Groundwater Vulnerability to Nitrate Contamination from Fertilizers Using Modified DRASTIC Frameworks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. DRASTIC Index
2.3. DRASTIC Data Layers
2.4. Frequency Ratio Method (FR)
2.5. Entropy Method
2.6. Single-Parameter Sensitivity Analysis Method (SPSA)
2.7. Validation
3. Results
3.1. DRASTIC Map
3.2. FR-DRASTIC Map
3.3. DRASTIC-Entropy Map
3.4. FR-Entropy Map
3.5. DRASTIC-SPSA Map
3.6. FR_SPSA Map
3.7. Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van der Walt, I.J.; Jones, J.A.A.; Woo, M.-K. Introduction—Water Sustainability. Phys. Geogr. 2006, 27, 283–285. [Google Scholar] [CrossRef]
- Sinha, M.K.; Verma, M.K.; Ahmad, I.; Baier, K.; Jha, R.; Azzam, R. Assessment of groundwater vulnerability using modified DRASTIC model in Kharun Basin, Chhattisgarh, India. Arab. J. Geosci. 2016, 9, 98. [Google Scholar] [CrossRef]
- Sidibe, A.M.; Xueyu, L. Heavy metals and nitrate to validate groundwater sensibility assessment based on DRASTIC models and GIS: Case of the upper Niger and the Bani basin in Mali. J. Afr. Earth Sci. 2018, 147, 199–210. [Google Scholar] [CrossRef]
- Neshat, A.; Pradhan, B. Evaluation of groundwater vulnerability to pollution using DRASTIC framework and GIS. Arab. J. Geosci. 2017, 10, 501. [Google Scholar] [CrossRef]
- Kazakis, N.; Voudouris, K.S. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters. J. Hydrol. 2015, 525, 13–25. [Google Scholar] [CrossRef]
- Yang, J.; Tang, Z.; Jiao, T.; Muhammad, A.M. Combining AHP and genetic algorithms approaches to modify DRASTIC model to assess groundwater vulnerability: A case study from Jianghan Plain, China. Environ. Earth Sci. 2017, 76, 426. [Google Scholar] [CrossRef]
- Machiwal, D.; Jha, M.K.; Singh, V.P.; Mohan, C. Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth Sci. Rev. 2018, 185, 901–927. [Google Scholar] [CrossRef]
- Aller, L.; Thornhill, J. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings; Robert, S., Ed.; Kerr Environmental Research Laboratory: Ada, OK, USA, 1987. [Google Scholar]
- Shrestha, A.; Luo, W. Assessment of Groundwater Nitrate Pollution Potential in Central Valley Aquifer Using Geodetector-Based Frequency Ratio (GFR) and Optimized-DRASTIC Methods. ISPRS Int. J. Geoinf. 2018, 7, 211. [Google Scholar] [CrossRef]
- Jaunat, J.; Garel, E.; Huneau, F.; Erostate, M.; Santoni, S.; Robert, S.; Fox, D.; Pasqualini, V. Combinations of geoenvironmental data underline coastal aquifer anthropogenic nitrate legacy through groundwater vulnerability mapping methods. Sci. Total. Environ. 2019, 658, 1390–1403. [Google Scholar] [CrossRef]
- Busico, G.; Kazakis, N.; Cuoco, E.; Colombani, N.; Tedesco, D.; Voudouris, K.; Mastrocicco, M. A novel hybrid method of specific vulnerability to anthropogenic pollution using multivariate statistical and regression analyses. Water Res. 2020, 171, 115386. [Google Scholar] [CrossRef] [PubMed]
- Torkashvand, M.; Neshat, A.; Javadi, S.; Yousefi, H. DRASTIC framework improvement using Stepwise Weight Assessment Ratio Analysis (SWARA) and combination of Genetic Algorithm and Entropy. Environ. Sci. Pollut. Res. 2021, 28, 46704–46724. [Google Scholar] [CrossRef] [PubMed]
- Saranya, T.; Saravanan, S. Assessment of groundwater vulnerability using analytical hierarchy process and evidential belief function with DRASTIC parameters, Cuddalore, India. Int. J. Environ. Sci. Technol. 2023, 20, 1837–1856. [Google Scholar] [CrossRef]
