Comparisons of Retention and Lag Characteristics of Rainfall–Runoff under Different Rainfall Scenarios in Low-Impact Development Combination: A Case Study in Lingang New City, Shanghai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Analysis
3. Results
3.1. Rainfall Runoff Retention Effect
3.2. Rainfall–Runoff Lag Effect
3.3. Effects of Rainfall Characteristics on Retention and Lag Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, J.N.; Peake, B.M. Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff. Sci. Total Environ. 2006, 359, 145–155. [Google Scholar] [CrossRef] [PubMed]
- de Macedo, M.B.; Rosa, A.; do Lago, C.A.F.; Mendiondo, E.M.; de Souza, V.C.B. Learning from the operation, pathology and maintenance of a bioretention system to optimize urban drainage practices. J. Environ. Manag. 2017, 204, 454–466. [Google Scholar] [CrossRef] [PubMed]
- O'Sullivan, A.D.; Wicke, D.; Hengen, T.J.; Sieverding, H.L.; Stone, J.J. Life cycle Assessment modelling of stormwater treatment systems. J. Environ. Manag. 2015, 149, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.H.; Chen, Z.H.; Chen, X.H.; Yu, G. An assessment of the hydrologic effectiveness of low impact development (LID) practices for managing runoff with different objectives. J. Environ. Manag. 2019, 231, 504–514. [Google Scholar] [CrossRef]
- Tredway, J.C.; Havlick, D.G. Assessing the potential of low-impact development techniques on runoff and streamflow in the templeton gap watershed, Colorado. Prof. Geogr. 2017, 69, 372–382. [Google Scholar] [CrossRef]
- Sohn, W.; Kim, J.H.; Li, M.H. Low-impact development for impervious surface connectivity mitigation: Assessment of directly connected impervious areas (DCIAs). J. Environ. Plan. Manag. 2017, 60, 1871–1889. [Google Scholar] [CrossRef]
- Pour, S.H.; Wahab, A.K.A.; Shahid, S.; Asaduzzaman, M.; Dewan, A. Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: Current trends, issues and challenges. Sustain. Cities Soc. 2020, 62, 102373. [Google Scholar] [CrossRef]
- Golden, H.E.; Hoghooghi, N. Green infrastructure and its catchment-scale effects: An emerging science. Wiley Interdiscip. Rev. Water 2018, 5, e1254. [Google Scholar] [CrossRef]
- Dong, X.; Guo, H.; Zeng, S.Y. Enhancing future resilience in urban drainage system: Green versus grey infrastructure. Water Res. 2017, 124, 280–289. [Google Scholar] [CrossRef]
- Jia, H.F.; Wang, Z.; Zhen, X.Y.; Clar, M.; Yu, S.L. China’s sponge city construction: A discussion on technical approaches. Front. Environ. Sci. Eng. 2017, 11, 18. [Google Scholar] [CrossRef]
- Ahmed, K.; Chung, E.S.; Song, J.Y.; Shahid, S. Effective design and planning specification of low impact development practices using Water Management Analysis Module (WMAM): Case of Malaysia. Water 2017, 9, 173. [Google Scholar] [CrossRef]
- Chang, N.B.; Lu, J.W.; Chui, T.F.M.; Hartshorn, N. Global policy analysis of low impact development for stormwater management in urban regions. Land Use Policy 2018, 70, 368–383. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.Q.; Su, J.; Dong, J.W.; Tan, S.K. Assessing hydrological effects and performance of low impact development practices based on future scenarios modeling. J. Clean. Prod. 2018, 179, 12–23. [Google Scholar] [CrossRef]
- Bedan, E.S.; Clausen, J.C. Stormwater runoff quality and quantity from trational and low impact development watersheds. J. Am. Water Resour. Assoc. 2009, 45, 998–1008. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, M.; Wan, J.H.; Weise, T.; Wu, Z.Z. Effectiveness evaluation of the coupled LIDs from the watershed scale based on remote sensing image processing and SWMM simulation. Eur. J. Remote Sens. 2021, 54, 77–91. [Google Scholar] [CrossRef]
