Hydrogeochemistry and Mercury Contamination of Surface Water in the Lom Gold Basin (East Cameroon): Water Quality Index, Multivariate Statistical Analysis and Spatial Interpolation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Geographical Setting
2.1.2. Geological and Hydrogeological Setting
2.2. Sampling and Analytical Procedure
2.3. Data Analysis
2.3.1. Hydrochemical Modeling
2.3.2. Multivariate Statistical Analysis
2.3.3. Calculation of Water Quality Index (WQI)
2.3.4. Calculation of Hazard Quotient (HQ) and Hazard Index (HI)
2.3.5. Geostatistical Modeling: Spatial Interpolation of Mercury Concentrations
3. Results and Discussion
3.1. Physicochemical Characterization of Waters
3.1.1. Seasonal and Spatial Variation of Parameters
Physical Parameters
Major Ions
Period | Low Water/Dry Season | High Water/Wet Season | Standards | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | N | Units | Min | Max | Avg | SD | Min | Max | Avg | SD | WHO (2017) | EQS (2008) |
pH | 15 | 5.23 | 6.59 | 5.90 | 0.56 | 5.57 | 7.08 | 6.43 | 0.53 | 6.5–8.5 | 6.5–8.5 | |
T | 15 | °C | 18.10 | 28.30 | 23.16 | 2.36 | 22.80 | 36.80 | 26.31 | 3.76 | 25 | 30 |
EC | 15 | µS/cm | 12.80 | 93.40 | 39.94 | 19.98 | 16.10 | 52.00 | 31.74 | 9.16 | 1500 | 800 |
DO | 15 | mg/L | 5.00 | 7.40 | 5.74 | 0.68 | 1.50 | 6.30 | 3.82 | 1.76 | - | 2–6 |
TDS | 15 | mg/L | 9.00 | 65.00 | 28.00 | 13.90 | 11.24 | 36.32 | 22.16 | 6.40 | 500 | |
TSS | 15 | mg/L | 12.00 | 452.00 | 149.00 | 152.01 | 2.62 | 20.90 | 10.05 | 5.47 | 25–40 | 25–40 |
Alka | 15 | µmol/L | 41.89 | 373.21 | 182.08 | 78.51 | 0.57 | 51.63 | 15.13 | 15.24 | - | - |
Na+ | 15 | mg/L | 0.052 | 0.991 | 0.394 | 0.330 | 1.444 | 6.104 | 3.501 | 1.476 | 200 | 200 |
NH4+ | 15 | mg/L | 0.001 | 0.328 | 0.048 | 0.084 | 0.047 | 0.846 | 0.329 | 0.258 | 0.5 | 3 |
K+ | 15 | mg/L | 0.037 | 0.845 | 0.266 | 0.238 | 0.217 | 2.604 | 1.175 | 0.824 | 12 | |
Mg2+ | 15 | mg/L | 0.014 | 0.453 | 0.132 | 0.115 | 5.248 | 36.976 | 17.492 | 9.349 | 125 | |
Ca2+ | 15 | mg/L | 0.040 | 0.367 | 0.148 | 0.096 | 16.032 | 65.642 | 29.083 | 14.817 | 75 | 75 |
TZ+ | 15 | µeq/L | 11.29 | 132.87 | 62.14 | 41.88 | 1899.41 | 5840.52 | 3112.46 | 1280.78 | - | - |
HCO3− | 15 | mg/L | 2.55 | 22.8 | 11.120 | 4.791 | 0.57 | 51.64 | 15.13 | 15.24 | 130 | - |
F− | 15 | mg/L | 0.003 | 0.075 | 0.015 | 0.017 | 0.064 | 0.277 | 0.168 | 0.071 | 2 | 2 |
Cl− | 15 | mg/L | 0.014 | 0.669 | 0.195 | 0.190 | 0.348 | 2.240 | 1.185 | 0.510 | 250 | 250 |
NO3− | 15 | mg/L | 0.011 | 0.481 | 0.132 | 0.145 | 0.090 | 1.221 | 0.540 | 0.336 | 50 | 50 |
PO43− | 15 | mg/L | 0.000 | 0.002 | 0.000 | 0.001 | 0.000 | 0.067 | 0.013 | 0.021 | 1.5 | 5 |
SO42− | 15 | mg/L | 0.059 | 1.231 | 0.213 | 0.287 | 0.658 | 24.149 | 4.512 | 6.035 | 150 | 250 |
TZ− | 15 | µeq/L | 48.699 | 375.74 | 194.811 | 77.146 | 82.580 | 1034.187 | 392.191 | 286.745 | - | - |
Hg tot | 15 | mg/L | 0.001 | 0.031 | 0.007 | 0.008 | 0.000 | 0.042 | 0.008 | 0.013 | 0.006 | 0.0007 |
3.1.2. Water Hydrochemistry
Hydrochemical Classification
Saturation Index
3.1.3. Origins of the Parameters
Processes Controlling Water Chemistry
Correlation Tests
Pollutants Sources: Principal Component Analysis (PCA)
3.2. Mercury Contamination of Water
