Piezo-Photocatalytic Degradation of Pharmaceuticals in Water Using Calcined Natural Sphalerite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Natural Catalyst
2.3. Water Matrices
2.4. Experimental Procedure
2.5. Analysis
3. Results and Discussion
3.1. Piezo-Photocatalytic Degradation in Deionized Water
3.2. Piezo-Photocatalytic Degradation in River Water
3.3. Synergistic Effect
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Drinking Water, Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-water (accessed on 27 June 2023).
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef]
- Jiang, Z.; Tan, X.; Huang, Y. Piezoelectric effect enhanced photocatalysis in environmental remediation: State-of-the-art techniques and future scenarios. Sci. Total Environ. 2022, 806, 150924. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, X.; Zhao, G.; Liu, Z.; Cai, Y.; Wang, S.; Shen, C.; Hu, B.; Wang, X. Piezoelectric materials and techniques for environmental pollution remediation. Sci. Total Environ. 2023, 869, 161767. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qi, W.; Xu, M.; Thomas, T.; Liu, S.; Yang, M. Piezocatalytic techniques in environmental remediation. Angew. Chem. Int. Ed. 2023, 62, e202213927. [Google Scholar] [CrossRef] [PubMed]
- Nie, G.; Yao, Y.; Duan, X.; Xiao, L.; Wang, S. Advances of piezoelectric nanomaterials for applications in advanced oxidation technologies. Curr. Opin. 2021, 33, 100693. [Google Scholar] [CrossRef]
- Wang, Z.L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–245. [Google Scholar] [CrossRef]
- Asli, S.A.; Taghizadeh, M. Sonophotocatalytic degradation of pollutants by ZnO-based catalysts: A review. ChemistrySelect 2020, 5, 13720–13731. [Google Scholar] [CrossRef]
- Dhull, P.; Sudhaik, A.; Raizada, P.; Thakur, S.; Nguyen, V.-H.; Van Le, Q.; Kumar, N.; Khan, A.A.P.; Marwani, H.M.; Selvasembian, R.; et al. An overview on ZnO-based sonophotocatalytic mitigation of aqueous phase pollutants. Chemosphere 2023, 333, 138873. [Google Scholar] [CrossRef]
- Gao, Q.; Zhou, L.; Xu, S.; Dai, S.; Zhu, Q.; Li, Y. Significant improvement and mechanism of tetracycline degradation with the synergistic piezoelectric effect of ZnO/CuS Z-scheme heterojunction photocatalysts. Environ. Sci. Nano 2023, 10, 581–594. [Google Scholar] [CrossRef]
- Bembibre, A.; Benamara, M.; Hjiri, M.; Gómez, E.; Alamri, H.R.; Dhahri, R.; Serrá, A. Visible-light driven sonophotocatalytic removal of tetracycline using Ca-doped ZnO nanoparticles. Chem. Eng. J. 2022, 427, 132006. [Google Scholar] [CrossRef]
- Khitab, F.; Shah, J.; Rasul, J.M. Systematic assessment of visible light driven photocatalysts for the removal of cefixime in aqueous solution sonophotocatalytically. Int. J. Environ. Anal. Chem. 2022, 1–20. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Wu, Z.; Zhu, K.; Wang, J.; Li, Z.; Tai, G.; Liu, X.; Lu, S. Enhanced visible-light photocatalytic performances of ZnO through loading AgI and coupling piezo-photocatalysis. J. Alloys Compd. 2021, 852, 156848. [Google Scholar] [CrossRef]
- Meroni, D.; Bianchi, C.L.; Boffito, D.C.; Cerrato, G.; Bruni, A.; Sartirana, M.; Falletta, E. Piezo-enhanced photocatalytic diclofenac mineralization over ZnO. Ultrason. Sonochem. 2021, 75, 105615. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Sobhgol, S.A.; Hayati, F.; Isari, A.A.; Kakavandi, B.; Bashardoust, P.; Anvaripour, B. Performance and reaction mechanism of MgO/ZnO/Graphene ternary nanocomposite in coupling with LED and ultrasound waves for the degradation of sulfamethoxazole and pharmaceutical wastewater. Sep. Purif. Technol. 2020, 251, 117373. [Google Scholar] [CrossRef]