- Yin, Y.X.; Qin, H.P.; Yu, S.Q.; Zheng, Y.Y.; He, K.M. Retention and lag effects of rainfall runoff in a low impact development area. J. Shenzhen Univ. Sci. Eng. 2022, 39, 142–151. (In Chinese) [Google Scholar] [CrossRef]
- Song, C. Application of nature-based measures in China's sponge city initiative: Current trends and perspectives. Nat.-Based Solut. 2022, 2, 100010. [Google Scholar] [CrossRef]
- Liu, D.S. China's sponge cities to soak up rainwater. Nature 2016, 537, 307. [Google Scholar] [CrossRef]
- Guo, X.C.; Guo, Q.Z.; Zhou, Z.K.; Du, P.F.; Zhao, D.Q. Degrees of hydrologic restoration by low impact development practices under different runoff volume capture goals. J. Hydrol. 2019, 578, 124069. [Google Scholar] [CrossRef]
- Ding, L.; Ren, X.Y.; Gu, R.Z.; Che, Y. Implementation of the “sponge city” development plan in China: An evaluation of public willingness to pay for the life-cycle maintenance of its facilities. Cities 2019, 93, 13–30. [Google Scholar] [CrossRef]
- Li, Z.M.; Xu, S.Y.; Yao, L.M. A systematic literature mining of sponge city: Trends, foci and challenges standing ahead. Sustainability 2018, 10, 1182. [Google Scholar] [CrossRef]
- Du, S.Q.; Wang, C.X.; Shen, J.; Wen, J.H.; Gao, J.; Wu, J.P.; Lin, W.P.; Xu, H. Mapping the capacity of concave green land in mitigating urban pluvial floods and its beneficiaries. Sustain. Cities Soc. 2019, 44, 774–782. [Google Scholar] [CrossRef]
- Shannak, S.d.A.; Jaber, F.H.; Lesikar, B.J. Modeling the effect of cistern size, soil type, and irrigation scheduling on rainwater harvesting as a stormwater control measure. Water Resour. Manag. 2014, 28, 4219–4235. [Google Scholar] [CrossRef]
- Dreelin, E.A.; Fowler, L.; Ronald Carroll, C. A test of porous pavement effectiveness on clay soils during natural storm events. Water Res. 2006, 40, 799–805. [Google Scholar] [CrossRef]
- Davis, A.P. Field performance of bioretention: Hydrology impacts. J. Hydrol. Eng. 2008, 13, 90–95. [Google Scholar] [CrossRef]
- Hood, M.J.; Clausen, J.C.; Warner, G.S. Comparison of stormwater lag times for low impact and traditional residential development. J. Am. Water Resour. Assoc. 2007, 43, 1036–1046. [Google Scholar] [CrossRef]
- Xia, J.; Wang, H.P.; Stanford, R.L.; Pan, G.Y.; Yu, S.L. Hydrologic and water quality performance of a laboratory scale bioretention unit. Front. Environ. Sci. Eng. 2018, 12, 14. [Google Scholar] [CrossRef]
- Alfredo, K.; Montalto, F.; Goldstein, A. Observed and modeled performances of prototype green roof test plots subjected to simulated low- and high-intensity precipitations in a laboratory experiment. J. Hydrol. Eng. 2010, 15, 444–457. [Google Scholar] [CrossRef]
- Gao, J.; Wang, R.S.; Huang, J.L.; Liu, M. Application of BMP to urban runoff control using SUSTAIN model: Case study in an industrial area. Ecol. Model. 2015, 318, 177–183. [Google Scholar] [CrossRef]
- Huang, C.L.; Hsu, N.S.; Liu, H.J.; Huang, Y.H. Optimization of low impact development layout designs for megacity flood mitigation. J. Hydrol. 2018, 564, 542–558. [Google Scholar] [CrossRef]
- Ahiablame, L.; Shakya, R. Modeling flood reduction effects of low impact development at a watershed scale. J. Environ. Manag. 2016, 171, 81–91. [Google Scholar] [CrossRef]
