N2O Emissions from Saline Soils in Response to Organic–Inorganic Fertilizer Application under Subsurface Drainage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sampling and Measurement
2.4. Statistical Analysis
3. Results and Analysis
3.1. N2O Emission Flux and Accumulative N2O Emission
3.2. Soil Chemical Indicators
3.3. Crop Yield and Nitrogen Uptake
3.4. Correlation between N2O Emissions and Possible Influencing Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ni, B.; Xu, X.; Zhang, W.; Yang, X.; Liu, R.; Wang, L.; Wu, W.; Meng, F. Reduced fertilization mitigates N2O emission and drip irrigation has no impact on N2O and NO emissions in plastic-shed vegetable production in northern China. Sci. Total Environ. 2022, 824, 153976. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2013: The Physical Science Basis, C2, C6, C8; Cambridge University Press: London, UK, 2013; pp. 159–254, 473–552, 677–731. [Google Scholar]
- Reay, D.S.; Davidson, E.A.; Smith, K.A.; Smith, P.; Melillo, J.M.; Dentener, F.; Crutzen, P.J. Global agriculture and nitrous oxide emissions. Nat. Clim. Change 2012, 2, 410–416. [Google Scholar] [CrossRef]
- Hou, M.; Shao, X. Optimization of irrigation-drainage scheme for tomato crop based on multi-index analysis and projection pursuit model. Zemdirb. Agric. 2016, 103, 221–228. [Google Scholar] [CrossRef]
- Hou, M.; Zhu, L.; Jin, Q. Surface Drainage and Mulching Drip-Irrigated Tomatoes Reduces Soil Salinity and Improves Fruit Yield. PLoS ONE 2016, 11, 0154799. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Lin, Z.; Chen, J.; Zhai, Y.; Jin, Q.; Zhong, F. Optimization on theBuried Depth of Subsurface Drainage under Greenhouse Condition Based on Entropy Evaluation Method. Entropy 2018, 20, 859. [Google Scholar] [CrossRef]
- Chang, T.-T.; Shao, X.-H.; Zhang, J.; Mao, J.-G.; Wei, Y.-G.; Yin, C.; Wang, W.-N. Effects of bio-organic fertilizer application combined with subsurface drainage in secondary salinized greenhouse soil. J. Food Agric. Environ. 2013, 11, 457–460. [Google Scholar]
- Kong, D.; Shi, H.B. Deficit irrigation effects on growth and yield of sunflower in saline soil. J. Exp. Bot. 2003, 54, 11. [Google Scholar]
- Wan, S.Q.; Jiao, Y.P.; Kang, Y.H.; Jiang, S.F.; Tan, J.L.; Liu, W.; Meng, J. Growth and yield of oleic sunflower (Helianthus annuus L.) under drip irrigation in very strongly saline soils. Irrig. Sci. 2013, 31, 943–957. [Google Scholar] [CrossRef]
- Shao, X.H.; Hou, M.M.; Chen, L.H.; Chang, T.T.; Wang, W.N. Evaluation of Subsurface Drainage Design Based on Projection Pursuit. Energy Procedia 2012, 16, 747–752. [Google Scholar] [CrossRef]
- He, B.; Jin, Q.; Gao, X.; Zhu, L.; Luo, L. Combined effects of subsurface drainage and organic fertilizer application on the nutrient loss in coastal saline soil. Fresenius Environ. Bull. 2017, 26, 3644–3653. [Google Scholar]
- Shao, Y.; Chen, J.; Wang, L.; Hou, M.; Chen, D. Effects of fermented organic fertilizer application on soil N2O emission under the vegetable rotation in polyhouse. Environ. Res. 2021, 200, 111491. [Google Scholar] [CrossRef]