3.2.1. Water Quality Index (WQI)
3.2.2. Spatial and Seasonal Distribution of Mercury
Hierarchical Cluster Analysis (HCA)
Spatial Interpolation of Mercury Concentrations
3.2.3. Human Health Risk for Mercury
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, B.W.; Bishop, K.; Zarnetske, J.P.; Hannah, D.M.; Frei, R.J.; Minaudo, C.; Chapin, F.S.; Krause, S.; Conner, L.; Ellison, D.; et al. A Water Cycle for the Anthropocene. Hydrol. Process. 2019, 33, 3046–3052. [Google Scholar] [CrossRef] [Green Version]
- Parween, S.; Siddique, N.A.; Mahammad Diganta, M.T.; Olbert, A.I.; Uddin, M.G. Assessment of Urban River Water Quality Using Modified NSF Water Quality Index Model at Siliguri City, West Bengal, India. Environ. Sustain. Indic. 2022, 16, 100202. [Google Scholar] [CrossRef]
- Gallo Corredor, J.A.; Humberto Pérez, E.; Figueroa, R.; Figueroa Casas, A. Water Quality of Streams Associated with Artisanal Gold Mining; Suárez, Department of Cauca, Colombia. Heliyon 2021, 7, e07047. [Google Scholar] [CrossRef]
- Achina-Obeng, R.; Aram, S.A. Informal Artisanal and Small-Scale Gold Mining (ASGM) in Ghana: Assessing Environmental Impacts, Reasons for Engagement, and Mitigation Strategies. Resour. Policy 2022, 78, 102907. [Google Scholar] [CrossRef]
- Quarm, J.A.; Anning, A.K.; Fei-Baffoe, B.; Siaw, V.F.; Amuah, E.E.Y. Perception of the Environmental, Socio-Economic and Health Impacts of Artisanal Gold Mining in the Amansie West District, Ghana. Environ. Chall. 2022, 9, 100653. [Google Scholar] [CrossRef]
- Tchindjang, M.; Philippes, M.; Unusa, H.; Eric, V.; Igor, N.; Saha, F. Mines Contre Forêts et Conservation Au Cameroun: Enjeux de l’évaluation Environnementale Du Secteur Minier Pour Le Développement Durable Au Cameroun. In Proceedings of the Actes du Colloque du SIFEE, Antananarivo, Madagascar, 9 January 2017. [Google Scholar]
- Weng, L.; Boedhihartono, A.K.; Dirks, P.H.G.M.; Dixon, J.; Lubis, M.I.; Sayer, J.A. Mineral Industries, Growth Corridors and Agricultural Development in Africa. Glob. Food Secur. 2013, 2, 195–202. [Google Scholar] [CrossRef]
- Word Gold Council. Leçons Tirées de la Gestion de l’interface Entre les Exploitations Minières Aurifères à Grande Échelle et Celles Artisanales et à Petite Échelle; Word Gold Council: London, UK, 2022; p. 100. [Google Scholar]
- MINMIDT. Initiative Pour La Transparence Dans Les Industries Extractives au Cameroun; MINMIDT: Yaoundé, Cameroon, 2019; p. 343. [Google Scholar]
- Quispe Aquino, R.; Malone, A.; Smith, N.M.; García Zúñiga, F.F. Perceptions and Realities of Mercury Contamination in a Peruvian Artisanal and Small-Scale Gold Mining (ASGM) Community. Environ. Res. 2022, 214, 114092. [Google Scholar] [CrossRef] [PubMed]
- UNEP Global Mercury Assessment 2018. Available online: http://www.unep.org/resources/publication/global-mercury-assessment-2018 (accessed on 2 February 2023).
- UNEP National Action Plans (NAPs) for Artisanal and Small Scale Gold Mining (ASGM) Democratic Republic of the Congo (RDC)|Global Mercury Partnership. Available online: https://www.unep.org/globalmercurypartnership/what-we-do/artisanal-and-small-scale-gold-mining-asgm/national-action-plans (accessed on 2 February 2023).
