effects play important roles.
- (2)
- Reflection generally offers better wave-focusing results than refraction.
- (3)
- The mild-slope equation RNN model provides closer results to CFD simulations because the slopes of bathymetry are taken into account, compared to the simplified model.
- (4)
- The equivalence between the dynamics of wave systems and the computation of RNN models offers a promising basis to develop intelligent machine learning tools for solving engineering problems.
- (1)
- More complicated equations of a shallow-water wave system can be applied to develop more accurate equivalent RNN models to improve real-world efficacy. For example, a Boussinesq-type wave model including the wave breaking and wave-induced current formulations can be applied for hydrodynamic modeling.
- (2)
- A sediment transport module can be added into the wave system to enable morphodynamic modeling in the RNN, such that the bathymetry outside the trainable area (construction zone) can interact and evolve with wave motions.
- (3)
- The output of the RNN model and the corresponding training target can be revised to serve various engineering purposes. For instance, the velocity or sediment concentration in the wave field can be defined as the output for the study of shoreline erosion.
- (4)
- Irregular incident waves can be easily implemented without modification to the proposed approach.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nordstrom, K.F. Living with shore protection structures: A review. Estuar. Coast. Shelf Sci. 2014, 150, 11–23. [Google Scholar] [CrossRef]
- Schoonees, T.; Mancheño, A.G.; Scheres, B.; Bouma, T.J.; Silva, R.; Schlurmann, T.; Schüttrumpf, H. Hard structures for coastal protection, towards greener designs. Estuaries Coasts 2019, 42, 1709–1729. [Google Scholar] [CrossRef]
- Morris, R.L.; Konlechner, T.M.; Ghisalberti, M.; Swearer, S.E. From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defence. Glob. Change Biol. 2018, 24, 1827–1842. [Google Scholar] [CrossRef] [PubMed]
- Amos, D.; Akib, S. A review of coastal protection using artificial and natural countermeasures—Mangrove vegetation and polymers. Eng 2023, 4, 941–953. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Turner, I.L. Shoreline response to submerged structures: A review. Coast. Eng. 2006, 53, 65–79. [Google Scholar] [CrossRef]
- Na’im, I.I.; Shahrizal, A.R.M.; Safari, M.D. A Short Review of Submerged Breakwaters. MATEC Web Conf. 2018, 203, 01005. [Google Scholar]
- Saengsupavanich, C.; Ariffin, E.H.; Yun, L.S.; Pereira, D.A. Environmental impact of submerged and emerged breakwaters. Heliyon 2022, 8, e12626. [Google Scholar] [CrossRef]
- Bheeroo, V.A.; Yeh, H. Standing longwave formations in reef-lagoon bathymetries. Coast. Eng. 2021, 168, 103949. [Google Scholar] [CrossRef]
- Bheeroo, V.A.; Yeh, H. Long-wave response to laterally periodic reef-lagoon bathymetry. Coast. Eng. 2022, 178, 104218. [Google Scholar] [CrossRef]
- Pan, Y.; Tong, H.; Wei, D.; Xiao, W.; Xue, D. Review of structure types and new development prospects of artificial reefs in China. Front. Mar. Sci. 2022, 9, 853452. [Google Scholar] [CrossRef]
- Li, C.Y.; Shih, R.S.; Weng, W.K. Visualization investigation of energy dissipation induced by eddy currents for a solitary-like wave passing over submerged breakwater sets. J. Mar. Sci. Eng. 2020, 8, 834. [Google Scholar] [CrossRef]
- Patil, S.B.; Karmakar, D. Performance evaluation of submerged breakwater using multi-domain boundary element method. Appl. Ocean Res. 2021, 114, 102760. [Google Scholar] [CrossRef]
- Xue, S.; Xu, Y.; Xu, G.; Wang, J.; Chen, Q. A novel tri-semicircle shaped submerged breakwater for mitigating wave loads on coastal bridges part I: Efficacy. Ocean Eng. 2022, 245, 110462. [Google Scholar] [CrossRef]