- Lakshminarayanan, B.; Ramasamy, S.; Anuthaman, S.N.; Karuppanan, S. New DRASTIC framework for groundwater vulnerability assessment: Bivariate and multi-criteria decision-making approach coupled with metaheuristic algorithm. Environ. Sci. Pollut. Res. 2022, 29, 4474–4496. [Google Scholar] [CrossRef]
- Saranya, T.; Saravanan, S. A comparative analysis on groundwater vulnerability models—Fuzzy DRASTIC and fuzzy DRASTIC-L. Environ. Sci. Pollut. Res. 2022, 29, 86005–86019. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chen, J.; Qian, H. A modified DRASTIC model for assessing contamination risk of groundwater in the northern suburb of Yinchuan, China. Environ. Earth Sci. 2016, 75, 483. [Google Scholar] [CrossRef]
- Kumar, A.; Krishna, A.P. Groundwater vulnerability and contamination risk assessment using GIS-based modified DRASTIC-LU model in hard rock aquifer system in India. Geocarto Int. 2020, 35, 1149–1178. [Google Scholar] [CrossRef]
- Kirlas, M.C.; Karpouzos, D.K.; Georgiou, P.E.; Theodossiou, N. A GIS-Based Comparative Groundwater Vulnerability Assessment Using Modified-DRASTIC, Modified-SINTACS and NV Index in a Porous Aquifer, Greece. Environments 2023, 10, 95. [Google Scholar] [CrossRef]
- Noori, R.; Ghahremanzadeh, H.; Kløve, B.; Adamowski, J.F.; Baghvand, A. Modified-DRASTIC, modified-SINTACS and SI methods for groundwater vulnerability assessment in the southern Tehran aquifer. J. Environ. Sci. Health Part A 2019, 54, 89–100. [Google Scholar] [CrossRef]
- Torkashvand, M.; Neshat, A.; Javadi, S.; Pradhan, B. New hybrid evolutionary algorithm for optimizing index-based groundwater vulnerability assessment method. J. Hydrol. 2021, 598, 126446. [Google Scholar] [CrossRef]
- Sarkar, M.; Pal, S.C. Application of DRASTIC and Modified DRASTIC Models for Modeling Groundwater Vulnerability of Malda District in West Bengal. J. Indian Soc. Remote Sens. 2021, 49, 1201–1219. [Google Scholar] [CrossRef]
- Nadiri, A.A.; Norouzi, H.; Khatibi, R.; Gharekhani, M. Groundwater DRASTIC vulnerability mapping by unsupervised and supervised techniques using a modelling strategy in two levels. J. Hydrol. 2019, 574, 744–759. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Pires, L.M.G.R.; Santos, R.M.B.; Sanches Fernandes, L.F. Factor weighting in DRASTIC modeling. Sci. Total Environ. 2015, 505, 474–486. [Google Scholar] [CrossRef]
- Sahoo, M.; Sahoo, S.; Dhar, A.; Pradhan, B. Effectiveness evaluation of objective and subjective weighting methods for aquifer vulnerability assessment in urban context. J. Hydrol. 2016, 541, 1303–1315. [Google Scholar] [CrossRef]
- Siarkos, I.; Arfaoui, M.; Tzoraki, O.; Zammouri, M.; Hamzaoui-Azaza, F. Implementation and evaluation of different techniques to modify DRASTIC method for groundwater vulnerability assessment: A case study from Bouficha aquifer, Tunisia. Environ. Sci. Pollut. Res. 2023, 30, 89459–89478. [Google Scholar] [CrossRef]
- Liang, J.; Li, Z.; Yang, Q.; Lei, X.; Kang, A.; Li, S. Specific vulnerability assessment of nitrate in shallow groundwater with an improved DRSTIC-LE model. Ecotoxicol. Environ. Saf. 2019, 174, 649–657. [Google Scholar] [CrossRef]
