Evaluation of Water Network Construction Effect Based on Game-Weighting Matter-Element Cloud Model
Abstract
:1. Introduction
2. Study Area and Method
2.1. Study Area
2.2. DPSIR Mode
2.3. Construction of Index System
2.4. Game Theory Portfolio Empowerment
2.5. Matter-Element Cloud Model
- (1)
- Qualitative and quantitative transformation of cloud models
- (2)
- Matter-element theory
- (3)
- Cloud correlation calculation
2.6. Comprehensive Evaluation of Water Network Construction Effect
2.7. Model Data Prediction
2.8. Overall Research Design
3. Application Examples
3.1. Data Sources and Implementation Cost
3.2. Evaluation Level Division
3.3. Index Weight Calculation
3.4. Calculation and Analysis of Evaluation Results
3.4.1. Standard Cloud Computing
3.4.2. Temporal Analysis of Correlation Degree
3.4.3. Spatial Analysis of Correlation Degree
3.5. Comparative Analysis of Prediction and Planning Data
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, S.; Tang, Q.; Konar, M.; Fang, C.; Liu, H.; Liu, X.; Fu, G. Water transfer infrastructure buffers water scarcity risks to supply chains. Water Res. 2023, 229, 119442. [Google Scholar] [CrossRef] [PubMed]
- Keshavarzzadeh, A.H. Optimized water allocation in persistent severe climatic conditions: A novel metaheuristic approach. Water Res. 2022, 224, 119072. [Google Scholar] [CrossRef] [PubMed]
- Zhi, Y.; Chen, J.; Qin, T.; Wang, T.; Wang, Z.; Kang, J. Spatial Correlation Network of Water Use in the Yangtze River Delta Urban Agglomeration, China. Front. Environ. Sci. 2022, 10, 924246. [Google Scholar] [CrossRef]
- Deng, P.; Zhang, M.; Hu, Q.; Wang, L.; Bing, J. Pattern of spatio-temporal variability of extreme precipitation and flood-waterlogging process in Hanjiang River basin. Atmos. Res. 2022, 276, 106258. [Google Scholar] [CrossRef]
- Jin-Yan, L.; Lan-Bo, C.; Miao, D.; Ali, A. Water resources allocation model based on ecological priority in the arid region. Environ. Res. 2021, 199, 111201. [Google Scholar] [CrossRef]
- Zhu, M.; Li, Y.; Zhang, W.; Wang, L.; Wang, H.; Niu, L.; Hui, C.; Lei, M.; Wang, L.; Zhang, H.; et al. Determination of the direct and indirect effects of bend on the urban river ecological heterogeneity. Environ. Res. 2022, 207, 112166. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Bali, R.; Khan, H.; Mohamed, H.I.; Sharma, S.K. Improved water resource management framework for water sustainability and security. Environ. Res. 2021, 201, 111527. [Google Scholar] [CrossRef]
- Huang, Y.; Mi, F.; Wang, J.; Yang, X.; Yu, T. Water pollution incidents and their influencing factors in China during the past 20 years. Environ. Monit. Assess. 2022, 194, 182. [Google Scholar] [CrossRef]
- Qiao, Y.; Chen, Y.; Lu, H.; Zhang, J. Integrating water-related disaster and environment risks for evaluating spatial-temporal dynamics of water security in urban agglomeration. Environ. Sci. Pollut. Res. Int. 2022, 29, 58240–58262. [Google Scholar] [CrossRef]
- Shujun, B.; Jianhua, W.; Miao, L.; Xuerui, G.; Yuyan, Z. Trend and inspiration of international practice of intelligent water network. China Water Resour. 2012, 27–29. [Google Scholar]
- Nakamura, K.; Manzoni, P.; Zennaro, M.; Cano, J.-C.; Calafate, C.T. Integrating an MQTT Proxy in a LoRa-Based Messaging System for Generic Sensor Data Collection. In Ad-Hoc, Mobile, and Wireless Networks, Proceedings of the 19th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2020, Bari, Italy, 19–21 October 2020; Grieco, L.A., Boggia, G., Piro, G., Jararweh, Y., Campolo, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 282–294. [Google Scholar] [CrossRef]
