Effects of Different Nitrogen Allocation Ratios and Period on Cotton Yield and Nitrogen Utilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Cultivars
2.2. Experimental Design and Field Management
2.3. Index Determination
2.3.1. Plant Traits
2.3.2. Plant Biomass
2.3.3. Nutrient Content of Reproductive and Vegetative Organs [30]
2.3.4. Production
2.3.5. Nitrogen-Related Conversion Rate [21]
2.4. Statistical Analysis
2.5. Statement
3. Results
3.1. Nitrogen Application Rate and Nitrogen Allocation Ratio Affect the Growth Characteristics of Cotton
3.2. Dry Matter of Reproductive and Vegetative Organs
3.3. Effects of Different Nitrogen Application Ratios on the Nitrogen Content of Cotton
3.4. Effects of Different Nitrogen Treatments on Cotton Yield and Component Factors
3.5. Effects of Different Nitrogen Application Treatments on the Nitrogen Utilization of Cotton
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, F.; Chen, J.; Zhang, Z.; Liu, F.; Li, J.; Zhao, T.; Hu, Y.; Zhang, T.; Fang, L. COTTONOMICS: A comprehensive cotton multi-omics. J. Biol. Databases Curation 2022, 2022, baac080. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Chi, B.J.; Dong, H.Z. Cotton cultivation technology with Chinese characteristics has driven the 70-year development of cotton production in China. J. Integr. Agric. 2022, 21, 597–609. [Google Scholar] [CrossRef]
- Abdimannobovna, M.N.; Davlatbekovich, B.S. Effect of mineral fertilizer quantities on growth and development of cotton in repeated legal crops. E Conf. Zone 2022, 2022, 91–93. [Google Scholar]
- McLellan, E.L.; Cassman, K.G.; Eagle, A.J.; Woodbury, P.B.; Shai, S.; Christina, T.; Marjerison, R.D.; Harold, M.E. The nitrogen balancing act: Tracking the environmental performance of food production. Bioscience 2018, 68, 194–203. [Google Scholar] [CrossRef]
- Zhu, L.X.; Liu, L.T.; Sun, H.C.; Zhang, Y.J.; Liu, X.W.; Wang, N.; Chen, J.; Zhang, K.; Bai, Z.Y.; Wang, G.Y.; et al. The responses of lateral roots and root hairs to nitrogen stress in cotton based on daily root measurements. J. Agron. Crop Sci. 2021, 208, 89–105. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.B.; Liu, S.D.; Zhang, S.P.; Ge, C.W.; Shen, Q.; Ma, H.J.; Zhang, X.M.; Dong, H.L.; Zhao, X.H.; et al. Nitrogen stress inhibits root growth by regulating cell wall and hormone changes in cotton (Gossypium hirsutum L.). J. Agron. Crop. Sci. 2021, 207, 1006–1023. [Google Scholar] [CrossRef]
- Wu, B.J.; Zhang, L.; Tian, J.S.; Zhang, G.J.; Zhang, W.F. Fine root dynamics, longevity, and canopy characteristics of cotton under varying water and nitrogen levels. Plant Soil. 2022, 482, 191–209. [Google Scholar] [CrossRef]
- Yu, C.Q.; Huang, X.; Chen, H.H.; Charles, J.G.; Jonathon, S.W.; Jim, W.H.; Gong, P.; Ni, S.Q.; Qiao, S.C.; Huang, G.R.; et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef]
- Chen, J.; Liu, L.; Wang, Z.; Sun, H.; Zhang, Y.; Bai, Z.; Song, S.; Lu, Z.; Li, C. Nitrogen Fertilization Effects on Physiology of the Cotton Boll-Leaf System. Agronomy 2019, 9, 271. [Google Scholar] [CrossRef]