- World Gold Council. Small-Scale and Artisanal Gold Mining; Word Gold Council: London, UK, 2022. [Google Scholar]
- Hilson, G. The Environmental Impact of Small-scale Gold Mining in Ghana: Identifying Problems and Possible Solutions. Geogr. J. 2002, 168, 57–72. [Google Scholar] [CrossRef]
- Betancourt, O.; Narváez, A.; Roulet, M. Small-Scale Gold Mining in the Puyango River Basin, Southern Ecuador: A Study of Environmental Impacts AndHuman Exposures. EcoHealth 2005, 2, 323–332. [Google Scholar] [CrossRef]
- Zwane, N.; Love, D.; Hoko, Z.; Shoko, D. Managing the Impact of Gold Panning Activities within the Context of Integrated Water Resources Management Planning in the Lower Manyame Sub-Catchment, Zambezi Basin, Zimbabwe. Phys. Chem. Earth Parts ABC 2006, 31, 848–856. [Google Scholar] [CrossRef]
- Gomes, M.E.P.; Antunes, I.M.H.R.; Silva, P.B.; Neiva, A.M.R.; Pacheco, F.A.L. Geochemistry of Waters Associated with the Old Mine Workings at Fonte Santa (NE of Portugal). J. Geochem. Explor. 2010, 105, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Ingram, V.; Tieguhong, J.C.; Schure, J.; Nkamgnia, E.; Tadjuidje, M.H. Where Artisanal Mines and Forest Meet: Socio-Economic and Environmental Impacts in the Congo Basin: Where Artisanal Mines and Forest Meet. In Natural Resources Forum; Blackwell Publishing Ltd.: Oxford, UK, 2011; Volume 35, pp. 304–320. [Google Scholar] [CrossRef] [Green Version]
- Bakia, M. East Cameroon’s Artisanal and Small-Scale Mining Bonanza: How Long Will It Last? Futures 2014, 62, 40–50. [Google Scholar] [CrossRef]
- Guédron, S.; Point, D.; Acha, D.; Bouchet, S.; Baya, P.A.; Tessier, E.; Monperrus, M.; Molina, C.I.; Groleau, A.; Chauvaud, L.; et al. Mercury Contamination Level and Speciation Inventory in Lakes Titicaca & Uru-Uru (Bolivia): Current Status and Future Trends. Environ. Pollut. 2017, 231, 262–270. [Google Scholar] [CrossRef]
- Strady, E.; Dinh, Q.T.; Némery, J.; Nguyen, T.N.; Guédron, S.; Nguyen, N.S.; Denis, H.; Nguyen, P.D. Spatial Variation and Risk Assessment of Trace Metals in Water and Sediment of the Mekong Delta. Chemosphere 2017, 179, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Rakotondrabe, F.; Ndam Ngoupayou, J.R.; Mfonka, Z.; Rasolomanana, E.H.; Nyangono Abolo, A.J.; Ako Ako, A. Water Quality Assessment in the Bétaré-Oya Gold Mining Area (East-Cameroon): Multivariate Statistical Analysis Approach. Sci. Total Environ. 2018, 610–611, 831–844. [Google Scholar] [CrossRef]
- Barenblitt, A.; Payton, A.; Lagomasino, D.; Fatoyinbo, L.; Asare, K.; Aidoo, K.; Pigott, H.; Som, C.K.; Smeets, L.; Seidu, O.; et al. The Large Footprint of Small-Scale Artisanal Gold Mining in Ghana. Sci. Total Environ. 2021, 781, 146644. [Google Scholar] [CrossRef]
- Liou, S.-M.; Lo, S.-L.; Wang, S.-H. A Generalized Water Quality Index for Taiwan. Environ. Monit. Assess. 2004, 96, 35–52. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Rahman, A.; Olbert, A.I. A Comprehensive Method for Improvement of Water Quality Index (WQI) Models for Coastal Water Quality Assessment. Water Res. 2022, 219, 118532. [Google Scholar] [CrossRef]
- Deliège, J.-F.; Everbecq, E.; Magermans, P.; Grard, A.; Bourouag, M.; Blockx, C. PEGASE, an Integrated River/Basin Model Dedicated to Surface Water Quality Assessment: Application to Cocaine. Acta Clin. Belg. 2010, 65, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Stehr, A.; Debels, P.; Romero, F.; Alcayaga, H. Hydrological Modelling with SWAT under Conditions of Limited Data Availability: Evaluation of Results from a Chilean Case Study. Hydrol. Sci. J. 2008, 53, 588–601. [Google Scholar] [CrossRef]
- Tripathi, M.; Singal, S.K. Allocation of Weights Using Factor Analysis for Development of a Novel Water Quality Index. Ecotoxicol. Environ. Saf. 2019, 183, 109510. [Google Scholar] [CrossRef] [PubMed]
- Ngako, V.; Affaton, P.; Nnange, J.M.; Njanko, T. Pan-African Tectonic Evolution in Central and Southern Cameroon: Transpression and Transtension during Sinistral Shear Movements. J. Afr. Earth Sci. 2003, 36, 207–214. [Google Scholar] [CrossRef]
- Toteu, S.F.; Van Schmus, W.R.; Penaye, J.; Michard, A. New U–Pb and Sm–Nd Data from North-Central Cameroon and Its Bearing on the Pre-Pan African History of Central Africa. Precambr. Res. 2001, 108, 45–73. [Google Scholar] [CrossRef]
- Suh, C.E. Sulphide Microchemistry and Hydrothermal Fluid Evolution in Quartz Veins, Batouri Gold District (Southeast Cameroon). J. Cameroon Acad. Sci. 2008, 8, 12. [Google Scholar]