- Boccadoro, P.; Santorsola, A.; Grieco, L.A. A Dual-Stack Communication System for the Internet of Drones. In Ad-Hoc, Mobile, and Wireless Networks, Proceedings of the 19th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2020, Bari, Italy, 19–21 October 2020; Grieco, L.A., Boggia, G., Piro, G., Jararweh, Y., Campolo, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 71–83. [Google Scholar] [CrossRef]
- Balaei, B.; Noy, I.; Wilkinson, S.; Potangaroa, R. Economic factors affecting water supply resilience to disasters. Socio-Econ. Plan. Sci. 2021, 76, 100961. [Google Scholar] [CrossRef]
- Cao, X.; Cyuzuzo, C.M.; Saiken, A.; Song, B. A linear additivity water resources assessment indicator by combining water quantity and water quality. Ecol. Indic. 2021, 121, 106990. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Liu, J.; Cai, H.; Wu, P.; Geng, Q.; Xu, L. Sustainability assessment of regional water resources under the DPSIR framework. J. Hydrol. 2016, 532, 140–148. [Google Scholar] [CrossRef]
- Tang, M.; Xu, W.; Zhang, C.; Shao, D.; Zhou, H.; Li, Y. Risk assessment of sectional water quality based on deterioration rate of water quality indicators: A case study of the main canal of the Middle Route of South-to-North Water Diversion Project. Ecol. Indic. 2022, 135, 108592. [Google Scholar] [CrossRef]
- Lewison, R.L.; Rudd, M.A.; Al-Hayek, W.; Baldwin, C.; Beger, M.; Lieske, S.N.; Jones, C.; Satumanatpan, S.; Junchompoo, C.; Hines, E. How the DPSIR framework can be used for structuring problems and facilitating empirical research in coastal systems. Environ. Sci. Policy 2016, 56, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Gari, S.R.; Newton, A.; Icely, J.D. A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean Coast. Manag. 2015, 103, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Relvas, H.; Miranda, A.I. Application of the DPSIR framework to air quality approaches. Air Qual. Atmos. Health 2018, 11, 1069–1079. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, L.H.; Li, H.; Fu, Q.; Li, M.; Faiz, M.A.; Ali, S.; Li, T.X.; Khan, M.I. Optimization of irrigation water use efficiency evaluation indicators based on DPSIR-ISD model. Water Supply 2020, 20, 83–94. [Google Scholar] [CrossRef]
- Liu, P.; Lü, S.; Han, Y.; Wang, F.; Tang, L. Comprehensive evaluation on water resources carrying capacity based on water-economy-ecology concept framework and EFAST-cloud model: A case study of Henan Province, China. Ecol. Indic. 2022, 143, 109392. [Google Scholar] [CrossRef]
- Yan, F.; Liu, L.; Qiao, D.Y.; Yang, T.T.; Xing, X.G.; Chen, M.S.; Zhang, Y.; Yan, W.M.; Xiao, Y. Functional Grey Relational Model in Water Quality Assessment. J. Grey Syst. 2016, 28, 89–96. [Google Scholar]
- Bu, J.H.; Li, C.H.; Wang, X.; Zhang, Y.; Yang, Z.W. Assessment and prediction of the water ecological carrying capacity in Changzhou city, China. J. Clean. Prod. 2020, 277, 109392. [Google Scholar] [CrossRef]