- Zhou, L.; Ye, B.; Xia, S. Assessing membrane biofouling and its gel layer of anoxic/oxic membrane bioreactor for megacity municipal wastewater treatment during plum rain season in Yangtze River Delta, China. Water Res. 2017, 127, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.Y.; Wang, J.; Li, M.Y.; Fei, M.L.; Dong, J.G. Modeling the influence of urbanization on urban pluvial flooding: A scenario-based case study in Shanghai, China. Nat. Hazards 2017, 87, 1035–1055. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, Y.S.; Arulrajah, A. Sustainable measures for mitigation of flooding hazards: A case study in Shanghai, China. Water 2017, 9, 310. [Google Scholar] [CrossRef]
- Yin, J.; Yin, Z.E.; Hu, X.M.; Xu, S.Y.; Wang, J.; Li, Z.H.; Zhong, H.D.; Gan, F.B. Multiple scenario analyses forecasting the confounding impacts of sea level rise and tides from storm induced coastal flooding in the city of Shanghai, China. Environ. Earth Sci. 2011, 63, 407–414. [Google Scholar] [CrossRef]
- Zheng, S.J.; Meng, C.; Xue, J.H.; Wu, Y.B.; Liang, J.; Xin, L.; Zhang, L. UAV-based spatial pattern of three-dimensional green volume and its influencing factors in Lingang New City in Shanghai, China. Front. Earth Sci. 2021, 15, 543–552. [Google Scholar] [CrossRef]
- Shen, J.; Luo, X.; Wu, F.L. Assembling mega-urban projects through state-guided governance innovation: The development of Lingang in Shanghai. Reg. Stud. 2020, 54, 1644–1654. [Google Scholar] [CrossRef]
- Yin, J.; Zhao, Q.; Yu, D.P.; Lin, N.; Kubanek, J.L.; Ma, G.Y.; Liu, M.; Pepe, A. Long-term flood-hazard modeling for coastal areas using InSAR measurements and a hydrodynamic model: The case study of Lingang New City, Shanghai. J. Hydrol. 2019, 571, 593–604. [Google Scholar] [CrossRef]
- Xu, H.S.; Chen, L.; Zhao, B.; Zhang, Q.Z.; Cai, Y.L. Green stormwater infrastructure eco-planning and development on the regional scale: A case study of Shanghai Lingang New City, East China. Front. Earth Sci. 2016, 10, 366–377. [Google Scholar] [CrossRef]
- Zhang, C.; Lv, Y.P. Research on Sponge City Construction Technology in Plain River Network Area and Case Study in Lingang New City; China Architecture & Building Press: Beijing, China, 2022. [Google Scholar]
- Pohlert, T. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended. 2021. Available online: https://cran.r-project.org/web/packages/PMCMRplus/index.html (accessed on 24 August 2023).
- Guan, M.F.; Sillanpää, N.; Koivusalo, H. Storm runoff response to rainfall pattern, magnitude and urbanization in a developing urban catchment. Hydrol. Process. 2016, 30, 543–557. [Google Scholar] [CrossRef]
- Dunkerley, D. Effects of rainfall intensity fluctuations on infiltration and runoff: Rainfall simulation on dryland soils, Fowlers Gap, Australia. Hydrol. Process. 2012, 26, 2211–2224. [Google Scholar] [CrossRef]
- Mu, W.B.; Yu, F.L.; Li, C.Z.; Xie, Y.B.; Tian, J.Y.; Liu, J.; Zhao, N.N. Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of Spring Maize. Water 2015, 7, 2990–3008. [Google Scholar] [CrossRef]
- He, L.; Li, S.; Cui, C.H.; Yang, S.S.; Ding, J.; Wang, G.Y.; Bai, S.W.; Zhao, L.; Cao, G.-L.; Ren, N.Q. Runoff control simulation and comprehensive benefit evaluation of low-impact development strategies in a typical cold climate area. Environ. Res. 2022, 206, 112630. [Google Scholar] [CrossRef]
- Römkens, M.J.M.; Prasad, S.N.; Parlange, J.Y. Surface seal development in relation to rainstorm intensity. Catena 1990, 17, 1–11. [Google Scholar]
- Parsons, A.J.; Stone, P.M. Effects of intra-storm variations in rainfall intensity on interrill runoff and erosion. Catena 2006, 67, 68–78. [Google Scholar] [CrossRef]
- Burton, G.A., Jr.; Pitt, R.E. Stormwater Effects Handbook: A Toolbox for Watershed Managers, Scientists, and Engineers, 1st ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Said, A.; Downing, H. Estimating connected impervious areas as function of rainfall depth. In Proceedings of the AWRA2010 Spring Specialty Conference, Orlando, FL, USA, 29–31 March 2010. [Google Scholar]