- Almasi, A.; Mohammadi, M.; Baniamerian, F.; Berizi, Z.; Almasi, M.H.; Pariz, Z. Modeling of antibiotic degradation in sonophotocatalytic process, increasing biodegradability and process optimization by response surface methodology (RSM). Int. J. Environ. Sci. Technol. 2019, 16, 8437–8448. [Google Scholar] [CrossRef]
- Almasi, A.; Mohammadi, M.; Shamsi, K.; Mohammadi, S.; Saeidimoghadam, Z. Sonolytic and photocatalytic (sonophotocatalytic) removal of cephalexin from aqueous solution: Process optimization using response surface methodology (RSM). Desalination Water Treat. 2017, 85, 256–263. [Google Scholar] [CrossRef]
- Fatimah, I.; Pradita, R.Y.; Nurfalinda, A. Study on ZnO catalytic activity in salycilic acid degradation by sonophotocatalysis. Chem. Eng. Trans. 2017, 56, 1651–1656. [Google Scholar] [CrossRef]
- Mason, T.J.; Cobley, A.J.; Graves, J.E.; Morgan, D. New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Ultrason. Sonochem. 2011, 18, 226–230. [Google Scholar] [CrossRef]
- Matafonova, G.; Batoev, V. Review on low- and high-frequency sonolytic, sonophotolytic and sonophotochemical processes for inactivating pathogenic microorganisms in aqueous media. Water Res. 2019, 166, 115085. [Google Scholar] [CrossRef]
- Garkusheva, N.; Tsenter, I.; Kobunova, E.; Matafonova, G.; Batoev, V. Dual-frequency ultrasonic inactivation of Escherichia coli and Enterococcus faecalis using persulfate: A synergistic effect. Water 2022, 14, 2604. [Google Scholar] [CrossRef]
- Laurenti, M.; Garino, N.; Canavese, G.; Simelys, H.; Valentina, C. Piezo- and photocatalytic activity of ferroelectric ZnO:Sb thin films for the efficient degradation of Rhodamine-ß dye pollutant. Appl. Mater. Interfaces 2020, 12, 25798–25808. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lu, A.; Li, Y.; Zhang, L.; Yip, H.Y.; Zhao, H.; An, T.; Wong, P.-K. Naturally occurring sphalerite as a novel cost-effective photocatalyst for bacterial disinfection under visible light. Environ. Sci. Technol. 2011, 45, 5689–5695. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ding, C.; Liu, Y.; Li, Y.; Lu, A.; Wang, C.; Ding, H. Visible light photocatalysis of natural semiconducting minerals, Chapter 2. In Advances in Photocatalytic Disinfection, Green Chemistry and Sustainable Technology; An, T., Zhao, H., Wong, P.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 17–39. [Google Scholar] [CrossRef]
- Moradi, M.; Kalantary, R.R.; Esrafili, A.; Jafari, A.J.; Gholami, M. Visible light photocatalytic inactivation of Escherichia coli by natural pyrite assisted by oxalate at neutral pH. J. Mol. Liq. 2017, 248, 880–889. [Google Scholar] [CrossRef]
- Peng, X.; Ng, T.W.; Huang, G.; Wang, W.; An, T.; Wong, P.K. Bacterial disinfection in a sunlight/visible-light-driven photocatalytic reactor by recyclable natural magnetic sphalerite. Chemosphere 2017, 166, 521–527. [Google Scholar] [CrossRef]
- Xia, D.; Ng, T.W.; An, T.; Li, G.; Li, Y.; Yip, H.Y.; Zhao, H.; Lu, A.; Wong, P.-K. A recyclable mineral catalyst for visible-light-driven photocatalytic inactivation of bacteria: Natural magnetic sphalerite. Environ. Sci. Technol. 2013, 47, 11166–11173. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Liu, H.; Jiang, Z.; Ng, T.W.; Lai, W.S.; An, T.; Wang, W.; Wong, P.K. Visible-light-driven photocatalytic inactivation of Escherichia coli K-12 over thermal treated natural magnetic sphalerite: Band structure analysis and toxicity evaluation. Appl. Catal. B 2018, 224, 541–552. [Google Scholar] [CrossRef]
