Rainfall-Induced Landslide Assessment under Different Precipitation Thresholds Using Remote Sensing Data: A Central Andes Case
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Zone
2.2. Methodology
2.2.1. Data
2.2.2. Model Training and Validation
2.2.3. Spatial and Temporal Assessment
3. Results
3.1. Model Training and Validation
3.2. Spatial and Temporal Assessment
4. Analysis and Discussion
4.1. Modeling
4.2. Spatial and Temporal Assessment
4.3. Implications of the Study
4.4. Future Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeanneret, P.; Moreiras, S.M. Inventario de procesos de remoción en masa en la cuenca baja del Río Blanco (31ºS), Andes Centrales Argentinos. Rev. Mex. De Cienc. Geológicas 2018, 35, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Moreiras, S.M.; Jeanneret, P.; Lauro, C.; Vergara Dal Pont, I.; Correas González, M.; Junquera Torrado, S. Deslizamientos asociados a la degradación del permafrost: Evidencias geomorfológicas en el pasado y presente en los Andes Centrales (31–34° S). Geo UERJ 2019, 35, e45036. [Google Scholar] [CrossRef]
- Sepúlveda, S.A.; Alfaro, A.; Lara, M.; Carrasco, J.; Olea-Encina, P.; Rebolledo, S.; Garcés, M. An active large rock slide in the Andean paraglacial environment: The Yerba Loca landslide, central Chile. Landslides 2020, 18, 697–705. [Google Scholar] [CrossRef]
- Hermanns, R.L.; Folguera, A.; Penna, I.; Fauqué, L.; Niedermann, S. Landslide Dams in the Central Andes of Argentina (Northern Patagonia and the Argentine Northwest). 2010, pp. 147–176. Available online: https://www.researchgate.net/publication/225556828_Landslide_Dams_in_the_Central_Andes_of_Argentina_Northern_Patagonia_and_the_Argentine_Northwest (accessed on 11 May 2023).
- Kirschbaum, D.; Stanley, T.; Zhou, Y. Spatial and temporal analysis of a global landslide catalog. Geomorphology 2015, 249, 4–15. [Google Scholar] [CrossRef]
- Brenning, A.; Schwinn, M.; Ruiz-Páez, A.P.; Muenchow, J. Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province. Nat. Hazards Earth Syst. Sci. 2015, 15, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Soto, J.; Palenzuela, J.A.; Galve, J.P.; Luque, J.A.; Azañón, J.M.; Tamay, J.; Irigaray, C. Estimation of empirical rainfall thresholds for landslide triggering using partial duration series and their relation with climatic cycles. An application in southern Ecuador. Bull. Eng. Geol. Environ. 2017, 78, 1971–1987. [Google Scholar] [CrossRef]
- Gariano, S.; Brunetti, M.; Iovine, G.; Melillo, M.; Peruccacci, S.; Terranova, O.; Vennari, C.; Guzzetti, F. Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 2015, 228, 653–665. [Google Scholar] [CrossRef]
- Marra, F.; Destro, E.; Nikolopoulos, E.I.; Zoccatelli, D.; Creutin, J.D.; Guzzetti, F.; Borga, M. Impact of rainfall spatial aggregation on the identification of debris flow occurrence thresholds. Hydrol. Earth Syst. Sci. 2017, 21, 4525–4532. [Google Scholar] [CrossRef] [Green Version]
- Harrison, L.; Landsfeld, M.; Husak, G.; Davenport, F.; Shukla, S.; Turner, W.; Peterson, P.; Funk, C. Advancing early warning capabilities with CHIRPS-compatible NCEP GEFS precipitation forecasts. Sci. Data 2022, 9, 1–13. [Google Scholar] [CrossRef]
- Fustos-Toribio, I.; Manque-Roa, N.; Antipan, D.V.; Sotomayor, M.H.; Gonzalez, V.L. Rainfall-induced landslide early warning system based on corrected mesoscale numerical models: An application for the southern Andes. Nat. Hazards Earth Syst. Sci. 2022, 22, 2169–2183. [Google Scholar] [CrossRef]
- Zambrano-Bigiarini, M.; Soto, C.; Baez-Villanueva, O. Spatially-distributed IDF curves for Center-Southern Chile using IMERG. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 3–8 May 2020; European Geosciences Union: Vienna, Austria, 2020. [Google Scholar]