- Wu, J.; Tian, X.G.; Tang, Y.; Zhao, Y.J.; Hu, Y.D.; Fang, Z.L. Application of Analytic Hierarchy Process-Grey Target Theory Systematic Model in Comprehensive Evaluation of Water Environmental Quality. Water Environ. Res. 2010, 82, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Li, Q. Optimal risk allocation in alliance infrastructure projects: A social preference perspective. Front. Eng. Manag. 2022, 9, 326–336. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.; Gan, W. A new cognitive model: Cloud model. Int. J. Intell. Syst. 2009, 24, 357–375. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Y.; Lu, H.; Qiao, Y.; Peng, H.; He, P.; Zhao, Y. Cloud model driven assessment of interregional water ecological carrying capacity and analysis of its spatial-temporal collaborative relation. J. Clean. Prod. 2023, 384, 135562. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, M.; Liao, M.; Liu, F.; Xu, C. Risk assessment of renewable energy-based island microgrid using the HFLTS-cloud model method. J. Clean. Prod. 2021, 284, 125362. [Google Scholar] [CrossRef]
- Zhang, S.; Xiang, M.; Xu, Z.; Wang, L.; Zhang, C. Evaluation of water cycle health status based on a cloud model. J. Clean. Prod. 2020, 245, 118850. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, T.; Ding, Z.; Zhang, X.; Han, L. Uncertainty analysis of impact factors of eco-environmental vulnerability based on cloud theory. Ecol. Indic. 2020, 110, 105864. [Google Scholar] [CrossRef]
- Carr, E.R.; Wingard, P.M.; Yorty, S.C.; Thompson, M.C.; Jensen, N.K.; Roberson, J. Applying DPSIR to sustainable development. Int. J. Sustain. Dev. World Ecol. 2009, 14, 543–555. [Google Scholar] [CrossRef]
- Malekmohammadi, B.; Jahanishakib, F. Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecol. Indic. 2017, 82, 293–303. [Google Scholar] [CrossRef]
- Kaur, M.; Hewage, K.; Sadiq, R. Investigating the impacts of urban densification on buried water infrastructure through DPSIR framework. J. Clean. Prod. 2020, 259, 120897. [Google Scholar] [CrossRef]
- Li, X.; Zhan, J.; Lv, T.; Wang, S.; Pan, F. Comprehensive evaluation model of the urban low-carbon passenger transportation structure based on DPSIR. Ecol. Indic. 2023, 146, 109849. [Google Scholar] [CrossRef]
- Xi, H.; Chen, Y.; Zhao, X.; Sindikubwabo, C.; Cheng, W. Safety assessment of fragile environment in Badain Jaran Desert and its surrounding areas based on the DPSIR model. Ecol. Indic. 2023, 146, 109874. [Google Scholar] [CrossRef]
- Chen, H.; Xu, J.; Zhang, K.; Guo, S.; Lv, X.; Mu, X.; Yang, L.; Song, Y.; Hu, X.; Ma, Y.; et al. New insights into the DPSIR model: Revealing the dynamic feedback mechanism and efficiency of ecological civilization construction in China. J. Clean. Prod. 2022, 348, 131377. [Google Scholar] [CrossRef]
- Al-Kalbani, M.S.; Price, M.F.; O’Higgins, T.; Ahmed, M.; Abahussain, A. Integrated environmental assessment to explore water resources management in Al Jabal Al Akhdar, Sultanate of Oman. Reg. Environ. Chang. 2016, 16, 1345–1361. [Google Scholar] [CrossRef]
- Lu, W.W.; Xu, C.; Wu, J.; Cheng, S.P. Ecological effect assessment based on the DPSIR model of a polluted urban river during restoration: A case study of the Nanfei River, China. Ecol. Indic. 2019, 96, 146–152. [Google Scholar] [CrossRef]
- Goncalves, L.R.; Oliveira, M.; Turra, A. Assessing the Complexity of Social-Ecological Systems: Taking Stock of the Cross-Scale Dependence. Sustainability 2020, 12, 6236. [Google Scholar] [CrossRef]
- Wang, B.; Yu, F.; Teng, Y.G.; Cao, G.Z.; Zhao, D.; Zhao, M.Y. A SEEC Model Based on the DPSIR Framework Approach for Watershed Ecological Security Risk Assessment: A Case Study in Northwest China. Water 2022, 14, 106. [Google Scholar] [CrossRef]
- Lu, M.T.; Wang, S.Y.; Wang, X.Y.; Liao, W.H.; Wang, C.; Lei, X.H.; Wang, H. An Assessment of Temporal and Spatial Dynamics of Regional Water Resources Security in the DPSIR Framework in Jiangxi Province, China. Int. J. Environ. Res. Public Health 2022, 19, 3650. [Google Scholar] [CrossRef]