- García-Muñoz, P.; López-Maxías, C.; Guerra-Rodríguez, S.; Carbajo, J.; Casas, J.A.; Rodríguez-Chueca, J. Photocatalytic activation of peroxymonosulfate using ilmenite (FeTiO3) for Enterococcus faecalis inactivation. J. Environ. Chem. Eng. 2022, 10, 108231. [Google Scholar] [CrossRef]
- Hamza, A.; John, I.J.; Mukhtar, B. Enhanced photocatalytic activity of calcined natural sphalerite under visible light irradiation. J. Mater. Res. Technol. 2017, 6, 1–6. [Google Scholar] [CrossRef]
- Shen, C.; Gu, X.; Yang, B.; Zhang, D.; Wang, Z.; Shu, Z.; Dick, J.; Lu, A. Mineralogical characteristics and photocatalytic properties of natural sphalerite from China. J. Environ. Sci. 2020, 89, 156–166. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Li, Y.; Lu, A.; Ding, H.; Wong, P.K.; Sun, H.; Shi, J. Natural wolframite as a novel visible-light photocatalyst towards organics degradation and bacterial inactivation. Catal. Today 2020, 358, 177–183. [Google Scholar] [CrossRef]
- Moradi, M.; Naderi, A.; Bahari, N.; Harati, M.; Rodríguez-Chueca, J.; Kalantary, R.R. Visible-light-driven photocatalytic inactivation of Escherichia coli by titanium dioxide anchored on natural pyrite. Inorg. Chem. Commun. 2022, 144, 109913. [Google Scholar] [CrossRef]
- Ayed, S.B.; Mansour, L.; Vaiano, V.; Harrath, A.H.; Ayari, F.; Rizzo, L. Magnetic Fe3O4-natural iron ore/calcium alginate beads as heterogeneous catalyst for Novacron blue dye degradation in water by (photo) Fenton process. J. Photochem. Photobiol. A 2023, 438, 114566. [Google Scholar] [CrossRef]
- Peighambardoust, S.J.; Boffito, D.C.; Foroutan, R.; Ramavandi, B. Sono-photocatalytic activity of sea sediment@400/ZnO catalyst to remove cationic dyes from wastewater. J. Mol. Liq. 2022, 367, 120478. [Google Scholar] [CrossRef]
- Popova, S.; Tazetdinova, V.; Pavlova, E.; Matafonova, G.; Batoev, V. Characteristics and sonophotocatalytic activity of natural sphalerite under ultrasonic (1.7 MHz) and UVA LED (365 nm) irradiation. Materials 2022, 15, 5412. [Google Scholar] [CrossRef]
- Xiong, G.; Wang, Y.; Sun, Y.; You, L.; Ren, B.; Xu, Z.; He, Y.; Ruhlmann, L.; Ding, F. Sphalerite Cu/ZnS nanoparticles derived from Cu/Zn-ZIF-8 for the photocatalytic degradation and adsorption of dyes. Eur. J. Inorg. Chem. 2018, 2018, 1038–1046. [Google Scholar] [CrossRef]
- Fatimah, I.; Purwiandono, G.; Sahroni, I.; Sagadevan, S.; Chun-Oh, W.; Ghazali, S.A.I.S.M.; Doong, R. Recyclable catalyst of ZnO/SiO2 prepared from Salacca leaves ash for sustainable biodiesel conversion. S. Afr. J. Chem. Eng. 2022, 40, 134–143. [Google Scholar] [CrossRef]
- Elovitz, M.S.; von Gunten, U. Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept. Ozone Sci. Eng. 1999, 21, 239–260. [Google Scholar] [CrossRef]
- Lipps, W.C.; Baxter, T.E.; Braun-Howland, E. (Eds.) Standard Methods For the Examination of Water and Wastewater; APHA Press: Washington, DC, USA, 2017. [Google Scholar]
- Eisenberg, G. Colorimetric determination of hydrogen peroxide. Ind. Eng. Chem. Anal. Ed. 1943, 15, 327–328. [Google Scholar] [CrossRef]
- Wojnárovits, L.; Tóth, T.; Takács, E. Critical evaluation of rate coefficients for hydroxyl radical reactions with antibiotics: A review. Crit. Rev. Environ. Sci. Technol. 2018, 48, 575–613. [Google Scholar] [CrossRef]