- Sillanpää, N.; Koivusalo, H. Impacts of urbanization and event magnitude on runoff contributing area and runoff coefficients. In Proceedings of the 13th International Conference on Urban Drainage, Sarawak, Malaysia, 7–12 September 2014. [Google Scholar]
- Boyd, M.J.; Bufill, M.C.; Knee, R.M. Pervious and impervious runoff in urban catchments. Hydrol. Sci. J. 1993, 38, 463–478. [Google Scholar] [CrossRef]
- Leopold, L.B. Lag times for small drainage basins. Catena 1991, 18, 157–171. [Google Scholar] [CrossRef]
- Liu, H.; Lei, T.W.; Zhao, J.; Yuan, C.P.; Fan, Y.T.; Qu, L.Q. Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the run off-on-out method. J. Hydrol. 2011, 396, 24–32. [Google Scholar] [CrossRef]
- Hawke, R.M.; Price, A.G.; Bryan, R.B. The effect of initial soil water content and rainfall intensity on near-surface soil hydrologic conductivity: A laboratory investigation. Catena 2006, 65, 237–246. [Google Scholar] [CrossRef]
- Assouline, S.; Mualem, Y. Modeling the dynamics of seal formation and its effect on infiltration as related to soil and rainfall characteristics. Water Resour. Res. 1997, 33, 1527–1536. [Google Scholar] [CrossRef]
Soil Type | Permeability Coefficient k (cm/s) |
---|---|
Sandy silt | 1.54 × 10−4~1.83 × 10−4 |
Silt | 2.63 × 10−4~2.77 × 10−4 |
Mucky clay | 1.54 × 10−5~1.55 × 10−5 |
Clay | 1.38 × 10−5~1.54 × 10−5 |
LID | Area | Number |
---|---|---|
Retention pond | 25 m3 | 25 |
Rain garden | 773.3 m2 | 75 |
Green parking | 2631.6 m2 | 58 |
Grass swale | 50.12 m2 | 47 |
Porous pavement | 158 m2 | 2 |
Retention Effect | Rainfall Duration | Rainfall Amount | Rainfall Intensity |
---|---|---|---|
Runoff retention | −0.227(0.417) | 0.932 (<0.001) | 0.704 (0.005) |
Runoff retention rate | −0.622 (0.013) | 0.107 (0.705) | 0.446 (0.097) |
A0 | −0.317 (0.250) | 0.414 (0.126) | 0.489 (0.067) |
Retention and Lag Time | Rainfall Duration | Rainfall Amount | Rainfall Intensity |
---|---|---|---|
t1 | 0.228 (0.413) | −0.084 (0.766) | −0.301 (0.275) |
t2 | 0.496 (0.060) | −0.507 (0.054) | −0.706 (0.003) |
t3 | 0.585 (0.022) | −0.147 (0.602) | −0.633 (0.011) |
t4 | 0.141 (0.616) | −0.332 (0.226) | −0.303 (0.271) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Lv, Y.; Chen, J.; Chen, T.; Liu, J.; Ding, L.; Zhang, N.; Gao, Q. Comparisons of Retention and Lag Characteristics of Rainfall–Runoff under Different Rainfall Scenarios in Low-Impact Development Combination: A Case Study in Lingang New City, Shanghai. Water 2023, 15, 3106. https://doi.org/10.3390/w15173106
Zhang C, Lv Y, Chen J, Chen T, Liu J, Ding L, Zhang N, Gao Q. Comparisons of Retention and Lag Characteristics of Rainfall–Runoff under Different Rainfall Scenarios in Low-Impact Development Combination: A Case Study in Lingang New City, Shanghai. Water. 2023; 15(17):3106. https://doi.org/10.3390/w15173106
Chicago/Turabian StyleZhang, Chen, Yongpeng Lv, Jian Chen, Tao Chen, Jinqiao Liu, Lei Ding, Nan Zhang, and Qiang Gao. 2023. "Comparisons of Retention and Lag Characteristics of Rainfall–Runoff under Different Rainfall Scenarios in Low-Impact Development Combination: A Case Study in Lingang New City, Shanghai" Water 15, no. 17: 3106. https://doi.org/10.3390/w15173106
APA StyleZhang, C., Lv, Y., Chen, J., Chen, T., Liu, J., Ding, L., Zhang, N., & Gao, Q. (2023). Comparisons of Retention and Lag Characteristics of Rainfall–Runoff under Different Rainfall Scenarios in Low-Impact Development Combination: A Case Study in Lingang New City, Shanghai. Water, 15(17), 3106. https://doi.org/10.3390/w15173106