- Hou, X.H.; Fan, J.L.; Hu, W.H.; Zhang, F.C.; Yan, F.L.; Xiao, C.; Li, Y.P.; Cheng, H.L. Optimal irrigation amount and nitrogen rate improved seed cotton yield while maintaining fiber quality of drip-fertigated cotton in northwest China. Ind. Crops Prod. 2021, 170, 113710. [Google Scholar] [CrossRef]
- Irish, L.B.; Glen, L.R. Dry matter and nutrient partitioning changes for the past 30 years of cotton production. Agron. J. 2020, 112, 4373–4385. [Google Scholar]
- Liu, A.; Ma, X.-L.; Zhang, Z.; Liu, Z.-H.; Luo, D.; Yang, L.-R.; Lva, N.; Zhan, Y.-J.; Yang, G.-Z.; Dong, H.-Z. Single dose fertilization at reduced nitrogen rate improves nitrogen utilization without yield reduction in late-planted cotton under a wheat–cotton cropping system. Ind. Crops Prod. 2022, 176, 114346. [Google Scholar] [CrossRef]
- Shafreen, M.; Vishwakarma, K.; Shrivastava, N.; Kumar, N. Physiology and Distribution of Nitrogen in Soils. Soil Nitrogen Ecol. 2021, 62, 3–31. [Google Scholar]
- Kumar, N.; Srivastava, P.; Vishwakarma, K.; Kumar, R.; Kuppala, H.; Maheshwari, S.K.; Vats, S. The rhizobium–plant symbiosis: State of the art. In Plant Microbe Symbiosis; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–20. [Google Scholar]
- Hussien, M.M.; El-Ashry, S.M.; Haggag, W.M.; Mubarak, M.D. Response of mineral status to nano-fertilizer and moisture stress during different growth stages of cotton plants. Int. J. ChemTech Res. 2015, 8, 643–650. [Google Scholar]
- Luo, H.-H.; Wang, Q.; Zhang, J.-K.; Wang, L.-S.; Li, Y.-B.; Yang, G.-Z. Minimum fertilization at the appearance of the first flower benefits cotton nutrient utilization of nitrogen, phosphorus and potassium. Sci. Rep. 2020, 10, 6815. [Google Scholar] [CrossRef]
- Raphael Juan, P.A.; Echer Fábio, R.; Rosolem Ciro, A. Nitrogen fertilization can mitigate cotton yield loss by temporary shading at early flowering. Eur. J. Agron. 2022, 140, 126593. [Google Scholar] [CrossRef]
- Luo, H.H.; Wang, Q.; Zhang, J.K.; Wang, L.S.; Li, Y.B.; Yang, G.Z. One-time fertilization at first flowering improves lint yield and dry matter partitioning in late planted short-season cotton. J. Agron. Crop. Sci. 2020, 19, 509–517. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Z.W.; Zhang, Y.; Shi, Y. Split nitrogen fertilizer application improved grain yield in winter wheat (Triticum aestivum L.) via modulating antioxidant capacity and 13 c photosynthate mobilization under water-saving irrigation conditions. Ecol. Process. 2021, 10, 21. [Google Scholar] [CrossRef]
- Yang, G.Z.; Tang, H.Y.; Nie, Y.C.; Zhang, X.L. Responses of cotton growth, yield, and biomass to nitrogen split application ratio. Eur. J. Agron. 2011, 3, 164–170. [Google Scholar] [CrossRef]
- Li, P.-C.; Dong, H.-L.; Liu, A.-Z.; Liu, J.-R.; Sun, M.; Li, Y.-B.; Liu, S.-D.; Zhao, X.-H.; Mao, S.-C. Effects of Nitrogen Rate and Split Application Ratio on Nitrogen Use and Soil Nitrogen Balance in Cotton Fields. Pedosphere 2017, 27, 769–777. [Google Scholar] [CrossRef]
- Çetin, Ö.; Uzen, N. Effects of nitrogen fertigation frequency on yield and nitrogen retention in drip-irrigated cotton. J. Plant Nutr. 2016, 39, 2126–2135. [Google Scholar]