- Huber, M.M.; Canonica, S.; Park, G.-Y.; von Gunten, U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ. Sci. Technol. 2003, 37, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Razavi, B.; Song, W.; Cooper, W.J.; Greaves, J.; Jeong, J. Free-radical-induced oxidative and reductive degradation of fibrate pharmaceuticals: Kinetic studies and degradation mechanisms. J. Phys. Chem. A 2009, 113, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Ma, J.; Jiang, J.; Liu, Y.; Song, Y.; Yang, Y.; Guan, Y.; Wu, D. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5− and UV/S2O82−. Water Res. 2015, 80, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Ulliman, S.L.; McKay, G.; Rosario-Ortiz, F.L.; Linden, K.G. Low levels of iron enhance UV/H2O2 efficiency at neutral pH. Water Res. 2018, 130, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Lu, G.; Wang, W.; Wang, R.; Huang, K.; Qiu, Z.; Tao, X.; Dang, Z. Photocatalytic removal of organic phosphate esters by TiO2: Effect of inorganic ions and humic acid. Chemosphere 2018, 206, 26–32. [Google Scholar] [CrossRef]
- Armaković, S.J.; Armaković, S.; Finčur, N.L.; Šibul, F.; Vione, D.; Šetrajčić, J.P.; Abramović, B.F. Influence of electron acceptors on the kinetics of metoprolol photocatalytic degradation in TiO2 suspension. A combined experimental and theoretical study. RSC Adv. 2015, 5, 54589–54604. [Google Scholar] [CrossRef]
- Monteagudo, J.M.; Durán, A.; San Martín, I.; Vellón, B. Photocatalytic degradation of aniline by solar/TiO2 system in the presence of the electron acceptors Na2S2O8 and H2O2. Sep. Purif. Technol. 2020, 238, 116456. [Google Scholar] [CrossRef]
- Rahmati, R.; Nayebi, B.; Ayati, B. Investigating the effect of hydrogen peroxide as an electron acceptor in increasing the capability of slurry photocatalytic process in dye removal. Water Sci. Technol. 2021, 83, 2414–2423. [Google Scholar] [CrossRef]
- Buxton, G.V.; Elliot, A.J. Rate constant for reaction of hydroxyl radicals with bicarbonate ions. Int. J. Radiat. Appl. Instrum. C 1986, 27, 241–243. [Google Scholar] [CrossRef]
- Grčić, I.; Vujević, D.; Koprivanac, N. Modeling the mineralization and discoloration in colored systems by (US)Fe2+/H2O2/S2O82− processes: A proposed degradation pathway. Chem. Eng. J. 2010, 157, 35–44. [Google Scholar] [CrossRef]
- Larson, R.A.; Zepp, R.G. Reactivity of the carbonate radical with aniline derivatives. Environ. Toxicol. Chem. 1988, 7, 265–274. [Google Scholar] [CrossRef]
- Sunday, M.O.; Jadoon, W.A.; Ayeni, T.T.; Iwamoto, Y.; Takeda, K.; Imaizumi, Y.; Arakaki, T.; Sakugawa, H. Heterogeneity and potential aquatic toxicity of hydrogen peroxide concentrations in selected rivers across Japan. Sci. Total Environ. 2020, 733, 139349. [Google Scholar] [CrossRef] [PubMed]
- Ksibi, M. Chemical oxidation with hydrogen peroxide for domestic wastewater treatment. Chem. Eng. J. 2006, 119, 161–165. [Google Scholar] [CrossRef]
- Salem, I. Catalytic decomposition of H2O2 over supported ZnO. Monatshefte Für Chem. 2000, 131, 1139–1150. [Google Scholar] [CrossRef]
- Yoon, D.S.; Won, K.; Kim, Y.H.; Song, B.K.; Kim, S.J.; Moon, S.J.; Kim, B.S. Continuous removal of hydrogen peroxide with immobilised catalase for wastewater reuse. Water Sci. Technol. 2007, 55, 27–33. [Google Scholar] [CrossRef]
- A Process for Removal of Hydrogen Peroxide from an Aqueous Solution. Patent WO2014012949A1, 23 January 2014. Available online: https://patentimages.storage.googleapis.com/4f/6c/f9/b24eb7f85a1d00/WO2014012949A1.pdf (accessed on 22 August 2023).