- Vishiti, A.; Suh, C.E.; Lehmann, B.; Shemang, E.M.; Ngome, N.L.J.; Nshanji, N.J.; Chinjo, F.E.; Mongwe, O.Y.; Egbe, A.J.; Petersen, S. Mineral Chemistry, Bulk Rock Geochemistry, and S-Isotope Signature of Lode-Gold Mineralization in the Bétaré Oya Gold District, South-East Cameroon. Geol. J. 2018, 53, 2579–2596. [Google Scholar] [CrossRef]
- Azeuda Ndonfack, K.I.; Xie, Y.; Goldfarb, R.; Zhong, R.; Qu, Y. Genesis and Mineralization Style of Gold Occurrences of the Lower Lom Belt, Bétaré Oya District, Eastern Cameroon. Ore Geol. Rev. 2021, 139, 104586. [Google Scholar] [CrossRef]
- Fon, A.N.; Suh, C.E.; Vishiti, A.; Ngatcha, R.B.; Ngang, T.C.; Shemang, E.M.; Egbe, J.A.; Lehmann, B. Gold Dispersion in Tropical Weathering Profiles at the Belikombone Gold Anomaly (Bétaré Oya Gold District), East Cameroon. Geochemistry 2021, 81, 125770. [Google Scholar] [CrossRef]
- Mimba, M.E.; Ohba, T.; Nguemhe Fils, S.C.; Wirmvem, M.J.; Tibang, E.E.B.; Nforba, M.T.; Togwa Aka, F. Regional Hydrogeochemical Mapping for Environmental Studies in the Mineralized Lom Basin, East Cameroon: A Pre-Industrial Mining Survey. Hydrology 2017, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Rakotondrabe, F.; Ngoupayou, J.R.N.; Mfonka, Z.; Rasolomanana, E.H.; Nyangono Abolo, A.J.; Asone, B.L.; Ako Ako, A.; Rakotondrabe, M.H. Assessment of Surface Water Quality of Bétaré-Oya Gold Mining Area (East-Cameroon). J. Water Resour. Prot. 2017, 9, 960–984. [Google Scholar] [CrossRef] [Green Version]
- Ngounouno, M.A.; Ngueyep, L.L.M.; Kingni, S.T.; Nforsoh, S.N.; Ngounouno, I. Evaluation of the Impact of Gold Mining Activities on the Waters and Sediments of Lom River, Wakaso, Cameroon and the Restorative Effect of Moringa Oleifera Seeds. Appl. Water Sci. 2021, 11, 113. [Google Scholar] [CrossRef]
- Molemba, M.; Djomo, N.; Landry, B. Implications Socioéconomiques Du Projet PAEPYS Dans La Mise En Valeur Des Territoires à La Périphérie Est de Yaoundé. Revue Territoires Sud. 2021, 1, 35–44. Available online: www.https://territoiressud.org (accessed on 4 July 2023).
- Olivry, J.-C. Fleuves et Rivières du Cameroun; Monographie hydrologiques. MESRES/ORSTOM, 1986; 733p; ISBN 978-2-7099-0804-7. Available online: http://www.hydrosciences.fr/sierem/Bibliotheque/biblio/Cameroun.pdf (accessed on 4 July 2023).
- Dubreuil, P.; Guiscafre, J.; Nouvelot, J.-F.; Olivry, J.-C. Le Bassin de la Rivière Sanaga; Monographies Hydrologiques ORSTOM; Office de la Recherche Scientifique et Technique Outre-Mer: Paris, France, 1975; ISBN 978-2-7099-0361-5. [Google Scholar]
- Kankeu, B.; Greiling, R.O.; Nzenti, J.P. Pan-African Strike–Slip Tectonics in Eastern Cameroon—Magnetic Fabrics (AMS) and Structure in the Lom Basin and Its Gneissic Basement. Precambr. Res. 2009, 174, 258–272. [Google Scholar] [CrossRef]
- Fouotsa, S.A.N.; Rigobert, T.; Negue Emmanuel, N.; Dawaï, D.; Joseph, P.; Tchunte Periclex Martial, F. Polyphase Deformation in the Mbé—Sassa-Bersi Area: Implications on the Tectono-Magmatic History of the Area and the Tectonic Evolution of the Tcholliré-Banyo and Central Cameroon Shear Zones (Central North Cameroon). J. Geosci. Geomat. 2018, 6, 41–54. [Google Scholar] [CrossRef]
- Vishiti, A.; Etame, J.; Suh, C.E. Features of Gold-Bearing Quartz Veins in an Artisanal Mining-Dominated Terrain, Batouri Gold District, Eastern Region of Cameroon. Episodes 2019, 42, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Segalen, P. Les Sols et la Géomorphologie du Cameroun; Office de la Recherche Scientifique et Technique Outre-Mer: Paris, France, 1962; Volume 46. [Google Scholar]
- Lachassagne, P.; Dewandel, B.; Wyns, R. The Conceptual Model of Hard Rock Aquifers and Its Practical Applications. In Proceedings of the Vingtièmes journées techniques du Comité FranCais d’Hydrogéologie de l’Association Internationale des Hydrogéo-logues, La Roche-sur-Yon, France, 11–13 June 2015. [Google Scholar]
- Rodier, J.; Merlet, N.; Legube, B. L’analyse de l’eau, 9th ed.; Entièrement Mise à Jour; Dunod: France, Paris, 2009; ISBN 978-2-10-054179-9. [Google Scholar]
- Mfonka, Z.; Kpoumié, A.; Ngouh, A.N.; Mouncherou, O.F.; Nsangou, D.; Rakotondrabe, F.; Takounjou, A.F.; Zammouri, M.; Ngoupayou, J.R.N.; Ndjigui, P.-D. Water Quality Assessment in the Bamoun Plateau, Western-Cameroon: Hydrogeochemical Modelling and Multivariate Statistical Analysis Approach. J. Water Resour. Prot. 2021, 13, 112–138. [Google Scholar] [CrossRef]
- Chakravarty, T.; Gupta, S. Assessment of Water Quality of a Hilly River of South Assam, North East India Using Water Quality Index and Multivariate Statistical Analysis. Environ. Chall. 2021, 5, 100392. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-154995-0.