- Chattha, M.S.; Ali, Q.; Haroon, M.; Afzal, M.J.; Javed, T.; Hussain, S.; Mahmood, T.; Solanki, M.K.; Umar, A.; Abbas, M.; et al. Enhancement of nitrogen use efficiency through agronomic and molecular based approaches in cotton. Front. Plant Sci. 2022, 13, 994306. [Google Scholar] [CrossRef] [PubMed]
- Ali, N. Nitrogen utilization features in cotton crop. Am. J. Plant Sci. 2015, 6, 987. [Google Scholar] [CrossRef]
- Schwenke, G.; Baird, J.; Nachimuthu, G.; Macdonald, B.; McPherson, A.; Mercer, C.; Hundt, A. Dressed for success. Are crop N uptake, N loss and lint yield of irrigated cotton affected by how in-crop N fertiliser is applied. Field Crops Res. 2022, 287, 108659. [Google Scholar] [CrossRef]
- Eliezer, A.G.; Cristiano, S.N.; Ana, K.M.; Fabricio, E.L.; Joaquim, A.G. Nitrogen-utilization efficiency during early deficiency after a luxury consumption is improved by sustaining nitrate reductase activity and photosynthesis in cotton plants. Plant Soil 2019, 443, 185–198. [Google Scholar]
- Iqbal, A.; Dong, Q.; Wang, X.; Gui, H.; Zhang, H.; Zhang, X.; Song, M. Variations in Nitrogen Metabolism are Closely Linked with Nitrogen Uptake and Utilization Efficiency in Cotton Genotypes under Various Nitrogen Supplies. Plants 2020, 9, 250. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Zhang, L.Z.; Qi, H.K.; Du, M.W.; Zuo, Y.L.; Zhang, M.C.; Tian, X.L.; Li, Z.H. Optimizing the application of a novel harvest aid to improve the quality of mechanically harvested cotton in the North China Plain. J. Integr. Agric. 2021, 20, 2892–2899. [Google Scholar] [CrossRef]
- Geng, J.B.; Ma, Q.; Zhang, M.; Li, C.L.; Liu, Z.G.; Liu, X.X.; Zheng, W.K. Synchronized relationships between nitrogen release of controlled release nitrogen fertilizers and nitrogen requirements of cotton. Field Crop. Res. 2015, 184, 9–16. [Google Scholar] [CrossRef]
- Douglas, L.A.; Riazi, A.; Smith, C.J. A semi-micro method for determining total N in soils and plant material containing nitrite and nitrate. Soil Sci. Soc. 1980, 44, 431–433. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.B.; Zhou, M.Y.; Cai, Z.Z.; Leila, I.M.; Zhang, X.; Chen, Y.; Chen, D.H. Nitrogen deficit decreases seed cry1ac endotoxin expression in bt transgenic cotton. Plant Physiol. Biochem. 2019, 141, 114–121. [Google Scholar] [CrossRef]
- Tang, F.Y.; Chen, L.; Shao, D.Y.; Wang, T.; Zhang, M.L. Nonstructural carbohydrates in leaves subtending cotton bolls, fibers and embryos in response to nitrogen stress. Arch. Agron. Soil Sci. 2018, 64, 763–775. [Google Scholar] [CrossRef]
- Chen, J.; Liu, L.T.; Wang, Z.B.; Zhang, Y.J.; Sun, H.C.; Song, S.J.; Bai, Z.Y.; Lu, Z.Y.; Li, C.D. Nitrogen fertilization increases root growth and coordinates the root-shoot relationship in cotton. Front. Plant Sci. 2020, 11, 880–893. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Y.; Zhou, M.; Rui, Q.; Cai, Z.; Zhang, X.; Chen, D. Nitrogen (N) Application Gradually Enhances Boll Development and Decreases Boll Shell Insecticidal Protein Content in N-Deficient Cotton. Front. Plant Sci. 2018, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, S.D.; Zhang, S.P.; Ge, C.W.; Pang, C.Y. Nitrogen modulates cotton root morphology by affecting abscisic acid (aba) and salicylic acid (sa) content. Arch. Agron. Soil Sci. 2020, 67, 1722–1738. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, H.; Li, W.P.; Zhao, Q.; Dai, J.L.; Tian, L.W.; Dong, H.Z. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Res. 2018, 218, 150–157. [Google Scholar] [CrossRef]