- Liu, P.; Wu, Z.; Abramova, A.V.; Cravotto, G. Sonochemical processes for the degradation of antibiotics in aqueous solutions: A review. Ultrason. Sonochem. 2021, 74, 105566. [Google Scholar] [CrossRef]
- Anju, S.G.; Yesodharan, S.; Yesodharan, E.P. Zinc oxide mediated sonophotocatalytic degradation of phenol in water. Chem. Eng. J. 2012, 189–190, 84–93. [Google Scholar] [CrossRef]
- Fatimah, I.; Novitasari. Preparation of TiO2-ZnO and its activity test in sonophotocatalytic degradation of phenol. IOP Conf. Ser. Mater. Sci. Eng. 2016, 107, 012003. [Google Scholar] [CrossRef]
- Madhavan, J.; Sathish Kumar, P.S.; Anandan, S.; Zhou, M.; Grieser, F.; Ashokkumar, M. Ultrasound assisted photocatalytic degradation of diclofenac in an aqueous environment. Chemosphere 2010, 80, 747–752. [Google Scholar] [CrossRef]
- Sathishkumar, P.; Mangalaraja, R.V.; Rozas, O.; Vergara, C.; Mansilla, H.D.; Gracia-Pinilla, M.A.; Anandan, S. Sonophotocatalytic mineralization of Norflurazon in aqueous environment. Chemosphere 2016, 146, 216–225. [Google Scholar] [CrossRef]
- Talebian, N.; Nilforoushan, M.R.; Mogaddas, F.J. Comparative study on the sonophotocatalytic degradation of hazardous waste. Ceram. Int. 2013, 39, 4913–4921. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, G.; Akhtar, M.S.; Umar, A. Sonophotocatalytic degradation of methyl orange using ZnO nano-aggregates. J. Alloys Compd. 2015, 629, 167–172. [Google Scholar] [CrossRef]
- Ertugay, N.; Acar, F.N. Ultrasound and UV stimulated heterogeneous catalytic oxidation of an azo dye: A synergistic effect. Prog. React. Kinet. Mech. 2017, 42, 235–243. [Google Scholar] [CrossRef]
- Lops, C.; Ancona, A.; Di Cesare, K.; Dumontel, B.; Garino, N.; Canavese, G.; Hérnandez, S.; Cauda, V. Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Appl. Catal. B 2019, 243, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ren, J.; Jia, Y.; Wu, Z.; Chen, L.; Haugen, N.O.; Huang, H.; Liu, Y. High efficiency bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition. Nano Energy 2019, 62, 376–383. [Google Scholar] [CrossRef]
- Asgari, G.; Shabanloo, A.; Salari, M.; Eslami, F. Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network. Environ. Res. 2020, 184, 109367. [Google Scholar] [CrossRef]
- Khairy, M.; Naguib, E.M.; Mohamed, M.M. Enhancement of photocatalytic and sonophotocatalytic degradation of 4-nitrophenol by ZnO/graphene oxide and ZnO/carbon nanotube nanocomposites. J. Photochem. Photobiol. A 2020, 396, 112507. [Google Scholar] [CrossRef]
- Xiang, D.; Liu, Z.; Wu, M.; Liu, H.; Zhang, X.; Wang, Z.; Wang, Z.L.; Li, L. Enhanced piezo-photoelectric catalysis with oriented carrier migration in asymmetric Au-ZnO nanorod array. Small 2020, 16, 1907603. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Wang, L.; Wu, T.; Wu, Y.; He, Y. KNbO3/ZnO heterojunction harvesting ultrasonic mechanical energy and solar energy to efficiently degrade methyl orange. Ultrason. Sonochem. 2021, 78, 105754. [Google Scholar] [CrossRef]