- Bi, Z.-C.; Zhang, H.-X.; Fang, G.; Guo, S.; Zheng, Q.X. Effects of combined organic and inorganic fertilizers on N2O emissions in intensified vegetable field. J. Plant Nutr. Fertil. 2017, 23, 154–161. (In Chinese) [Google Scholar]
- Hao, X.-Y.; Gao, W.; Huang, Y.-J.; Jin, J.Y.; Shao, W.H.; Tang, J.W.; Zhi, Q.Z. Effects of combined application of organic manure and chemical fertilizers on N2O emission from greenhouse vegetable soil. Plant Nutr. Fertil. Sci. 2012, 18, 1073–1085. (In Chinses) [Google Scholar]
- Lu, J.J.; Nie, Y.F.; Jing, W.J. Effects of different nitrogen application measures on NH3 volatilization and N2O emissions in a wolfberry orchard. J. Agro-Environ. Sci. 2022, 41, 210–220. [Google Scholar]
- Shi, Y.-L.; Liu, X.-R.; Gao, P.-L.; Zhang, Q.-W.; Zhang, A.-P.; Yang, Z.-L. Effects of Biochar and Organic Fertilizer on Saline-alkali Soil N2O Emission in the North China Plain. Huan Jing Ke Xue=Huanjing Kexue 2017, 38, 5333–5343. [Google Scholar] [PubMed]
- Wang, S.; Lv, R.; Yin, X.; Feng, P.; Hu, K. Effect of Ratio of Organic Manure/Chemical Fertilizer on Vegetables’ Growth, Soil Properties and Greenhouse Gas Emission under Greenhouse and Open Field Conditions; Nanjing Agricultural University: Nanjing, China, 2013. [Google Scholar]
- Hou, M.; Shao, X.; Jin, Q.; Gao, X. A N-15 tracing technique-based analysis of the fate of fertilizer N: A 4-year case study in eastern China. Arch. Agron. Soil Sci. 2017, 63, 74–83. [Google Scholar] [CrossRef]
- Hou, M.; Jin, Q.; Wu, X.; Yao, Y.; Zhang, Z. Impact of top-pruning time on the fertilizer N use efficiency of flue-cured tobacco as assessed by N-15 tracing technique. Arch. Agron. Soil Sci. 2017, 63, 1324–1335. [Google Scholar] [CrossRef]
- Hou, M.; Xu, R.; Lin, Z.; Xi, D.; Wang, Y.; Wen, J.; Nie, S.A.; Zhong, F. Vertical characteristics of anaerobic oxidation of ammonium (anammox) in a coastal saline-alkali field. Soil Tillage Res. 2020, 198, 104531. [Google Scholar] [CrossRef]
- Azhar, A.H. Impact of subsurface drainage on soil salinity in pakistan. J. Anim. Plant Sci. 2010, 20, 94–98. [Google Scholar]
- Wang, Z.; Heng, T.; Li, W.; Zhang, J.; Zhangzhong, L. Effects of subsurface pipe drainage on soil salinity in saline-sodic soil under mulched drip irrigation. Irrig. Drain. 2020, 69, 95–106. [Google Scholar] [CrossRef]
- Wang, S.H.; Tao, W.; Liang, S.; Zhang, X.B.; Sun, N.; Xu, M.G. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain. Sci. Agric. Sin. 2022, 55, 1159–1171. [Google Scholar]
- Yan, P.; Zhang, J.; Shen, J.L.; Zhu, X.; Wang, W.; Wang, J.; Wu, J.S. Effects of combined application of organic and chemical fertilizers on N2O emission and NH3 volatilization in protected vegetable soils. Res. Agric. Mod. 2023, 44, 12–21. [Google Scholar]
- Liu, G.; Xiao, J.; Gao, M.; Sun, B.; Zhang, S.; Yang, X.; Feng, H.; Zhang, T. Effects of long-term fertilization on nirS type denitrifying bacteria in soil and its relationship with N2O emissions. Res. Soil Water Conserv. 2022, 29, 99–105. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Z.; Ding, W.; Luo, Y.; Yu, H.; Xu, Y.; Müller, C.; Xu, X.; Zhu, T. Nitrous oxide emissions from cultivated black soil: A case study in Northeast China and global estimates using empirical model. Glob. Biogeochem. Cycles 2014, 28, 1311–1326. [Google Scholar] [CrossRef]