- Sun, X.; Zhu, B.K.; Zhang, S.; Zeng, H.; Li, K.; Wang, B.; Dong, Z.F.; Zhou, C.C. New indices system for quantifying the nexus between economic-social development, natural resources consumption, and environmental pollution in China during 1978-2018. Sci. Total Environ. 2022, 804, 150180. [Google Scholar] [CrossRef]
- Ruan, J.; He, G. Comprehensive evaluation of water resources security of the Huaihe Eco-economic Belt. Water Supply 2022, 22, 1047–1061. [Google Scholar] [CrossRef]
- Ding, L.; Liang, Y.Z. Cloud Computing and Internet of Things in the Evaluation of Ecological Environment Quality in Rural Tourist Areas in Smart Cities. Mob. Inf. Syst. 2021, 2021, 6295568. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, P.; Yang, Y.; Wu, X.; Guo, Z. Study on the Ecological Health Evaluation of a Geopark Based on Dpsir Conceptual Model—Illustrated by the Qianjiang Xiaonanhai National Geopark of China. Appl. Ecol. Environ. Res. 2018, 16, 3839–3859. [Google Scholar] [CrossRef]
- Dai, C.; Tang, J.; Li, Z.; Duan, Y.; Qu, Y.; Yang, Y.; Lyu, H.; Zhang, D.; Wang, Y. Index System of Water Resources Development and Utilization Level Based on Water-Saving Society. Water 2022, 14, 802. [Google Scholar] [CrossRef]
- Zhang, Y.; Khan, S.U.; Swallow, B.; Liu, W.; Zhao, M. Coupling coordination analysis of China’s water resources utilization efficiency and economic development level. J. Clean. Prod. 2022, 373, 133874. [Google Scholar] [CrossRef]
- Razmju, V.; Moeinian, K.; Rahmani, A. Risk assessment of water supply system safety based on WHOs water safety plan: Case study Semnan, Iran. Desalination Water Treat. 2019, 164, 162–170. [Google Scholar] [CrossRef]
- Guan, X.; Zhang, Y.; Meng, Y.; Liu, Y.; Yan, D. Study on the theories and methods of ecological flow guarantee rate index under different time scales. Sci. Total Environ. 2021, 771, 145378. [Google Scholar] [CrossRef]
- Renfei, J.; Ye, S.; Xiaoxuan, D.; Nini, H. Study on Evaluation Index System of City Modern Water Network. Pearl River 2017, 38, 52–55. [Google Scholar]
- He, S.W.; Song, N.; Yao, Z.B.; Jiang, H.L. An assessment of the purification performance and resilience of sponge-based aerobic biofilm reactors for treating polluted urban surface waters. Environ. Sci. Pollut. Res. 2022, 29, 45919–45932. [Google Scholar] [CrossRef]
- Qiting, Z.; Minghui, H.; Long, J.; Zhizhuo, Z. Happy River evaluation system and its application. Adv. Water Sci. 2021, 32, 45–58. [Google Scholar] [CrossRef]
- Chang, I.S.; Zhao, M.; Chen, Y.; Guo, X.; Zhu, Y.; Wu, J.; Yuan, T. Evaluation on the integrated water resources management in China’s major cities—Based on City Blueprint® Approach. J. Clean. Prod. 2020, 262, 121410. [Google Scholar] [CrossRef]
- Wu, D.; Cui, Y.; Li, D.; Chen, M.; Ye, X.; Fan, G.; Gong, L. Calculation framework for agricultural irrigation water consumption in multi-source irrigation systems. Agric. Water Manag. 2021, 244, 106603. [Google Scholar] [CrossRef]
- Zhang, C.; Peng, Z.; Tang, C.; Zhang, S. Evaluation of river longitudinal connectivity based on landscape pattern and its application in the middle and lower reaches of the Yellow River, China. Environ. Sci. Pollut. Res. Int. 2023, 30, 30779–30792. [Google Scholar] [CrossRef] [PubMed]
- Xu, X. Comprehensive Assessment of the Water Ecological Security of the Xiangjiang River Basin Based on Physico-Chemistry and Organism Indices. Appl. Ecol. Environ. Res. 2019, 17, 4547–4574. [Google Scholar] [CrossRef]