- Cotruvo, J.A. 2017 WHO Guidelines for Drinking Water Quality: First Addendum to the Fourth Edition. J. Am. Water Works Assoc. 2017, 109, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Zhang, J.; Zhang, Z.; Wu, T. Geochemistry of Dissolved Trace Elements and Heavy Metals in the Dan River Drainage (China): Distribution, Sources, and Water Quality Assessment. Environ. Sci. Pollut. Res. 2016, 23, 8091–8103. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wen, Z.; Cheng, M.; Xu, M. Evaluating the Water Quality Characteristics and Tracing the Pollutant Sources in the Yellow River Basin, China. Sci. Total Environ. 2022, 846, 157389. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Gui, H.; Hu, R.; Zhao, H.; Li, J.; Yu, H.; Fang, H. Hydrogeochemical Characteristics and Water Quality Evaluation of Carboniferous Taiyuan Formation Limestone Water in Sulin Mining Area in Northern Anhui, China. Int. J. Environ. Res. Public Health 2019, 16, 2512. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency. U.S. E.P.A’s 2006 Clean Water Act Recognition Awards: Availability of Application and Nomination Information; Notices—Federal Register; U.S. Environmental Protection Agency: Washington, DC, USA, 2006; Volume 71, pp. 23855–24550.
- Zeng, X.; Wang, Z.; Wang, J.; Guo, J.; Chen, X.; Zhuang, J. Health Risk Assessment of Heavy Metals via Dietary Intake of Wheat Grown in Tianjin Sewage Irrigation Area. Ecotoxicology 2015, 24, 2115–2124. [Google Scholar] [CrossRef]
- U.S. EPA (Environmental Protection Agency). 2006 Edition of the Drinking Water Standards and Health Advisories. 2006. EPA 822-R-06-013 Office of Water U.S. Environmental Protection Agency Washington, DC, USA, 2006. Available online: http://www.epa.gov/waterscience (accessed on 4 July 2023).
- Watson, D.F.; Philip, G.M. A Refinement of Inverse Distance Weighted Interpolation. Geo-Processing 1985, 2, 315–327. [Google Scholar]
- Kumar, S.; Islam, A.R.M.T.; Hasanuzzaman, M.; Salam, R.; Khan, R.; Islam, M.S. Preliminary Assessment of Heavy Metals in Surface Water and Sediment in Nakuvadra-Rakiraki River, Fiji Using Indexical and Chemometric Approaches. J. Environ. Manag. 2021, 298, 113517. [Google Scholar] [CrossRef]
- Ewusi, A.; Sunkari, E.D.; Seidu, J.; Coffie-Anum, E. Hydrogeochemical Characteristics, Sources and Human Health Risk Assessment of Heavy Metal Dispersion in the Mine Pit Water–Surface Water–Groundwater System in the Largest Manganese Mine in Ghana. Environ. Technol. Innov. 2022, 26, 102312. [Google Scholar] [CrossRef]
- Boeglin, J.-L.; Ndam, J.-R.; Braun, J.-J. Composition of the Different Reservoir Waters in a Tropical Humid Area: Example of the Nsimi Catchment (Southern Cameroon). J. Afr. Earth Sci. 2003, 37, 103–110. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Englewood Cliffs, NJ, USA, 1979; ISBN 978-0-13-365312-0. [Google Scholar]
- Wanda, E.M.M.; Chavula, G.; Tembo, F.M. Hydrogeochemical Characterization of Water Quality Evolution within Livingstonia Coalfield Mining Areas in Rumphi District, Northern Malawi. Phys. Chem. Earth Parts ABC 2021, 123, 103045. [Google Scholar] [CrossRef]
- European Parliament. EQS Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water PolicyText with EEA Relevance. Off. J. Eur. Union 2013, L226, 1–17. [Google Scholar]
- Ayiwouo, M.N.; Mambou Ngueyep, L.L.; Mache, J.R.; Takougang Kingni, S.; Ngounouno, I. Waters of the Djouzami Gold Mining Site (Adamawa, Cameroon): Physicochemical Characterization and Treatment Test by Bana Smectite (West, Cameroon). Case Stud. Chem. Environ. Eng. 2020, 2, 100016. [Google Scholar] [CrossRef]
- Viers, J.; Dupre, B.; Braun, J.-J.; Deberdt, S.; Angeletti, B.; Ngoupayou, J.N.; Michard, A. Major and Trace Element Abundances, and Strontium Isotopes in the Nyong Basin Rivers Cameroon: Constraints on Chemical Weathering Processes and Elements Transport Mechanisms in Humid Tropical Environments. Chem. Geol. 2000, 169, 211–241. [Google Scholar] [CrossRef]