- Marquina, S.; Perez, T.; Donoso, L.; Giuliante, A.; Rasse, R.; Herrera, F. NO, N2O and CO2 soil emissions from Venezuelan corn fields under tillage and no-tillage agriculture. Nutr. Cycl. Agroecosyst. 2015, 101, 123–137. [Google Scholar] [CrossRef]
- Verhoeven, E.; Decock, C.; Barthel, M.; Bertora, C.; Sacco, D.; Romani, M.; Sleutel, S.; Six, J. Nitrification and coupled nitrification-denitrification at shallow depths are responsible for early season N2O emissions under alternate wetting and drying management in an Italian rice paddy system. Soil Biol. Biochem. 2018, 120, 58–69. [Google Scholar] [CrossRef]
- Wen, H.Y.; Jiao, Y.; Yang, M.D.; Bai, S.G.; Gu, P. Studies on emission pathways of nitrous oxide from different salinization soils. J. Agro-Environ. Sci. 2016, 35, 2026–2033. (In Chinese) [Google Scholar] [CrossRef]
- Reddy, N.; Crohn, D.M. Effects of soil salinity and carbon availability from organic amendments on nitrous oxide emissions. Geoderma 2014, 235–236, 363–371. [Google Scholar] [CrossRef]
- Binzhe, L.; He, S.; Wenchao, C.; Yajing, W.; Jingsheng, C.; Jingheng, G. Responses of soil organic carbon stock to animal manure application: A new global synthesis integrating the impacts of agricultural managements and environmental conditions. Glob. Change Biol. 2021, 27, 5356–5367. [Google Scholar]
- Huang, Y.; Zou, J.W.; Zheng, X.H.; Wang, Y.S.; Xu, X.K. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biol. Biochem. 2004, 36, 973–981. [Google Scholar] [CrossRef]
- Toma, Y.; Hatano, R. Effect of crop residue C:N ratio on N2O emissions from Gray Lowland soil in Mikasa, Hokkaido, Japan. Soil Sci. Plant Nutr. 2007, 53, 198–205. [Google Scholar] [CrossRef]
- Yao, Z.; Yan, G.; Ma, L.; Wang, Y.; Zhang, H.; Zheng, X.; Wang, R.; Liu, C.; Wang, Y.; Zhu, B.; et al. Soil C/N ratio is the dominant control of annual N2O fluxes from organic soils of natural and semi-natural ecosystems. Agric. For. Meteorol. 2022, 327, 109198. [Google Scholar] [CrossRef]
- Sang, J.H.; Lakshani, T.; Chamindu, K.; Shen, Y.; Li, Y. Drying and rewetting cycles increased soil carbon dioxide rather than nitrous oxide emissions: A meta-analysis. J. Environ. Manag. 2022, 324, 116391. [Google Scholar] [CrossRef]
- Li, Y.; Moinet, G.Y.; Clough, T.J.; Whitehead, D. Organic matter contributions to nitrous oxide emissions folloing nitrate addition are not proportional to substrate-induced soil carbon priming. Sci. Total Environ. 2022, 851, 158274. [Google Scholar] [CrossRef] [PubMed]
- Alzamel, N.M.; Taha, E.M.M.; Bakr, A.A.A.; Loutfy, N. Effect of Organic and Inorganic Fertilizers on Soil Properties, Growth Yield, and Physiochemical Properties of Sunflower Seeds and Oils. Sustainability 2022, 14, 2928. [Google Scholar] [CrossRef]
- Amfo, B.; Ali, E.B. Beyond adoption: The interaction between organic and inorganic fertilizer application, and vegetable productivity in Ghana. Renew. Agric. Food Syst. 2021, 36, 605–621. [Google Scholar] [CrossRef]