- Jafarzadeh, E.; Bohluly, A.; Kabiri-Samani, A.; Mansourzadeh, S. A study on the performance of circular and rectangular submerged breakwaters using nun-uniform FGVT method. Coast. Eng. J. 2023, 65, 2170688. [Google Scholar] [CrossRef]
- Atras, M.F.; Lalang, R.; Magdalena, I. Optimal sinusoidal submerged breakwater for coastal protection. AIP Conf. Proc. 2021, 2423, 020022. [Google Scholar]
- Brancasi, A.; Leone, E.; Francone, A.; Scaravaglione, G.; Tomasicchio, G.R. On formulae for wave transmission at submerged and low-crested breakwaters. J. Mar. Sci. Eng. 2022, 10, 1986. [Google Scholar] [CrossRef]
- Gallerano, F.; Cannata, G.; Palleschi, F. Hydrodynamic effects produced by submerged breakwaters in a coastal area with a curvilinear shoreline. J. Mar. Sci. Eng. 2019, 7, 337. [Google Scholar] [CrossRef] [Green Version]
- Kuang, C.; Ma, Y.; Han, X.; Pan, S.; Zhu, L. Experimental observation on beach evolution process with presence of artificial submerged sand bar and reef. J. Mar. Sci. Eng. 2020, 8, 1019. [Google Scholar] [CrossRef]
- Ranasinghe, R.S. Modelling of waves and wave-induced currents in the vicinity of submerged structures under regular waves using nonlinear wave-current models. Ocean Eng. 2022, 247, 110707. [Google Scholar] [CrossRef]
- Bouvier, C.; Castelle, B.; Balouin, Y. Modeling the impact of the implementation of a submerged structure on surf zone sandbar dynamics. J. Mar. Sci. Eng. 2019, 7, 117. [Google Scholar] [CrossRef] [Green Version]
- Vieira, B.F.V.; Pinho, J.L.S.; Barros, J.A.O.; Carmo, J.S. Hydrodynamics and morphodynamics performance assessment of three coastal protection structures. J. Mar. Sci. Eng. 2020, 8, 175. [Google Scholar] [CrossRef] [Green Version]
- da Silva, R.F.; Hansen, J.E.; Rijnsdorp, D.P.; Lowe, R.J.; Buckley, M.L. The influence of submerged coastal structures on nearshore flows and wave runup. Coast. Eng. 2022, 177, 104194. [Google Scholar] [CrossRef]
- Couston, L.-A.; Jalali, M.A.; Alam, M.-R. Shore protection by oblique seabed bars. J. Fluid Mech. 2017, 815, 481–510. [Google Scholar] [CrossRef] [Green Version]
- Fox, B.N.; Gomes, R.P.F.; Gato, L.M.C. Analysis of oscillating-water-column wave energy converter configurations for integration into caisson breakwaters. Appl. Energy 2021, 295, 117023. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, P.; Cheng, P. Hydrodynamic performance of an asymmetry OWC device mounted on a box-type breakwater. Front. Mar. Sci. 2021, 8, 677030. [Google Scholar] [CrossRef]
- Zhou, B.; Zheng, Z.; Jin, P.; Wang, L.; Zang, J. Wave attenuation and focusing performance of parallel twin parabolic arc floating breakwaters. Energy 2022, 260, 125164. [Google Scholar] [CrossRef]
- Abanades, J.; Flor-Blanco, G.; Flor, G.; Iglesias, G. Dual wave farms for energy production and coastal protection. Ocean Coast. Manag. 2018, 160, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Wang, C.; Yao, Y.; Higuera, P. Numerical simulation of an oscillating water column device installed over a submerged breakwater. J. Mar. Sci. Technol. 2019, 25, 258–271. [Google Scholar] [CrossRef]
- Zhang, H.; Tao, A.; Tu, J.; Su, J.; Xie, S. The focusing waves induced by Bragg resonance with V-shaped undulating bottom. J. Mar. Sci. Eng. 2021, 9, 708. [Google Scholar] [CrossRef]
- Li, B. An evolution equation for water waves. Coast. Eng. 1994, 23, 227–242. [Google Scholar] [CrossRef]
- Chamberlain, P.G.; Porter, D. The modified mild-slope equation. J. Fluid Mech. 1995, 291, 393–407. [Google Scholar] [CrossRef]
- Porter, D.; Staziker, D.J. Extensions of the mild-slope equation. J. Fluid Mech. 1995, 300, 367–382. [Google Scholar] [CrossRef]
- Suh, K.-D.; Lee, C.; Park, W.S. Time-dependent equations for wave propagation on rapidly varying topography. Coast. Eng. 1997, 32, 91–117. [Google Scholar] [CrossRef]