- Martin, J.-M.; Meybeck, M. Transports dissous et particulaire de quelques éléments chimiques par les rivières en milieu tempéré. Sci. Géol. Bull. Mém. 1979, 53, 45–48. [Google Scholar]
- Braun, J.-J.; Dupré, B.; Viers, J.; Ngoupayou, J.R.N.; Bedimo, J.-P.B.; Sigha-Nkamdjou, L.; Freydier, R.; Robain, H.; Nyeck, B.; Bodin, J.; et al. Biogeohydrodynamic in the Forested Humid Tropical Environment: The Case Study of the Nsimi Small Experimental Watershed (South Cameroon). Bull. Soc. Géol. Fr. 2002, 173, 347–357. [Google Scholar] [CrossRef]
- Bhateria, R.; Jain, D. Water Quality Assessment of Lake Water: A Review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Meybeck, M.; Meybeck, M. Global Chemical Weathering of Surficial Rocks Estimated from River Dissolved Loads. Am. J. Sci. 1987, 287, 401–428. [Google Scholar] [CrossRef]
- Piper, A.M. A Graphic Procedure in the Geochemical Interpretation of Water-Analyses. Trans. Am. Geophys. Union 1944, 25, 914. [Google Scholar] [CrossRef]
- Meybeck, M. River Water Quality Global Ranges, Time and Space Variabilities, Proposal for Some Redefinitions; SIL Proceedings 1922–2010; Taylor & Francis: Milton Park, UK, 1996; Volume 26, pp. 81–96. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Sci. New Ser. 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Kamtchueng, B.T.; Fantong, W.Y.; Wirmvem, M.J.; Tiodjio, R.E.; Takounjou, A.F.; Ndam Ngoupayou, J.R.; Kusakabe, M.; Zhang, J.; Ohba, T.; Tanyileke, G.; et al. Hydrogeochemistry and Quality of Surface Water and Groundwater in the Vicinity of Lake Monoun, West Cameroon: Approach from Multivariate Statistical Analysis and Stable Isotopic Characterization. Environ. Monit. Assess. 2016, 188, 524. [Google Scholar] [CrossRef]
- Thalmeier, M.B.; Rodriguez, L.; Heredia, J.; Veizaga, E. Hydrogeological and Hydrochemical Framework of the Distal Section of the Salado-Juramento Fluvial Megafan (Bajos Submeridionales) in South America. Sci. Total Environ. 2022, 824, 153543. [Google Scholar] [CrossRef]
- Edjah, A.K.M.; Akiti, T.T.; Osae, S.; Adotey, D.; Glover, E.T. Hydrogeochemistry and Isotope Hydrology of Surface Water and Groundwater Systems in the Ellembelle District, Ghana, West Africa. Appl. Water Sci. 2017, 7, 609–623. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Koo, M.-H.; Moon, S.-H.; Yum, B.-W.; Lee, K.-S. Hydrochemistry of Groundwaters in a Spa Area of Korea: An Implication for Water Quality Degradation by Intensive Pumping. Hydrol. Process. 2005, 19, 493–505. [Google Scholar] [CrossRef]
- Braun, J.-J.; Marechal, J.-C.; Riotte, J.; Boeglin, J.-L.; Bedimo Bedimo, J.-P.; Ndam Ngoupayou, J.R.; Nyeck, B.; Robain, H.; Sekhar, M.; Audry, S.; et al. Elemental Weathering Fluxes and Saprolite Production Rate in a Central African Lateritic Terrain (Nsimi, South Cameroon). Geochim. Cosmochim. Acta 2012, 99, 243–270. [Google Scholar] [CrossRef] [Green Version]
- Aragão, F.; Velásquez, L.N.M.; Galvão, P.; Vieira, L.C. Natural Hydrogeochemical Background Levels in the Carste Lagoa Santa Protection Unit, Minas Gerais, Brazil. J. S. Am. Earth Sci. 2021, 105, 102985. [Google Scholar] [CrossRef]
- Ndam Ngoupayou, J.R.; Kpoumie, A.; Boeglin, J.-L.; Lienou, G.; Nfocgo, A.K.; Ekodeck, G.E. Transports solides et érosion mécanique dans un écosystème tropical d’Afrique: Exemple du bassin versant de la Sanaga au Sud—Cameroun. In Proceedings of the JSIRAUF (1res Journées Scientifiques Inter-Réseaux de l’AUF), Hanoi, Vietnam, 6–9 November 2007; p. 6. [Google Scholar]