- Zambrano-Bigiarini, M.; Nauditt, A.; Birkel, C.; Verbist, K.; Ribbe, L. Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile. Hydrol. Earth Syst. Sci. 2017, 21, 1295–1320. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas, N.Y.; Mera, E.E. Landslide susceptibility analysis using remote sensing and GIS in the western Ecuadorian Andes. Nat. Hazards 2016, 81, 1829–1859. [Google Scholar] [CrossRef] [Green Version]
- Fustos, I.; Remy, D.; Abarca-Del-Rio, R.; Muñoz, A. Slow movements observed with in situ and remote-sensing techniques in the central zone of Chile. Int. J. Remote Sens. 2017, 38, 7514–7530. [Google Scholar] [CrossRef]
- Fustos, I.; Abarca-Del-Río, R.; Mardones, M.; González, L.; Araya, L. Rainfall-induced landslide identification using numerical modelling: A southern Chile case. J. S. Am. Earth Sci. 2020, 101, 102587. [Google Scholar] [CrossRef]
- Orejuela, I.P.; Toulkeridis, T. Evaluation of the susceptibility to landslides through diffuse logic and analytical hierarchy process (AHP) between Macas and Riobamba in Central Ecuador. In Proceedings of the 7th International Conference on eDemocracy and eGovernment, ICEDEG, Buenos Aires, Argentina, 22–24 April 2020; pp. 201–207. [Google Scholar] [CrossRef]
- Rossi, M.; Reichenbach, P. LAND-SE: A software for statistically based landslide susceptibility zonation, version 1.0. Geosci. Model Dev. 2016, 9, 3533–3543. [Google Scholar] [CrossRef] [Green Version]
- Sepulveda, N.; Jara, C. Efectos geológicos del sistema frontal de la zona central del pais, 14–18 abril de 2016. In Región Metropolitana, Comuna de San José de Maipo; Servicio Nacional de Geología y Minería: Santiago, Chile, 2016; Available online: https://portalgeo.sernageomin.cl/Informes_PDF_Nac/RM-2016-01.pdf (accessed on 11 May 2023).
- Althuwaynee, O.F.; Pradhan, B. Semi-quantitative landslide risk assessment using GIS-based exposure analysis in Kuala Lumpur City. Geomat. Nat. Hazards Risk 2016, 8, 706–732. [Google Scholar] [CrossRef] [Green Version]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Moosavi, V.; Niazi, Y. Development of hybrid wavelet packet-statistical models (WP-SM) for landslide susceptibility mapping. Landslides 2015, 13, 97–114. [Google Scholar] [CrossRef]
- Hervás, J.; Bobrowsky, P. Mapping: Inventories, Susceptibility, Hazard and Risk. Landslides Disaster Risk Reduct. 2008, 321–349. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, S.; Park, S.; Sharma, J. Influence of rainfall-induced wetting on the stability of slopes in weathered soils. Eng. Geol. 2004, 75, 251–262. [Google Scholar] [CrossRef]
- Sepúlveda, S.A.; Petley, D.N. Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Nat. Hazards Earth Syst. Sci. 2015, 15, 1821–1833. [Google Scholar] [CrossRef] [Green Version]
- B, A.S.; Franco, J.P.; Pineda, C.E.R. Metodología para evaluación de riesgo por flujo de detritos detonados por lluvia: Caso Útica, Cundinamarca, Colombia. Obras y Proy. 2016, 20, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Poveda, G.; Espinoza, J.C.; Zuluaga, M.D.; Solman, S.A.; Garreaud, R.; van Oevelen, P.J. High Impact Weather Events in the Andes. Front. Earth Sci. 2020, 8, 162. [Google Scholar] [CrossRef]
- Trauth, M.H.; A Alonso, R.; Haselton, K.R.; Hermanns, R.L.; Strecker, M.R. Climate change and mass movements in the NW Argentine Andes. Earth Planet. Sci. Lett. 2000, 179, 243–256. [Google Scholar] [CrossRef]