- Iqbal, A.; Niu, J.; Dong, Q.; Wang, X.; Gui, H.; Zhang, H.; Pang, N.; Zhang, X.; Song, M. Physiological Characteristics of Cotton Subtending Leaf Are Associated with Yield in Contrasting Nitrogen-Efficient Cotton Genotypes. Front. Plant Sci. 2022, 2022, 13. [Google Scholar] [CrossRef]
- Van Der Sluijs, M.H.J. Effect of nitrogen application level on cotton fibre quality. J. Cotton Res. 2022, 5, 9. [Google Scholar] [CrossRef]
- Cordeiro, C.F.D.S.; De La Torre, E.D.J.R.; Echer, F.R. The effects of nitrogen, phosphorus, and potassium levels on the yield and fiber quality of cotton cultivars. J. Plant Nutr. 2019, 43, 921–932. [Google Scholar]
- Niu, J.; Gui, H.; Iqbal, A.; Zhang, H.; Dong, Q.; Pang, N.; Wang, S.; Wang, Z.; Wang, X.; Yang, G.; et al. N-Use Efficiency and Yield of Cotton (G. hirsutumn L.) Are Improved through the Combination of N-Fertilizer Reduction and N-Efficient Cultivar. Agronomy 2020, 11, 55. [Google Scholar] [CrossRef]
- Si, Z.Y.; Zain, M.; Mehmood, F.; Wang, G.H.; Gao, Y.; Duan, A.W. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agric. Water Manag. 2020, 231, 106002. [Google Scholar] [CrossRef]
- Zhi, J.; Qiu, T.; Bai, X.; Xia, M.; Chen, Z.; Zhou, J. Effects of nitrogen conservation measures on the nitrogen uptake by cotton plants and nitrogen residual in soil profile in extremely arid areas of Xinjiang, China. Processes 2022, 10, 353. [Google Scholar] [CrossRef]
- Novoa, R.; Loomis, R.S. Nitrogen and plant-production. Plant Soi. 1981, 58, 177–204. [Google Scholar] [CrossRef]
- Antille Diogenes, L.; Moody Philip, W. Nitrogen use efficiency indicators for the australian cotton, grains, sugar, dairy and horticulture industries. Environ. Sustain. Indic. 2021, 10, 100099. [Google Scholar]
- Wang, P.; Zhao, Z.; Wang, L.; Tian, C. Comparison of Efficiency-Enhanced Management and Conventional Management of Irrigation and Nitrogen Fertilization in Cotton Fields of Northwestern China. Agriculture 2021, 11, 1134. [Google Scholar] [CrossRef]
Treatment | Fertilization Period and Proportion | The Nitrogen Application Rate |
---|---|---|
N2a | Seeding period:First flowering stage:Full bloom period = 3:5:2 | 220 kg hm−2 |
N2b | Seeding period:First flowering stage:Full bloom period = 0:10:0 | 220 kg hm−2 |
N3 | Seeding period:First flowering stage:Full bloom period = 3:5:2 | 300 kg hm−2 |
N2c | Seeding period:First flowering stage:Full bloom period = 5:7:0 | 220 kg hm−2 |
N1 | Seeding period:First flowering stage:Full bloom period = 3:5:2 | 150 kg hm−2 |
N2d | Seeding period:First flowering stage:Full bloom period = 0:7:3 | 220 kg hm−2 |
N0 | No fertilizer | 0 kg hm−2 |