- Carmouze, J.-P.; Lucotte, M.; Boudou, A. Le Mercure en Amazonie: Rôle de L’homme et de L’environnement, Risques Sanitaires; Expertise Collégiale; IRD Éditions: Paris, France, 2001; ISBN 978-2-7099-1467-3. [Google Scholar]
- Guédron, S.; Tisserand, D.; Garambois, S.; Spadini, L.; Molton, F.; Bounvilay, B.; Charlet, L.; Polya, D.A. Baseline Investigation of (Methyl)Mercury in Waters, Soils, Sediments and Key Foodstuffs in the Lower Mekong Basin: The Rapidly Developing City of Vientiane (Lao PDR). J. Geochem. Explor. 2014, 143, 96–102. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Singh, D.S.; Singh, A.K. Hydrogeochemistry of Groundwater and Anthropogenic Control over Dolomitization Reactions in Alluvial Sediments of the Deoria District: Ganga Plain, India. Environ. Earth Sci. 2010, 59, 1099–1109. [Google Scholar] [CrossRef]
- Das, A. Multivariate Statistical Approach for the Assessment of Water Quality of Mahanadi Basin, Odisha. Mater. Today Proc. 2022, 65, A1–A11. [Google Scholar] [CrossRef]
- Miyittah, M.K.; Tulashie, S.K.; Tsyawo, F.W.; Sarfo, J.K.; Darko, A.A. Assessment of Surface Water Quality Status of the Aby Lagoon System in the Western Region of Ghana. Heliyon 2020, 6, e04466. [Google Scholar] [CrossRef]
- Lienou, G. Impacts de la Variabilité Climatique sur les Ressources en eau et les Transports de Matières en Suspension de Quelques Bassins Versants Représentatifs au Cameroun. Ph.D. Thesis, Université de Yaoundé I, Yaoundé, Cameroon, 2007. [Google Scholar]
- Ullrich, S.M.; Ilyushchenko, M.A.; Uskov, G.A.; Tanton, T.W. Mercury Distribution and Transport in a Contaminated River System in Kazakhstan and Associated Impacts on Aquatic Biota. Appl. Geochem. 2007, 22, 2706–2734. [Google Scholar] [CrossRef]
- De Miguel, E.; Iribarren, I.; Chacón, E.; Ordoñez, A.; Charlesworth, S. Risk-Based Evaluation of the Exposure of Children to Trace Elements in Playgrounds in Madrid (Spain). Chemosphere 2007, 66, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Wang, L.; Deng, L.; Jin, Z. Characteristics, Sources, Water Quality and Health Risk Assessment of Trace Elements in River Water and Well Water in the Chinese Loess Plateau. Sci. Total Environ. 2019, 650, 2004–2012. [Google Scholar] [CrossRef] [PubMed]
Parameters | Units | Standards WHO | Weight (Wi) | Relative Weight (Wi) |
---|---|---|---|---|
pH | 8.5 | 4 | 0.093 | |
EC | µS/cm | 1400 | 4 | 0.093 |
DO | mg O2/L | 8 | 4 | 0.093 |
TDS | mg/L | 500 | 2 | 0.046 |
TSS | mg/L | 40 | 2 | 0.046 |
Na+ | mg/L | 200 | 2 | 0.046 |
NH4+ | mg/L | 0.5 | 2 | 0.046 |
K+ | mg/L | 12 | 1 | 0.023 |
Mg2+ | mg/L | 125 | 2 | 0.046 |
Ca2+ | mg/L | 75 | 2 | 0.046 |
HCO3− | mg/L | 130 | 3 | 0.069 |
F− | mg/L | 1.5 | 2 | 0.046 |
Cl− | mg/L | 250 | 3 | 0.069 |
NO3− | mg/L | 50 | 4 | 0.093 |
SO42− | mg/L | 250 | 4 | 0.093 |
Hg tot | mg/l | 0.001 | 5 | 0.116 |
WQI | Rating of Water Quality | Grading |
---|---|---|
<50 | Excellent water quality | A |
50–100 | Good water quality | B |
100–200 | Poor water quality | C |
200–300 | Very poor water quality | D |
>300 | Unsuitable for drinking purposes | E |
Season | Sector | Mineral Phase | Anhydrite | Aragonite | Calcite | Dolomite | Gypsum | H2(g) | H2O(g) | Halite | O2(g) | CO2(g) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Low water | Up stream | Min | −7.50 | −7.38 | −7.24 | −14.60 | −7.28 | −21.18 | −20.99 | −13.19 | −46.18 | −3.55 |
Max | −6.39 | −5.28 | −5.13 | −9.87 | −6.02 | −6.16 | −1.43 | −1.59 | −14.95 | −2.16 | ||
Mean | −6.99 | −5.83 | −5.68 | −11.22 | −6.74 | −18.80 | −3.98 | −11.00 | −39.03 | −3.00 | ||
Standard | 0.37 | 0.75 | 0.75 | 1.58 | 0.41 | 5.18 | 6.87 | 3.85 | 9.89 | 0.43 | ||
Down stream | Min | −7.39 | −6.95 | −6.80 | −13.43 | −28.31 | −18.87 | −19.21 | −19.24 | −47.27 | −2.09 | |
Max | −6.54 | −5.75 | −5.61 | −10.82 | −6.31 | −7.16 | −1.52 | −1.55 | −11.82 | −1.56 | ||