- Walz, U.; Richter, B.; Grunewald, K. Indicators on the ecosystem service “regulation service of floodplains”. Ecol. Indic. 2019, 102, 547–556. [Google Scholar] [CrossRef]
- Chen, W.; Dong, J.; Yan, C.; Dong, H.; Liu, P. What Causes Waterlogging?—Explore the Urban Waterlogging Control Scheme through System Dynamics Simulation. Sustainability 2021, 13, 8546. [Google Scholar] [CrossRef]
- Qingbin, L.; Rui, M.; Yu, H.; Zehua, H.; Yiyuan, S.; Shaowu, Z.; Jingang, M.; Zhan, A.Z.; Guangwen, G. A review of intelligent dam construction techniques. J. Tsinghua Univ. Sci. Technol. 2022, 62, 1252–1269. (In Chinese) [Google Scholar] [CrossRef]
- Peng, J.Q.; Zhang, J.M. Urban flooding risk assessment based on GIS- game theory combination weight: A case study of Zhengzhou City. Int. J. Disaster Risk Reduct. 2022, 77, 103080. [Google Scholar] [CrossRef]
- Cao, Y.Q.; Bian, Y.J. Improving the ecological environmental performance to achieve carbon neutrality: The application of DPSIR-Improved matter-element extension cloud model. J. Environ. Manag. 2021, 293, 112887. [Google Scholar] [CrossRef]
- Dong, J.; Wang, D.; Liu, D.; Ainiwaer, P.; Nie, L. Operation Health Assessment of Power Market Based on Improved Matter-Element Extension Cloud Model. Sustainability 2019, 11, 5470. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Zhou, Z.; Sun, X. A Study on Urban Road Traffic Safety Based on Matter Element Analysis. Comput. Intell. Neurosci. 2014, 2014, 458483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.S.; Li, F.Y.; Guo, X.T. Comprehensive Evaluation of the Stability of Coal Mining Subsidence Based on Fuzzy Matter-Element Theory. Adv. Mater. Res. 2011, 361–363, 241–245. [Google Scholar] [CrossRef]
- Yu, X.; He, D.; Phousavanh, P. River Health Assessment. In Balancing River Health and Hydropower Requirements in the Lancang River Basin; Yu, X., He, D., Phousavanh, P., Eds.; Springer: Singapore, 2019; pp. 13–74. [Google Scholar] [CrossRef]
Standard Layer | Index Layer | Explain |
---|---|---|
Driving force | D1: Control degree of water consumption target per 10,000 RMB of GDP [46] | The ratio of water consumption per ten thousand RMB of GDP to assessment value |
D2: Development and utilization of water resources [47] | The ratio of water supply to total water resources | |
D3: Effective use coefficient of farmland irrigation water [46] | The ratio of the actual effective use of water to the total amount of water inflow in the irrigated area, excluding deep seepage and field loss | |
D4: Water quality compliance rate of water function zone [48] | The ratio of the number of water quality up-to-standard water function areas to the total number of water function areas | |
D5: Target control degree of water consumption per 10,000 RMB of industrial added value [46] | The ratio of water consumption per 10,000 RMB of industrial added value to assessment value | |
D6: Water quality compliance rate of drinking water sources [46] | The ratio of the number of drinking water sources meeting the water quality standards to the total number of drinking water sources | |
Pressure | P1: Satisfaction rate of ecological flow in control sections of important rivers and lakes [49] | The compliance rate of the ecological flow targets determined by the main control sections in important rivers and lakes |
P2: Level 1~5 embankment compliance rate [50] | The ratio of the length of dikes of grades 1 to 5 reaching the flood control standard to the total length of dikes of grades 1 to 5 | |