- Khosravi, K.; Sartaj, M.; Tsai, F.T.-C.; Singh, V.P.; Kazakis, N.; Melesse, A.M.; Prakash, I.; Bui, D.T.; Pham, B.T. A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Sci. Total. Environ. 2018, 642, 1032–1049. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, Y.; Jia, Y.; Wang, H.; Niu, C.; Gan, Y.; Gong, Y. Assessing groundwater vulnerability and its inconsistency with groundwater quality, based on a modified DRASTIC model: A case study in Chaoyang District of Beijing City. Arab. J. Geosci. 2017, 10, 144. [Google Scholar] [CrossRef]
- Nadiri, A.A.; Gharekhani, M.; Khatibi, R.; Sadeghfam, S.; Moghaddam, A.A. Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM). Sci. Total. Environ. 2017, 574, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Neshat, A.; Pradhan, B.; Pirasteh, S.; Shafri, H.Z.M. Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environ. Earth Sci. 2014, 71, 3119–3131. [Google Scholar] [CrossRef]
- Iqbal, J.; Gorai, A.K.; Katpatal, Y.B.; Pathak, G. Development of GIS-based fuzzy pattern recognition model (modified DRASTIC model) for groundwater vulnerability to pollution assessment. Int. J. Environ. Sci. Technol. 2015, 12, 3161–3174. [Google Scholar] [CrossRef]
- Zenebe, G.B.; Hussien, A.; Girmay, A.; Hailu, G. Spatial analysis of groundwater vulnerability to contamination and human activity impact using a modified DRASTIC model in Elalla-Aynalem Catchment, Northern Ethiopia. Sustain. Water Resour. Manag. 2020, 6, 51. [Google Scholar] [CrossRef]
- Javadi, S.; Moghaddam, H.K.; Neshat, A. A new approach for vulnerability assessment of coastal aquifers using combined index. Geocarto Int. 2022, 37, 1681–1703. [Google Scholar] [CrossRef]
- Armin, M.; Majidian, M.; Kheybari, V.G. Land Use/Land Cover Change Detection and Prediction in the Yasouj City Suburbs in Kohgiluyeh Va Boyerahmad Province in Iran. Arid. Ecosyst. 2020, 10, 203–210. [Google Scholar] [CrossRef]
- Kadkhodaie, F.; Moghaddam, A.A.; Barzegar, R.; Gharekhani, M.; Kadkhodaie, A. Optimizing the DRASTIC vulnerability approach to overcome the subjectivity: A case study from Shabestar plain, Iran. Arab. J. Geosci. 2019, 12, 16. [Google Scholar] [CrossRef]
- Das, B.; Pal, S.C. Assessment of groundwater vulnerability to over-exploitation using MCDA, AHP, fuzzy logic and novel ensemble models: A case study of Goghat-I and II blocks of West Bengal, India. Environ. Earth Sci. 2020, 79, 104. [Google Scholar] [CrossRef]
- Bonham-Carter, G.F. Geographic information systems for geoscientists-modeling with GIS. Comput. Methods Geosci. 1994, 13, 398. [Google Scholar]
- Oh, H.-J.; Kim, Y.-S.; Choi, J.-K.; Park, E.; Lee, S. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J. Hydrol. 2011, 399, 158–172. [Google Scholar] [CrossRef]
- Neshat, A.; Pradhan, B. An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment. Nat. Hazards 2015, 76, 543–563. [Google Scholar] [CrossRef]
- Demir, G.; Aytekin, M.; Akgün, A.; İkizler, S.B.; Tatar, O. A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Nat. Hazards 2013, 65, 1481–1506. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S. Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Model. Softw. 2010, 25, 747–759. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, B.; Yao, Y.; Meng, F.; Zheng, C. A field demonstration of the entropy-weighted fuzzy DRASTIC method for groundwater vulnerability assessment. Hydrol. Sci. J. 2012, 57, 1420–1432. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Li, G.-L.; Fu, Q.; Guoliang, L.; Qiang, F. Grey relational analysis model based on weighted entropy and its application. In Proceedings of the 2007 International Conference on Wireless Communications, Networking and Mobile Computing, Shanghai, China, 21–25 September 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 5500–5503. [Google Scholar] [CrossRef]