Mean | −7.01 | −6.17 | −6.03 | −11.80 | −9.99 | −15.59 | −4.84 | −11.13 | −37.19 | −1.75 | ||
Standard | 0.28 | 0.49 | 0.49 | 1.01 | 8.10 | 5.27 | 6.63 | 5.13 | 16.01 | 0.20 | ||
High water | Up stream | Min | −4.04 | −1.47 | −1.32 | −2.59 | −8.25 | −22.05 | −3.69 | −22.18 | −40.78 | −1.88 |
Max | −3.58 | −0.22 | −0.07 | −0.15 | −2.77 | −2.38 | −1.49 | −9.85 | −5.54 | −1.34 | ||
Mean | −3.79 | −0.85 | −0.71 | −1.32 | −5.55 | −7.79 | −3.02 | −18.81 | −14.39 | −1.57 | ||
Standard | 0.16 | 0.38 | 0.38 | 0.78 | 1.90 | 7.17 | 0.77 | 4.39 | 12.41 | 0.20 | ||
Down stream | Min | −4.19 | −2.45 | −2.31 | −4.91 | −12.55 | −20.63 | −3.27 | −19.41 | −44.23 | −1.20 | |
Max | −2.74 | −1.73 | −1.59 | −3.13 | −2.51 | −2.48 | −1.22 | −9.61 | −5.88 | −0.31 | ||
Mean | −3.52 | −2.16 | −2.02 | −3.89 | −5.77 | −15.06 | −1.88 | −12.62 | −31.46 | −0.79 | ||
Standard | 0.49 | 0.27 | 0.27 | 0.69 | 4.09 | 8.54 | 0.81 | 4.56 | 17.56 | 0.28 |
F1 | F2 | F3 | F4 | F5 | |
---|---|---|---|---|---|
pH | 0.420 | 0.114 | 0.707 | −0.029 | −0.157 |
EC | −0.358 | 0.833 | 0.254 | 0.290 | −0.009 |
OD | −0.594 | −0.296 | 0.596 | −0.036 | 0.061 |
TDS | −0.362 | 0.830 | 0.254 | 0.290 | −0.009 |
TSS | −0.629 | 0.268 | −0.082 | −0.035 | 0.182 |
Na+ | 0.818 | 0.170 | −0.058 | 0.231 | −0.286 |
NH4+ | 0.597 | 0.182 | 0.350 | −0.240 | −0.224 |
K+ | 0.663 | 0.302 | −0.221 | −0.351 | −0.052 |
Mg2+ | 0.797 | 0.000 | 0.259 | −0.096 | −0.049 |
Ca2+ | 0.800 | −0.048 | 0.431 | 0.094 | −0.101 |
F− | 0.866 | 0.084 | −0.231 | 0.275 | 0.130 |
Cl− | 0.819 | 0.120 | −0.212 | −0.152 | 0.008 |
NO3− | 0.671 | 0.048 | 0.143 | −0.199 | 0.514 |
PO43− | 0.424 | −0.111 | 0.271 | 0.302 | 0.715 |
SO42− | 0.436 | −0.183 | −0.403 | 0.658 | −0.119 |
Hg tot | 0.091 | 0.642 | −0.432 | −0.323 | 0.191 |
Eigenvalues | 6.17 | 2.19 | 1.96 | 1.19 | 1.05 |
Variability (%) | 38.57 | 13.70 | 12.25 | 7.44 | 6.57 |
Cumulative % | 38.57 | 52.27 | 64.53 | 71.97 | 78.54 |
HQingestion | HQdermal | HI (∑HQ) | ||||
---|---|---|---|---|---|---|
Children | Adults | Children | Adults | Children | Adults | |
Total (∑) | 3.080 | 2.060 | 1.110 | 3.76 × 10−1 | 4.190 | 2.440 |
Min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Max | 5.73 × 10−1 | 3.84 × 10−1 | 2.06 × 10−1 | 6.98 × 10−2 | 7.79 × 10−1 | 4.53 × 10−1 |
Average | 1.03 × 10−2 | 6.88 × 10−2 | 3.70 × 10−2 | 1.25 × 10−2 | 0.140 | 8.13 × 10−2 |
SD | 1.46 × 10−1 | 9.80 × 10−2 | 5.26 × 10−2 | 1.78 × 10−2 | 1.99 × 10−1 | 1.16 × 10−1 |
RfDingestion | 0.300 | 0.300 | - | - | - | - |
RfDdermal | - | - | 0.086 | 0.086 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bella Atangana, M.S.; Ndam Ngoupayou, J.R.; Deliege, J.-F. Hydrogeochemistry and Mercury Contamination of Surface Water in the Lom Gold Basin (East Cameroon): Water Quality Index, Multivariate Statistical Analysis and Spatial Interpolation. Water 2023, 15, 2502. https://doi.org/10.3390/w15132502
Bella Atangana MS, Ndam Ngoupayou JR, Deliege J-F. Hydrogeochemistry and Mercury Contamination of Surface Water in the Lom Gold Basin (East Cameroon): Water Quality Index, Multivariate Statistical Analysis and Spatial Interpolation. Water. 2023; 15(13):2502. https://doi.org/10.3390/w15132502
Chicago/Turabian StyleBella Atangana, Marie Sorella, Jules Rémy Ndam Ngoupayou, and Jean-François Deliege. 2023. "Hydrogeochemistry and Mercury Contamination of Surface Water in the Lom Gold Basin (East Cameroon): Water Quality Index, Multivariate Statistical Analysis and Spatial Interpolation" Water 15, no. 13: 2502. https://doi.org/10.3390/w15132502
APA StyleBella Atangana, M. S., Ndam Ngoupayou, J. R., & Deliege, J. -F. (2023). Hydrogeochemistry and Mercury Contamination of Surface Water in the Lom Gold Basin (East Cameroon): Water Quality Index, Multivariate Statistical Analysis and Spatial Interpolation. Water, 15(13), 2502. https://doi.org/10.3390/w15132502