- Yang, R.; Wu, Z.; Yang, Y.; Li, Y.; Zhang, L.; Yu, B. Understanding the origin of synergistic catalytic activities for ZnO based sonophotocatalytic degradation of methyl orange. J. Taiwan Inst. Chem. Eng. 2021, 119, 128–135. [Google Scholar] [CrossRef]
- Zarazúa-Morín, M.E.; Galindo-Luna, A.S.; Gallegos-Sánchez, V.J.; Zermeño-Resendiz, B.B.; Torres-Martínez, L.M. Novel hydrothermal-assisted microwave synthesis of NiTiO3/ZnO and sonophotocatalytic effect for degradation of rhodamine B. Top. Catal. 2022, 65, 1182–1190. [Google Scholar] [CrossRef]
- Naderi, A.; Firooz, M.H.; Gharibzadeh, F.; Giannakis, S.; Ahmadi, M.; Kalantary, R.R.; Kakavandi, B. Anchoring ZnO on spinel cobalt ferrite for highly synergic sono-photo-catalytic, surfactant-assisted PAH degradation from soil washing solutions. J. Environ. Manag. 2023, 326, 116584. [Google Scholar] [CrossRef] [PubMed]
- Eren, Z. Degradation of an azo dye with homogeneous and heterogeneous catalysts by sonophotolysis. Clean Soil Air Water 2012, 40, 1284–1289. [Google Scholar] [CrossRef]
- Wei, H.; Rahaman, M.H.; Zhao, J.; Lia, D.; Zhai, J. Hydrogen peroxide enhanced sonophotocatalytic degradation of acid orange 7 in aqueous solution: Optimization by Box–Behnken design. J. Chem. Technol. Biotechnol. 2021, 96, 2647–2658. [Google Scholar] [CrossRef]
- El-Sawy, A.M.; Salem, M.A.; Salem, I.A.; Hydara, M.M.; Zaki, A.B. Sonophotocatalytic degradation of malachite green in aqueous solution using six competitive metal oxides as a benchmark. Photochem. Photobiol. Sci. 2023, 22, 579–594. [Google Scholar] [CrossRef]
- Patidar, R.; Srivastava, V.C. Mechanistic and kinetic insights of synergistic mineralization of ofloxacin using a sono-photo hybrid process. Chem. Eng. J. 2021, 403, 125736. [Google Scholar] [CrossRef]
Catalyst | Pharmaceutical | Ultrasonic Frequency | Light Source/Wavelength | Performance | Reference |
---|---|---|---|---|---|
ZnO/CuS nanorods, 400 mg/L | Tetracycline, 30 mg/L | not reported | Xenon lamp | 85.28% for 60 min vs. 73.89% (photocatalysis) and 40.51% (piezo-catalysis). | [10] |
Ca-ZnO nanoparticles | Tetracycline, 10 mg/L | 40 kHz | White LED, >400 nm | ≥99% mineralization in 90 min. | [11] |
Cu/ZnO, 0.1 g/L Ni-ZnO, 0.15 g/L | Cefixime | 40 kHz | Tungsten lamp (visible) | 45.7% (Cu-ZnO), 42.2% (Ni-ZnO) in 30 min. H2O2 increased the efficiency. | [12] |
AgI/ZnO, 200 mg/L | Tetracycline, 10 mg/L | 40 kHz | Xenon lamp, >400 nm | 94.7% in 120 min. | [13] |
Pure ZnO, 0.1 g/L | Diclofenac, 25 mg/L | 20 kHz | UVA halide lamp, 320–400 nm | 70% degradation of in 360 min. | [14] |