- Efthimiadou, A.; Bilalis, D.; Karkanis, A.; Froud-Williams, B. Combined organic/inorganic fertilization enhance soil quality and increased yield, photosynthesis and sustainability of sweet maize crop. Aust. J. Crop Sci. 2010, 4, 722–729. [Google Scholar]
- Ndukwe, O.O.; Muoneke, C.O.; Baiyeri, K.P.; Tenkouano, A. Growth and yield responses of plantain genotypes as influenced by organic and inorganic fertilizers. J. Plant Nutr. 2011, 34, 700–716. [Google Scholar] [CrossRef]
- Shaaban, M.; Khalid, M.S.; Hu, R.; Zhou, M. Effects of water regimes on soil N2O, CH4 and CO2 emissions following addition of dicyandiamide and N fertilizer. Environ. Res. 2022, 212, 113544. [Google Scholar] [CrossRef]
- Qi, Y.; Dong, Y. Production, emission, and influencing factors of soil nitrous oxide. Acta Geogr. Sin. 1999, 534–542. (In Chinese) [Google Scholar] [CrossRef]
Seedling Stage | Budding Stage | Blooming Stage | Harvest Stage | |
---|---|---|---|---|
Growing stage | 8 June–21 July | 22 July–15 August | 16 August–30 August | 31 August–10 October |
Irrigation amount | 76.6 mm | 82.5 mm | 74.1 mm | 62.6 mm |
Treatment | S1 | S2 | S3 | |||
---|---|---|---|---|---|---|
Crop Yield (t ha−1) | Nitrogen Absorption (kg ha−1) | Crop Yield (t ha−1) | Nitrogen Absorption (kg ha−1) | Crop Yield (t ha−1) | Nitrogen Absorption (kg ha−1) | |
100%OF | 2.74 ± 0.11 d | 134.9 ± 15.1 a | 2.95 ± 0.11 cd | 142.3 ± 15.4 a | 2.65 ± 0.11 bc | 144.6 ± 14.1 a |
75%OF | 2.93 ± 0.14 cd | 139.1 ± 14.0 a | 3.13 ± 0.12 c | 135.2 ± 10.3 a | 2.85 ± 0.18 b | 138.1 ± 9.5 a |
50%OF | 3.15 ± 0.11 bc | 137.9 ± 9.3 a | 3.43 ± 0.16 b | 132.7 ± 8.9 a | 3.11 ± 0.10 a | 142.3 ± 3.9 a |
25%OF | 3.41 ± 0.19 a | 137.2 ± 11.1 a | 3.82 ± 0.17 a | 132.5 ± 9.9 a | 3.27 ± 0.12 a | 138.3 ± 6.2 a |
0%OF | 3.22 ± 0.12 ab | 127.7 ± 15.1 ab | 3.56 ± 0.14 ab | 125.9 ± 3.6 ab | 3.18 ± 0.13 a | 133.4 ± 6.6 a |
CK | 2.30 ± 0.09 e | 106.6 ± 5.0 b | 2.71 ± 0.15 d | 108.8 ± 8.1 b | 2.43 ± 0.12 c | 113.5 ± 11.4 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, Y.; Zhu, Q.; Xiao, Y.; Chen, J.; Hou, M.; Zhu, L. N2O Emissions from Saline Soils in Response to Organic–Inorganic Fertilizer Application under Subsurface Drainage. Water 2023, 15, 3002. https://doi.org/10.3390/w15163002
Zhai Y, Zhu Q, Xiao Y, Chen J, Hou M, Zhu L. N2O Emissions from Saline Soils in Response to Organic–Inorganic Fertilizer Application under Subsurface Drainage. Water. 2023; 15(16):3002. https://doi.org/10.3390/w15163002
Chicago/Turabian StyleZhai, Yaming, Qinyuan Zhu, Ying Xiao, Jingnan Chen, Maomao Hou, and Lin Zhu. 2023. "N2O Emissions from Saline Soils in Response to Organic–Inorganic Fertilizer Application under Subsurface Drainage" Water 15, no. 16: 3002. https://doi.org/10.3390/w15163002
APA StyleZhai, Y., Zhu, Q., Xiao, Y., Chen, J., Hou, M., & Zhu, L. (2023). N2O Emissions from Saline Soils in Response to Organic–Inorganic Fertilizer Application under Subsurface Drainage. Water, 15(16), 3002. https://doi.org/10.3390/w15163002