- Lee, C.; Kim, G.; Suh, K.-D. Extended mild-slope equation for random waves. Coast. Eng. 2003, 48, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Schäffer, H.A.; Madsen, P.A. Further enhancements of Boussinesq-type equations. Coast. Eng. 1995, 26, 1–14. [Google Scholar] [CrossRef]
- Beji, S.; Nadaoka, K. A formal derivation and numerical modelling of the improved Boussinesq equations for varying depth. Ocean Eng. 1996, 23, 604–691. [Google Scholar] [CrossRef]
- Madsen, P.A.; Schäffer, H.A. Higher-order Boussinesq-type equations for surface gravity waves—Derivation and analysis. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 1998, 356, 3123–3184. [Google Scholar] [CrossRef]
- Zou, Z.L. High order Boussinesq equations. Ocean Eng. 1999, 26, 767–792. [Google Scholar] [CrossRef]
- Zou, Z.L. A new form of higher order Boussinesq equations. Ocean Eng. 2000, 27, 557–575. [Google Scholar] [CrossRef]
- Gobbi, M.F.; Kirby, J.T.; Wei, G.E. A fully nonlinear Boussinesq model for surface waves. Part 2. Extension to O(kh)4. J. Fluid Mech. 2000, 405, 181–210. [Google Scholar] [CrossRef] [Green Version]
- Madsen, P.A.; Fuhrman, D.R.; Wang, B. A Boussinesq-type model for fully nonlinear waves interacting with a rapidly varying bathymetry. Coast. Eng. 2006, 53, 487–504. [Google Scholar] [CrossRef]
- Gao, J.; Zhou, X.; Zhou, L.; Zang, J.; Chen, H. Numerical investigation on effects of fringing reefs on low-frequency oscillations within a harbor. Ocean Eng. 2019, 172, 86–95. [Google Scholar] [CrossRef]
- Gao, J.; Ma, X.; Dong, G.; Zang, J.; Zhou, X.; Zhou, L. Topographic influences on transient harbor oscillations excited by N-waves. Ocean Eng. 2019, 192, 106548. [Google Scholar] [CrossRef]
- Yu, J.; Howard, L.N. On higher order Bragg resonance of water waves by bottom corrugations. J. Fluid Mech. 2010, 659, 484–504. [Google Scholar] [CrossRef]
- Tao, A.; Yan, J.; Wang, Y.; Zheng, J.; Fan, J.; Qin, C. Wave power focusing due to the Bragg resonance. China Ocean Eng. 2017, 31, 458–465. [Google Scholar] [CrossRef]
- Elandt, R.B.; Shakeri, M.; Alam, M.-R. Surface gravity-wave lensing. Phys. Rev. E 2014, 89, 023012. [Google Scholar] [CrossRef]
- Gao, J.; Ma, X.; Dong, G.; Chen, H.; Liu, Q.; Zang, J. Investigation on the effects of Bragg reflection on harbor oscillations. Coast. Eng. 2021, 170, 103977. [Google Scholar] [CrossRef]
- Hao, J.; Li, J.; Liu, S.; Wang, L. Wave amplification caused by Bragg resonance on parabolic-type topography. Ocean Eng. 2022, 244, 110442. [Google Scholar] [CrossRef]
- Liu, H.-W. An approximate law of Class I Bragg resonance of linear shallow-water waves excited by five types of artificial bars. Ocean Eng. 2023, 267, 113245. [Google Scholar] [CrossRef]
- Sherwood, C.R.; van Dongeren, A.; Doyle, J.; Hegermiller, C.A.; Hsu, T.-J.; Kalra, T.S.; Olabarrieta, M.; Penko, A.M.; Rafati, Y.; Roelvink, D.; et al. Modeling the morphodynamics of coastal response to extreme events: What shape are we in? Annu. Rev. Mar. Sci. 2022, 14, 457–492. [Google Scholar] [CrossRef]
- Nicholson, J.; Broker, I.; Roelvink, J.; Price, D.; Tanguy, J.; Moreno, L. Intercomparison of coastal area morphodynamic models. Coast. Eng. 1997, 31, 97–123. [Google Scholar] [CrossRef]
- Karambas, T.V. 2DH non-linear dispersive wave modelling and sediment transport in the nearshore zone. In Coastal Engineering; American Society of Civil Engineers: Reston, VA, USA, 1998; pp. 2940–2953. [Google Scholar]
- Roelvink, J.A. Coastal morphodynamic evolution techniques. Coast. Eng. 2006, 53, 277–287. [Google Scholar] [CrossRef]
- Rijn, L.C.V.; Ribberink, J.S.; Werf, J.V.D.; Walstra, D.J. Coastal sediment dynamics: Recent advances and future research needs. J. Hydraul. Res. 2013, 51, 475–493. [Google Scholar] [CrossRef]
- Marino, M.; Faraci, C.; Musumeci, R.E. Shoaling waves interacting with an orthogonal current. J. Mar. Sci. Eng. 2020, 8, 281. [Google Scholar] [CrossRef] [Green Version]