MgO/ZnO/graphene nanocomposite, 0.8 g/L | Sulfamethoxazole, 55 mg/L | 24 kHz | UVA LED | Complete degradation in 120 min. | [15] |
Pure ZnO, 0.6 g/L | Penicillin G and cefixime, 100 mg/L | 40 kHz | LP mercury lamp, 254 nm | 94.2% for penicillin G and 84.2% for cefixime. Biodegradability increased. | [16] |
Pure ZnO, 200–400 mg/L | Cephalexin, 50–100 mg/L | 40 kHz | LP mercury lamp, 254 nm | Degradation under optimal conditions in 120 min. | [17] |
Pure ZnO, 0.4 g/L | Salicylic acid | 35 kHz | UVB lamp | Complete degradation within 200 min. H2O2 enhanced degradation. | [18] |
Parameter | Value |
---|---|
pH | 7.9 ± 0.2 |
Conductivity, mS/cm | 235.0 ± 0.1 |
DOC 1, mg/L | 2.09 ± 0.25 |
Bicarbonate, mg/L | 131.2 ± 15.7 |
Carbonate, mg/L | <6.0 |
Nitrite, mg/L | <0.1 |
Nitrate, mg/L | 2.95 ± 0.38 |
Ammonium, mg/L | 0.12 ± 0.04 |
Total iron, mg/L | 0.10 ± 0.02 |
Chloride, mg/L | 1.98 ± 0.26 |
Phosphate, mg/L | <0.1 |
Sulfate, mg/L | 15.63 ± 2.03 |
COD 2, mg/L | 14.40 ± 3.04 |
1st Series | 2nd Series |
---|---|
LED only | LED + H2O2 |
US only | US + H2O2 |
LED + US | LED + US + H2O2 |
US + Catalyst | US + Catalyst + H2O2 |
LED + Catalyst | LED + Catalyst + H2O2 |
LED + US + Catalyst | LED + US + Catalyst + H2O2 |
System | k × 10−2, min−1 | |
---|---|---|
Bezafibrate | Ceftriaxone | |
LED + Catalyst | 1.43 ± 0.05 | 2.58 ± 0.05 |
LED + US + Catalyst | 2.25 ± 0.07 | 4.41 ± 0.05 |
LED + Catalyst + H2O2 | 4.00 ± 0.03 | 7.35 ± 0.02 |
LED + US + Catalyst + H2O2 | 5.94 ± 0.07 | 8.93 ± 0.06 |
System | k × 10−2, min−1 | |
---|---|---|
Bezafibrate | Ceftriaxone | |
LED + Catalyst | 0.80 ± 0.05 | 1.52 ± 0.04 |
LED + US + Catalyst | 1.18 ± 0.05 | 2.67 ± 0.05 |
LED + Catalyst + H2O2 | 1.21 ± 0.06 | 6.56 ± 0.06 |
LED + US + Catalyst + H2O2 | 1.39 ± 0.05 | 6.61 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popova, S.; Tazetdinova, V.; Pavlova, E.; Matafonova, G.; Batoev, V. Piezo-Photocatalytic Degradation of Pharmaceuticals in Water Using Calcined Natural Sphalerite. Water 2023, 15, 3092. https://doi.org/10.3390/w15173092
Popova S, Tazetdinova V, Pavlova E, Matafonova G, Batoev V. Piezo-Photocatalytic Degradation of Pharmaceuticals in Water Using Calcined Natural Sphalerite. Water. 2023; 15(17):3092. https://doi.org/10.3390/w15173092
Chicago/Turabian StylePopova, Svetlana, Victoria Tazetdinova, Erzhena Pavlova, Galina Matafonova, and Valeriy Batoev. 2023. "Piezo-Photocatalytic Degradation of Pharmaceuticals in Water Using Calcined Natural Sphalerite" Water 15, no. 17: 3092. https://doi.org/10.3390/w15173092
APA StylePopova, S., Tazetdinova, V., Pavlova, E., Matafonova, G., & Batoev, V. (2023). Piezo-Photocatalytic Degradation of Pharmaceuticals in Water Using Calcined Natural Sphalerite. Water, 15(17), 3092. https://doi.org/10.3390/w15173092