Treatment | Plant Height (cm) | Branch Number | The Bell Number | |||
---|---|---|---|---|---|---|
Ning-Jin | Chang-Yi | Ning-Jin | Chang-Yi | Ning-Jin | Chang-Yi | |
N2a | 75.2 a | 78.2 a | 9.2 a | 9.8 a | 10.3 a | 10.9 a |
N2b | 70.1 e | 67.2 e | 7.5 c | 7.6 c | 9.5 c | 9.0 c |
N3 | 74.8 b | 76.0 b | 9.1 a | 9.6 a | 10.1 a | 11.1 a |
N2c | 74.2 c | 75.2 b | 8.4 b | 8.3 b | 10.0 b | 10.3 b |
N1 | 74.1 c | 73.6 c | 8.3 b | 8.6 b | 9.8 b | 9.6 c |
N2d | 73.1 d | 69.5 d | 8.3 b | 7.5 c | 9.6 c | 9.5 c |
N0 | 65.1 f | 64.3 f | 6.1 d | 6.6 d | 9.3 d | 8.8 d |
Treatment | Boll Density (no./m2) | Single Boll Weight (g) | Seed Cotton Yield (kg/ha) | Lint Weight (kg/ha) | ||||
---|---|---|---|---|---|---|---|---|
Ning-Jin | Chang-Yi | Ning-Jin | Chang-Yi | Ning-Jin | Chang-Yi | Ning-Jin | Chang-Yi | |
N2a | 90.9 b | 93.1 b | 4.2 b | 4.3 b | 3497.8 b | 3669.3 b | 1447.2 b | 1518.4 b |
N2b | 85.5 d | 86.1 e | 3.8 d | 4.0 d | 2869.7 d | 3018.4 d | 1189.7 d | 1250.0 d |
N3 | 92.7 a | 97.9 a | 4.3 a | 4.4 a | 3671.1 a | 3840.1 a | 1532.8 a | 1594.9 a |
N2c | 86.9 c | 88.9 cd | 4.1 c | 4.2 c | 3053.1 c | 3178.4 c | 1251.7 c | 1303.1 c |
N1 | 87.2 c | 89.5 c | 4.1 c | 4.2 c | 3094.4 c | 3143.1 c | 1268.7 c | 1288.6 c |
N2d | 86.4 c | 87.7 de | 4.1 c | 4.2 c | 2901.8 d | 3048.8 d | 1227.6 d | 1276.6 d |
N0 | 80.1 e | 79.2 f | 3.7 e | 3.9 e | 2793.7 e | 2897.4 e | 1121.4 e | 1187.9 e |
Treatment | Agronomic Nitrogen Use Efficiency (kg/kg) | Nitrogen Physiological Efficiency (kg/kg) | Nitrogen Partial Productivity (kg/kg) | |||
---|---|---|---|---|---|---|
Ning-Jin | Chang-Yi | Ning-Jin | Chang-Yi | Ning-Jin | Chang-Yi | |
N2a | 3.2 a | 3.5 a | 24.8 a | 25.0 a | 15.8 b | 16.6 b |
N2b | 0.3 e | 0.5 e | 6.2 f | 7.1 f | 13.0 d | 13.7 d |
N3 | 2.9 b | 3.1 b | 23.0 b | 23.6 b | 12.2 e | 12.8 e |
N2c | 1.2 d | 1.3 d | 9.6 d | 9.7 d | 13.8 c | 14.4 c |
N1 | 2.0 c | 1.6 c | 13.6 c | 10.7 c | 20.6 a | 20.9 a |
N2d | 0.4 e | 0.6 e | 7.2 e | 8.5 e | 13.1 d | 13.8 d |
N0 | -- | -- | -- | -- | -- | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Sun, Z.; Hu, X.; Liu, Q.; Xu, Q.; Qin, D.; Wang, X.; Liu, S.; Ma, C.; Wei, X. Effects of Different Nitrogen Allocation Ratios and Period on Cotton Yield and Nitrogen Utilization. Water 2023, 15, 3011. https://doi.org/10.3390/w15163011
Ren Y, Sun Z, Hu X, Liu Q, Xu Q, Qin D, Wang X, Liu S, Ma C, Wei X. Effects of Different Nitrogen Allocation Ratios and Period on Cotton Yield and Nitrogen Utilization. Water. 2023; 15(16):3011. https://doi.org/10.3390/w15163011
Chicago/Turabian StyleRen, Yujie, Zeqiang Sun, Xinhui Hu, Quanru Liu, Qinqing Xu, Dulin Qin, Xuejun Wang, Shenglin Liu, Changjian Ma, and Xuewen Wei. 2023. "Effects of Different Nitrogen Allocation Ratios and Period on Cotton Yield and Nitrogen Utilization" Water 15, no. 16: 3011. https://doi.org/10.3390/w15163011
APA StyleRen, Y., Sun, Z., Hu, X., Liu, Q., Xu, Q., Qin, D., Wang, X., Liu, S., Ma, C., & Wei, X. (2023). Effects of Different Nitrogen Allocation Ratios and Period on Cotton Yield and Nitrogen Utilization. Water, 15(16), 3011. https://doi.org/10.3390/w15163011