- Faraci, C.; Musumeci, R.E.; Marino, M.; Ruggeri, A.; Carlo, L.; Jensen, B.; Foti, E.; Barbaro, G.; Elsaßer, B. Wave- and current-dominated combined orthogonal flows over fixed rough beds. Cont. Shelf Res. 2021, 220, 104403. [Google Scholar] [CrossRef]
- Ozkan, C.; Perez, K.; Mayo, T. The impacts of wave energy conversion on coastal morphodynamics. Sci. Total Environ. 2020, 712, 136424. [Google Scholar] [CrossRef] [PubMed]
- Franzen, M.O.; Fernandes, E.H.L.; Siegle, E. Impacts of coastal structures on hydro-morphodynamic patterns and guidelines towards sustainable coastal development: A case studies review. Reg. Stud. Mar. Sci. 2021, 44, 101800. [Google Scholar] [CrossRef]
- Goldstein, E.B.; Coco, G.; Plant, N.G. A review of machine learning applications to coastal sediment transport and morphodynamics. Earth-Sci. Rev. 2019, 194, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the 27th International Conference on Neural Information Processing Systems, NIPS, Montreal, QC, Canada, 8–13 December 2014; Volume 2, pp. 3104–3112. [Google Scholar]
- Bento, P.M.R.; Pombo, J.A.N.; Mendes, R.P.G.; Calado, M.R.A.; Mariano, S.J.P.S. Ocean wave energy forecasting using optimized deep learning neural networks. Ocean Eng. 2021, 219, 108372. [Google Scholar] [CrossRef]
- Zhu, K.; Shi, H.; Han, M.; Cao, F. Layout study of wave energy converter arrays by an artificial neural network and adaptive genetic algorithm. Ocean Eng. 2022, 260, 112072. [Google Scholar] [CrossRef]
- Lin, W.; Shanab, B.H.; Lenderink, C.; Zuo, L. Multi-objective optimization of the buoy shape of an ocean wave energy converter using neural network and genetic algorithm. IFAC-PapersOnLine 2022, 55, 145–150. [Google Scholar] [CrossRef]
- Cuadra, L.; Salcedo-Sanz, S.; Nieto-Borge, J.C.; Alexandre, E.; Rodriguez, G. Computational intelligence in wave energy: Comprehensive review and case study. Renew. Sustain. Energy Rev. 2016, 58, 1223–1246. [Google Scholar] [CrossRef]
- Gu, C.; Li, H. Review on deep learning research and applications in wind and wave energy. Energies 2022, 15, 1510. [Google Scholar] [CrossRef]
- Hughes, T.W.; Williamson, I.A.D.; Minkov, M.; Fan, S. Wave physics as an analog recurrent neural network. Sci. Adv. 2019, 5, eaay6946. [Google Scholar] [CrossRef] [Green Version]
- PyTorch Documentation. Available online: https://pytorch.org/docs/stable/index.html (accessed on 12 December 2022).
Case | Focal Point | Model | Maximum Wave Height | Energy Focusing Factor |
---|---|---|---|---|
1st | middle-front | simplified equation | 0.203 m | 16.5 |
mild-slope equation | 0.152 m | 9.24 | ||
2nd | middle | simplified equation | 0.208 m | 17.3 |
mild-slope equation | 0.185 m | 13.7 | ||
3rd | middle-rear | simplified equation | 0.142 m | 8.07 |
mild-slope equation | 0.162 m | 10.5 | ||
4th | upper-front | simplified equation | 0.172 m | 11.8 |
mild-slope equation | 0.144 m | 8.29 | ||
5th | upper-middle | simplified equation | 0.176 m | 12.4 |
mild-slope equation | 0.148 m | 8.76 | ||
6th | upper-rear | simplified equation | 0.145 m | 8.41 |
mild-slope equation | 0.132 m | 6.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Yang, Y.; Zhu, L. Directing Shallow-Water Waves Using Fixed Varying Bathymetry Designed by Recurrent Neural Networks. Water 2023, 15, 2414. https://doi.org/10.3390/w15132414
Tang S, Yang Y, Zhu L. Directing Shallow-Water Waves Using Fixed Varying Bathymetry Designed by Recurrent Neural Networks. Water. 2023; 15(13):2414. https://doi.org/10.3390/w15132414
Chicago/Turabian StyleTang, Shanran, Yiqin Yang, and Liangsheng Zhu. 2023. "Directing Shallow-Water Waves Using Fixed Varying Bathymetry Designed by Recurrent Neural Networks" Water 15, no. 13: 2414. https://doi.org/10.3390/w15132414
APA StyleTang, S., Yang, Y., & Zhu, L. (2023). Directing Shallow-Water Waves Using Fixed Varying Bathymetry Designed by Recurrent Neural Networks. Water, 15(13), 2414. https://doi.org/10.3390/w15132414