- Calderón-Guevara, W.; Sánchez-Silva, M.; Nitescu, B.; Villarraga, D.F. Comparative review of data-driven landslide susceptibility models: Case study in the Eastern Andes mountain range of Colombia. Nat. Hazards 2022, 113, 1105–1132. [Google Scholar] [CrossRef]
- Mergili, M.; Santiago, C.I.M.; Moreiras, S.M. Causas, características e impacto de los procesos de remoción en masa, en áreas contrastantes de la región Andina. Cuad. De Geogr. Rev. Colomb. De Geogr. 2015, 24, 113–131. [Google Scholar] [CrossRef]
- Moreiras, S.M. Climatic effect of ENSO associated with landslide occurrence in the Central Andes, Mendoza Province, Argentina. Landslides 2005, 2, 53–59. [Google Scholar] [CrossRef]
- Arriagada, C.; Ferrando, R.; Córdova, L.; Morata, D.; Roperch, P. El Oroclino del Maipo: Un rasgo estructural de primer orden en la evolución geodinámica Mioceno a Reciente en los Andes de Chile central. Andean Geol. 2013, 40, 419–437. [Google Scholar] [CrossRef] [Green Version]
- Martínez, F.; Arriagada, C.; Peña, M.; Deckart, K.; Charrier, R. Tectonic styles and crustal shortening of the Central Andes “Pampean” flat-slab segment in northern Chile (27–29°S). Tectonophysics 2016, 667, 144–162. [Google Scholar] [CrossRef]
- Levi, B.; Nyström, J.; Thiele, R.; Åberg, G. Geochemical trends in Mesozoic-Tertiary volcanic rocks from the Andes in central Chile, and tectonic implications. J. S. Am. Earth Sci. 1988, 1, 63–74. [Google Scholar] [CrossRef]
- Giambiagi, L.B.; Ramos, V.A.; Godoy, E.; Alvarez, P.P.; Orts, S. Cenozoic deformation and tectonic style of the Andes, between 33° and 34° south latitude. Tectonics 2003, 22, 1041. [Google Scholar] [CrossRef]
- Angillieri, M.Y.E.; Villarroel, C.D.; Ocaña, R.E.; Forte, A.P. Examples of landslide dams and their stability in the Blanco River basin. Central Andes, San Juan Argentina. J. S. Am. Earth Sci. 2022, 118, 103946. [Google Scholar] [CrossRef]
- Lavenu, A.; Cembrano, J. Deformacion compresiva cuaternaria en la Cordillera Principal de Chile central (Cajon del Maipo, este de Santiago).Quaternary compressional deformation in the Main Cordillera of Central Chile (Cajon del Maipo, east of Santiago). Andean Geol. 2008, 35, 233–252. [Google Scholar] [CrossRef]
- Felipe, A.; Susana, L.; Alejandro, S.; Cristóbal, G.; Rodrigo, G. Geoquímica de Fluidos y Mineralogía Asociada a Zonas de Alteración y Depósitos Termales Secundarios, Cajón del Maipo, Región Metropolitana, Chile. La Serena: 2015. Available online: https://www.researchgate.net/publication/293654733_Geoquimica_de_fluidos_y_mineralogia_asociada_a_zonas_de_alteracion_y_depositos_termales_secundarios_Cajon_del_Maipo_Region_Metropolitana_Chile (accessed on 11 May 2023).
- Alvarez-Garreton, C.; Mendoza, P.A.; Boisier, J.P.; Addor, N.; Galleguillos, M.; Zambrano-Bigiarini, M.; Lara, A.; Puelma, C.; Cortes, G.; Garreaud, R.; et al. The CAMELS-CL dataset: Catchment attributes and meteorology for large sample studies— Chile dataset. Hydrol. Earth Syst. Sci. 2018, 22, 5817–5846. [Google Scholar] [CrossRef] [Green Version]
- Sepúlveda, S.; Moreiras, S. Large volume landslides in the Central Andes of Chile and Argentina (32°–34°S) and related hazards. Ital. J. Eng. Geol. Environ. 2016, 287–294. [Google Scholar] [CrossRef]
- Lara, M.; Sepúlveda, S.A.; Celis, C.; Rebolledo, S.; Ceballos, P. Landslide susceptibility maps of Santiago city Andean foothills, Chile. Andean Geol. 2018, 45, 433. [Google Scholar] [CrossRef] [Green Version]
- Gajardo, A. Reconocimiento Geológico de los Eventos de Remoción en Masa Ocurridos el 21 de enero de 2013, en el Cajón del Maipo, Región Metropolitana. Región Metropolitana: 2013. Available online: https://portalgeo.sernageomin.cl/Informes_PDF_Nac/RM-2013-08.pdf (accessed on 11 May 2023).