P3: Elimination ratio of black and odorous water bodies in urban built-up areas [51] | The ratio of the number of black and odorous water bodies eliminated in urban built-up areas to the total number of water bodies | |
P4: Ecological embankment ratio [52] | The ratio of ecological embankment to total embankment length | |
State | S1: Water shortage rate [53] | The gap between supply and demand as a percentage of water supply |
S2: Total water consumption control compliance [46] | Comparison of water allocation and total water consumption control indicators | |
S3: Agricultural irrigation water metering [54] | The proportion of agricultural irrigation water intakes using metering facilities | |
S4: Domestic and industrial water metering rates [46] | The ratio of automatic collection sites to total collection sites | |
S5: Vertical connectivity of the river [55] | Evaluation of the number of buildings or facilities affecting river connectivity within a unit river length | |
Influence | I1: Water supply safety factor [56] | The ratio of effective water supply capacity to water supply volume |
I2: Urban water surface rate [52] | The ratio of urban water area to the total area of the region, indicating the development of urban water network area | |
I3: The degree of safety and stability of the river bank and river bed [56] | It shows that the local, temporary, and relative variation range shown by the river is generally expressed by the stability coefficient as the water and sediment conditions of the river basin change over time | |
I4: Average annual loss rate of flood disasters [57] | The ratio of the loss value of various properties or crops in the disaster-affected area to the pre-disaster value or normal value | |
I5: Storage volume siltation loss rate [57] | Total siltation loss storage capacity as a percentage of total storage capacity | |
I6: Compliance rate of waterlogging prevention and control [58] | The ratio of the area meeting the waterlogging prevention and control standard to the total area of the built-up area | |
Response | R1: Disaster prevention and emergency plan formulation rate [58] | Implementation of non-engineering measures for disaster prevention and mitigation |
R2: Coverage of important river and lake monitoring stations [59] | The proportion of important river and lake monitoring stations to total river and lake monitoring stations | |
R3: Intelligent control rate of major water conservancy projects [59] | The ratio of the number of major water conservancies projects, such as large reservoirs, dykes of level 3 and above, and major water diversion projects to achieve intelligent control in the total number of projects | |
R4: Implementation rate of the strictest water resource management [50] | Implementation of the most stringent water resource management system | |
R5: Degree of digital development [59] | Application degree of digital technology in the water network system |
Standard | Index | I (Excellent) | II (Better) | III (Pass) | IV (Bad) | V (Worse) | |
---|---|---|---|---|---|---|---|
Driving force | D1 | [95, 100] | [85, 95) | [70, 85) | [50, 70) | <50 | |
D2 | [25, 30] | [20, 25) | [10, 20) | [5, 10) | <5 | ||
D3 | [65, 100] | [60, 65) | [55, 60) | [50, 55) | <50 | ||
D4 | [95, 100] | [80, 95) | [60, 80) | [40, 60) | <40 | ||
D5 | [95, 100] | [85, 95) | [70, 85) | [50, 70) | <50 | ||
D6 | [98, 100] | [85, 98) | [75, 85) | [60, 75) | <60 | ||
Pressure | P1 | [98, 100] | [90, 98) | [80, 90) | [60, 80) | <60 | |
P2 | [95, 100] | [80, 95) | [75, 80) | [50, 75) | <50 | ||
P3 | [95, 100] | [90, 95) | [85, 90) | [70, 85) | <70 | ||
P4 | [90, 100] | [70, 90) | [50, 70) | [30, 50) | <30 | ||
State | S1 | [0, 2] | (2, 5] | (5, 10] | (10, 20] | >20 | |
S2 | Up to the standard Within 5% | Within 5% exceeding the standard | Exceeding the standard 5~10% | Exceeding the standard 10~20% | Exceeding the standard > 20% | ||
S3 | [65, 100] | [60, 65) | [55, 60) | [50, 55) | <50 | ||
S4 | [80, 100] | [70, 80) | [60, 70) | [50, 60) | <50 | ||
S5 | [0, 0.25) | [0.25, 0.5) | [0.5, 1) | [1, 1.2) | >1.2 | ||
Influence | I1 | [1.7, 2] | [1.5, 1.7) | [1.3, 1.5) | [1, 1.3) | <1 | |
I2 | North | [15, 100] | [10, 15) | [6, 10) | [4, 6) | <4 | |
South | [30, 100] | [20, 30) | [10, 20) | [6, 10) | <6 | ||
I3 | [2, 2.5] | [1.5, 2) | [1, 1.5) | [0.5, 1) | <0.5 | ||
I4 | [0, 0.15) | [0.15, 0.25) | [0.25, 0.5) | [0.5, 0.75) | >0.75 | ||
I5 | [0, 10) | [10, 15) | [15, 30) | [30, 40) | >40 | ||
I6 | [95, 100] | [90, 95) | [85, 90) | [70, 85) | <70 | ||
Response | R1 | [80, 100] | [70, 80) | [60, 70) | [50, 60) | <50 | |
R2 | [90, 100] | [80, 90) | [70, 80) | [60, 70) | <60 | ||
R3 | [90, 100] | [75, 90) | [60, 75) | [40, 60) | <40 | ||
R4 | [80, 100] | [70, 80) | [60, 70) | [50, 60) | <50 | ||
R5 | [80, 100] | [60, 80) | [30, 60) | [10, 30) | <10 |
Index Layer | Unit | Xinyang | Pingdingshan | ||||
---|---|---|---|---|---|---|---|
Objective | Subjective | Combination | Objective | Subjective | Combination | ||
D1 | % | 0.069 | 0.054 | 0.066 | 0.065 | 0.050 | 0.061 |
D2 | % | 0.016 | 0.015 | 0.016 | 0.031 | 0.049 | 0.036 |
D3 | - | 0.017 | 0.025 | 0.019 | 0.016 | 0.012 | 0.015 |
D4 | % | 0.069 | 0.068 | 0.069 | 0.050 | 0.025 | 0.042 |
D5 | % | 0.069 | 0.114 | 0.077 | 0.065 | 0.082 | 0.070 |
D6 | % | 0.069 | 0.098 | 0.074 | 0.065 | 0.053 | 0.062 |
P1 | % | 0.069 | 0.043 | 0.064 | 0.065 | 0.085 | 0.071 |
P2 | % | 0.019 | 0.007 | 0.017 | 0.015 | 0.023 | 0.017 |
P3 | % | 0.016 | 0.012 | 0.015 | 0.015 | 0.016 | 0.015 |
P4 | % | 0.017 | 0.016 | 0.017 | 0.015 | 0.028 | 0.019 |
S1 | % | 0.035 | 0.023 | 0.032 | 0.048 | 0.043 | 0.046 |
S2 | - | 0.069 | 0.046 | 0.065 | 0.065 | 0.061 | 0.064 |
S3 | % | 0.019 | 0.008 | 0.017 | 0.017 | 0.012 | 0.016 |
S4 | % | 0.019 | 0.012 | 0.017 | 0.024 | 0.021 | 0.023 |
S5 | (per 100 km) | 0.034 | 0.025 | 0.033 | 0.032 | 0.029 | 0.031 |
I1 | - | 0.021 | 0.024 | 0.021 | 0.016 | 0.016 | 0.016 |
I2 | % | 0.014 | 0.017 | 0.015 | 0.021 | 0.028 | 0.023 |
I3 | - | 0.027 | 0.030 | 0.027 | 0.043 | 0.059 | 0.048 |
I4 | % | 0.069 | 0.085 | 0.072 | 0.065 | 0.075 | 0.068 |
I5 | % | 0.037 | 0.040 | 0.038 | 0.049 | 0.060 | 0.052 |
I6 | % | 0.035 | 0.051 | 0.038 | 0.031 | 0.050 | 0.037 |
R1 | % | 0.069 | 0.059 | 0.067 | 0.065 | 0.038 | 0.057 |
R2 | % | 0.021 | 0.024 | 0.022 | 0.019 | 0.013 | 0.017 |
R3 | % | 0.069 | 0.078 | 0.070 | 0.065 | 0.048 | 0.060 |
R4 | % | 0.018 | 0.011 | 0.017 | 0.021 | 0.017 | 0.020 |
R5 | % | 0.017 | 0.015 | 0.017 | 0.016 | 0.010 | 0.014 |
Index Layer | I (Excellent) | II (Better) | III (Pass) | IV (Bad) | V (Worse) | |
---|---|---|---|---|---|---|
D1 | (97.5, 0.833, 0.008) | (90, 1.667, 0.017) | (77.5, 3.333, 0.033) | (60, 3.333, 0.033) | (25, 8.333, 0.083) | |
D2 | (27.5, 0.833, 0.008) | (22.5, 0.833, 0.008) | (15, 0.833, 0.008) | (7.5, 0.833, 0.008) | (2.5, 0.833, 0.008) | |
D3 | (82.5, 5.833, 0.011) | (62.5, 0.833, 0.008) | (57.5, 1.667, 0.017) | (55, 1.667, 0.017) | (25, 8.333, 0.083) | |
D4 | (97.5, 0.833, 0.008) | (92.5, 0.833, 0.008) | (70, 3.333, 0.033) | (50, 3.333, 0.033) | (20, 6.667, 0.067) | |
D5 | (97.5, 0.833, 0.008) | (90, 1.667, 0.017) | (77.5, 3.333, 0.033) | (60, 3.333, 0.033) | (25, 8.333, 0.083) | |