- Marchi, L. Linking Debris Flows and Landslides to Large Floods in Gravel-Bed Rivers. In Gravel-Bed Rivers. Chichester; John Wiley & Sons, Ltd.: London, UK, 2017; pp. 467–495. [Google Scholar] [CrossRef]
- Rabby, Y.W.; Ishtiaque, A.; Rahman, M. Evaluating the Effects of Digital Elevation Models in Landslide Susceptibility Mapping in Rangamati District, Bangladesh. Remote Sens. 2020, 12, 2718. [Google Scholar] [CrossRef]
- Yang, L.; Meng, X.; Zhang, X. SRTM DEM and its application advances. Int. J. Remote Sens. 2011, 32, 3875–3896. [Google Scholar] [CrossRef]
- Asaka, T.; Iwashita, K.; Kudou, K.; Aoyama, S.; Yamamoto, Y. Change detection method for landslide area using RGB color composite image of SRTM and ALOS/PALSAR InSAR DEM: A case study of the Iwate-Miyagi Nairiku Earthquake in 2008. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 1977–1980. [Google Scholar] [CrossRef]
- Van Westen, C. Geo-Information tools for landslide risk assessment: An overview of recent developments. Landslides Eval. Stab. 2004, 1, 39–56. [Google Scholar] [CrossRef]
- Shou, K.-J.; Yang, C.-M. Predictive analysis of landslide susceptibility under climate change conditions—A study on the Chingshui River Watershed of Taiwan. Eng. Geol. 2015, 192, 46–62. [Google Scholar] [CrossRef]
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Otto, M.; Scherer, D. Atmospheric triggering conditions and climatic disposition of landslides in Kyrgyzstan and Tajikistan at the beginning of the 21st century. Nat. Hazards Earth Syst. Sci. 2021, 21, 2125–2144. [Google Scholar] [CrossRef]
- Riazi, M.; Khosravi, K.; Shahedi, K.; Ahmad, S.; Jun, C.; Bateni, S.M.; Kazakis, N. Enhancing flood susceptibility modeling using multi-temporal SAR images, CHIRPS data, and hybrid machine learning algorithms. Sci. Total. Environ. 2023, 871, 162066. [Google Scholar] [CrossRef] [PubMed]
- Mengistu, A.G.; Woldesenbet, T.A.; Dile, Y.T. Evaluation of observed and satellite-based climate products for hydrological simulation in data-scarce Baro -Akob River Basin, Ethiopia. Ecohydrol. Hydrobiol. 2021, 22, 234–245. [Google Scholar] [CrossRef]
- Neeti, N.; Murali, C.A.; Chowdary, V.; Rao, N.; Kesarwani, M. Integrated meteorological drought monitoring framework using multi-sensor and multi-temporal earth observation datasets and machine learning algorithms: A case study of central India. J. Hydrol. 2021, 601, 126638. [Google Scholar] [CrossRef]
- Dahal, A.; Lombardo, L. Explainable artificial intelligence in geoscience: A glimpse into the future of landslide susceptibility modeling. Comput. Geosci. 2023, 176, 105364. [Google Scholar] [CrossRef]
- Gómez, D.; Aristizábal, E.; García, E.F.; Marín, D.; Valencia, S.; Vásquez, M. Landslides forecasting using satellite rainfall estimations and machine learning in the Colombian Andean region. J. S. Am. Earth Sci. 2023, 125, 104293. [Google Scholar] [CrossRef]
- Hagle, T.M.; Ii, G.E.M. Goodness-of-Fit Measures for Probit and Logit. Am. J. Politi- Sci. 1992, 36, 762. [Google Scholar] [CrossRef]
- Mccullagh, P.; Nelder, J. Generalized Linear Models; Routledge: Abingdon, UK, 2019. [Google Scholar] [CrossRef]
- Fawcett, T. An Introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Angillieri, M.Y.E. Debris flow susceptibility mapping using frequency ratio and seed cells, in a portion of a mountain international route, Dry Central Andes of Argentina. Catena 2020, 189, 104504. [Google Scholar] [CrossRef]
- Metz, C.E. Basic Principles of ROC Analysis. 2018. Available online: http://gim.unmc.edu/dxtests/ROC1.htm (accessed on 4 May 2018).
- Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeMARIS, A. Explained Variance in Logistic Regression. Sociol. Methods Res. 2002, 31, 27–74. [Google Scholar] [CrossRef]
- Piciullo, L.; Calvello, M.; Cepeda, J.M. Territorial early warning systems for rainfall-induced landslides. Earth Sci. Rev. 2018, 179, 228–247. [Google Scholar] [CrossRef]
- Pineda, M.C.; Viloria, J.; Martínez-Casasnovas, J.A. Landslides susceptibility change over time according to terrain conditions in a mountain area of the tropic region. Environ. Monit. Assess. 2016, 188, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bragagnolo, L.; da Silva, R.V.; Grzybowski, J.M.V. Artificial neural network ensembles applied to the mapping of landslide susceptibility. CATENA 2020, 184, 104240. [Google Scholar] [CrossRef]
- Ortiz, J.A.V.; Martínez-Graña, A.M. A neural network model applied to landslide susceptibility analysis (Capitanejo, Colombia). Geomat. Nat. Hazards Risk 2018, 9, 1106–1128. [Google Scholar] [CrossRef] [Green Version]
- Azarafza, M.; Azarafza, M.; Akgün, H.; Atkinson, P.M.; Derakhshani, R. Deep learning-based landslide susceptibility mapping. Sci. Rep. 2021, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Huang, L.; Fan, L.; Huang, J.; Huang, F.; Chen, J.; Zhang, Z.; Wang, Y. Landslide Susceptibility Prediction Modeling Based on Remote Sensing and a Novel Deep Learning Algorithm of a Cascade-Parallel Recurrent Neural Network. Sensors 2020, 20, 1576. [Google Scholar] [CrossRef] [Green Version]
- Sepúlveda, S.A.; Moreiras, S.; Lara, M.; Alfaro, A. Debris flows in the Andean ranges of central Chile and Argentina triggered by 2013 summer storms: Characteristics and consequences. Landslides 2014, 12, 115–133. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, L.; Li, H.; Wang, L.; Cheng, L.; Zhou, T.; Chen, X. Probabilistic stability analysis of Bazimen landslide with monitored rainfall data and water level fluctuations in Three Gorges Reservoir, China. Front. Struct. Civ. Eng. 2020, 14, 1247–1261. [Google Scholar] [CrossRef]
- Piquer, J.; Rivera, O.; Yáñez, G.; Oyarzún, N. The Piuquencillo fault system: A long-lived, Andean-transverse fault system and its relationship with magmatic and hydrothermal activity. Solid Earth 2021, 12, 253–273. [Google Scholar] [CrossRef]
- Rao, G.V.; Reddy, K.V.; Sridhar, V.; Srinivasan, R.; Umamahesh, N.; Pratap, D. Evaluation of NCEP-GFS-based Rainfall forecasts over the Nagavali and Vamsadhara basins in India. Atmospheric Res. 2022, 278, 106326. [Google Scholar] [CrossRef]
- Michalakes, J.; Dudhia, J.; Gill, D.; Henderson, T.; Klemp, J.; Skamarock, W.; Wang, W. The Weather Research and Forecast Model: Software Architecture and Performance. 2005. Available online: https://www.researchgate.net/publication/213880051_The_Weather_Reseach_and_Forecast_Model_Software_Architecture_and_Performance (accessed on 11 May 2023).
- Ling, S.; Zhao, S.; Huang, J.; Zhang, X. Landslide susceptibility assessment using statistical and machine learning techniques: A case study in the upper reaches of the Minjiang River, southwestern China. Front. Earth Sci. 2022, 10, 986172. [Google Scholar] [CrossRef]
A.U.C. | Calibration | Validation |
---|---|---|
Logit | 0.7965 | 0.6021 |
Probit | 0.7908 | 0.6055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maragaño-Carmona, G.; Fustos Toribio, I.J.; Descote, P.-Y.; Robledo, L.F.; Villalobos, D.; Gatica, G. Rainfall-Induced Landslide Assessment under Different Precipitation Thresholds Using Remote Sensing Data: A Central Andes Case. Water 2023, 15, 2514. https://doi.org/10.3390/w15142514
Maragaño-Carmona G, Fustos Toribio IJ, Descote P-Y, Robledo LF, Villalobos D, Gatica G. Rainfall-Induced Landslide Assessment under Different Precipitation Thresholds Using Remote Sensing Data: A Central Andes Case. Water. 2023; 15(14):2514. https://doi.org/10.3390/w15142514
Chicago/Turabian StyleMaragaño-Carmona, Gonzalo, Ivo J. Fustos Toribio, Pierre-Yves Descote, Luis F. Robledo, Diego Villalobos, and Gustavo Gatica. 2023. "Rainfall-Induced Landslide Assessment under Different Precipitation Thresholds Using Remote Sensing Data: A Central Andes Case" Water 15, no. 14: 2514. https://doi.org/10.3390/w15142514
APA StyleMaragaño-Carmona, G., Fustos Toribio, I. J., Descote, P. -Y., Robledo, L. F., Villalobos, D., & Gatica, G. (2023). Rainfall-Induced Landslide Assessment under Different Precipitation Thresholds Using Remote Sensing Data: A Central Andes Case. Water, 15(14), 2514. https://doi.org/10.3390/w15142514