D6 | (99, 0.333, 0.003) | (91.5, 2.167, 0.022) | (80, 2.500, 0.025) | (67.5, 2.500, 0.025) | (30, 10.000, 0.100) | |
P1 | (99, 0.333, 0.003) | (94, 1.333, 0.013) | (85, 3.333, 0.033) | (70, 3.333, 0.033) | (30, 10.000, 0.100) | |
P2 | (97.5, 0.833, 0.008) | (87.5, 2.500, 0.025) | (77.5, 4.167, 0.042) | (62.5, 4.167, 0.042) | (25, 8.333, 0.083) | |
P3 | (97.5, 0.833, 0.008) | (92.5, 0.833, 0.008) | (87.5, 2.500, 0.025) | (77.5, 2.500, 0.025) | (35, 11.667, 0.117) | |
P4 | (95, 1.667, 0.017) | (80, 3.333, 0.033) | (60, 3.333, 0.033) | (40, 3.333, 0.033) | (15, 5.000, 0.050) | |
S1 | (1, 0.333, 0.003) | (3.5, 90.500, 0.005) | (7.5, 1.667, 0.017) | (15, 1.667, 0.017) | (60, 13.333, 0.133) | |
S2 | (0.5, 0.167, 0.002) | (3.0, 0.667, 0.007) | (7.5, 0.833, 0.008) | (15.0, 1.667, 0.017) | (60.0, 13.333, 0.13) | |
S3 | (82.5, 5.833, 0.058) | (62.5, 0.833, 0.008) | (57.5, 0.833, 0.008) | (52.5, 0.833, 0.008) | (25, 8.333, 0.083) | |
S4 | (90, 3.333, 0.033) | (75, 1.667, 0.017) | (65, 1.667, 0.017) | (55, 1.667, 0.017) | (25, 8.333, 0.083) | |
S5 | (0.25, 0.083, 0.001) | (0.375, 0.042, 0.00) | (0.75, 0.033, 0.000) | (1.1, 0.033, 0.000) | (1.6, 0.133, 0.001) | |
I1 | (1.85, 0.05, 0.001) | (1.6, 0.033, 0.000) | (1.4, 0.050, 0.001) | (1.15, 0.050, 0.001) | (0.5, 0.167, 0.002) | |
I2 | N | (57.5, 14.167, 0.02) | (12.5, 0.833, 0.008) | (8, 0.333, 0.003) | (5, 0.333, 0.003) | (2, 0.667, 0.007) |
S | (65, 11.667, 0.117) | (25, 1.667, 0.017) | (15, 0.667, 0.007) | (8, 0.667, 0.007) | (3, 1.000, 0.010) | |
I3 | (2.25, 0.083, 0.001) | (1.75, 0.083, 0.001) | (1.25, 0.083, 0.001) | (0.75, 0.083, 0.001) | (0.25, 0.083, 0.001) | |
I4 | (0.075, 0.025, 0.00) | (0.2, 0.017, 0.000) | (0.375, 0.042, 0.00) | (0.625, 0.042, 0.00) | (0.375, 0.13, 0.001) | |
I5 | (5, 1.667, 0.017) | (12.5, 0.833, 0.008) | (22.5, 1.667, 0.017) | (35, 1.667, 0.017) | (70, 10.000, 0.100) | |
I6 | (97.5, 0.833, 0.008) | (92.5, 0.833, 0.008) | (87.5, 2.500, 0.025) | (77.5, 2.500, 0.025) | (35, 11.667, 0.117) | |
R1 | (90, 3.333, 0.033) | (75, 1.667, 0.017) | (65, 1.667, 0.017) | (55, 1.667, 0.017) | (25, 8.333, 0.083) | |
R2 | (95, 1.667, 0.017) | (85, 1.667, 0.017) | (75, 1.667, 0.017) | (65, 1.667, 0.017) | (30, 10.000, 0.100) | |
R3 | (95, 1.667, 0.017) | (82.5, 2.500, 0.025) | (67.5, 3.333, 0.033) | (50, 3.333, 0.033) | (20, 6.667, 0.067) | |
R4 | (90, 3.333, 0.033) | (75, 1.667, 0.017) | (65, 1.667, 0.017) | (55, 1.667, 0.017) | (25, 8.333, 0.083) | |
R5 | (90, 3.333, 0.033) | (70, 3.333, 0.033) | (45, 3.333, 0.033) | (20, 3.333, 0.033) | (5, 1.667, 0.017) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Zhang, P.; Huang, X.; Li, H.; Du, X.; Fei, X. Evaluation of Water Network Construction Effect Based on Game-Weighting Matter-Element Cloud Model. Water 2023, 15, 2507. https://doi.org/10.3390/w15142507
Li F, Zhang P, Huang X, Li H, Du X, Fei X. Evaluation of Water Network Construction Effect Based on Game-Weighting Matter-Element Cloud Model. Water. 2023; 15(14):2507. https://doi.org/10.3390/w15142507
Chicago/Turabian StyleLi, Feng, Pengchao Zhang, Xin Huang, Huimin Li, Xuewan Du, and Xiaoxia Fei. 2023. "Evaluation of Water Network Construction Effect Based on Game-Weighting Matter-Element Cloud Model" Water 15, no. 14: 2507. https://doi.org/10.3390/w15142507
APA StyleLi, F., Zhang, P., Huang, X., Li, H., Du, X., & Fei, X. (2023). Evaluation of Water Network Construction Effect Based on Game-Weighting Matter-Element Cloud Model. Water, 15(14), 2507. https://doi.org/10.3390/w15142507