- Chen, W.; Pourghasemi, H.R.; Kornejady, A.; Zhang, N. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma 2017, 305, 314–327. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, G.; Tian, Y.; Chen, Y.; Wang, Z. Environmental vulnerability assessment for mainland China based on entropy method. Ecol. Indic. 2018, 91, 410–422. [Google Scholar] [CrossRef]
- Napolitano, P.; Fabbri, A. Single-Parameter Sensitivity Analysis for Aquifer Vulnerability Assessment Using DRASTIC and SINTACS; IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences; IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences: Wuhan, China, 1996; Volume 235, pp. 559–566. [Google Scholar]
- Brindha, K.; Elango, L. Cross comparison of five popular groundwater pollution vulnerability index approaches. J. Hydrol. 2015, 524, 597–613. [Google Scholar] [CrossRef]
- Ouedraogo, I.; Defourny, P.; Vanclooster, M. Mapping the groundwater vulnerability for pollution at the pan African scale. Sci. Total. Environ. 2016, 544, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-K.; Jang, C.-S.; Peng, Y.-H. Developing a probability-based model of aquifer vulnerability in an agricultural region. J. Hydrol. 2013, 486, 494–504. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, H.; Zhang, Y.; Wei, H.; Liao, R. Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement. Energies 2017, 10, 1526. [Google Scholar] [CrossRef]
- Liu, S.; Forrest, J.Y.L. Grey Systems: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Jenks, G.F. Optimal Data Classification for Choropleth Maps; Department of Geographiy, University of Kansas Occasional Paper: Kansas, MO, USA, 1977. [Google Scholar]
- Jenks, G.F.; Caspall, F.C. Error on choroplethic maps: Definition, measurement, reduction. Ann. Assoc. Am. Geogr. 1971, 61, 217–244. [Google Scholar] [CrossRef]
Reference | Subjective Weighting Methods | Objective Weighting Methods | ||||
---|---|---|---|---|---|---|
Single-Parameter Sensitivity Analysis | Fuzzy | Analytical Hierarchy Process | Entropy | Genetic Algorithm | Weights of Evidence | |
Sahoo, Sahoo [24] | × | ✓ | × | ✓ | × | × |
Hao, Zhang [28] | × | × | ✓ | ✓ | × | × |
Khosravi, Sartaj [27] | × | × | × | × | × | ✓ |
Kadkhodaie, Asghari Moghaddam [35] | × | × | × | × | ✓ | × |
Nadiri, Norouzi [22] | × | ✓ | × | × | ✓ | × |
Noori, Ghahremanzadeh [19] | ✓ | × | × | × | × | × |
Das and Pal [36] | × | ✓ | ✓ | × | × | × |
Data Type | Sources |
---|---|
Hydrogeological data | Meteorological Organization of Kohgiluyeh |
Geology map | Geological survey of IRAN |
Soil map | Soil and Water Research Institute of Kohgiluyeh |
Topography | Water Organization of Kohgiluyeh |
Hydraulic conductivity | Water Organization of Kohgiluyeh |
Geological profile | Water Organization of Kohgiluyeh |
Groundwater balance | Water Organization of Kohgiluyeh |
Sample wells | Surveyed in the study area using GPS technique |
Parameter | Range | Rate | Weight | % of Total Area (a) | % of Nitrate (b) | Frequency Ratio (b/a) | Modified Rate |
---|---|---|---|---|---|---|---|
Groundwater depth (m) | >30 | 1 | 5 | 22.07 | 24.05 | 1.09 | 6.37 |
23–30 | 2 | 29.66 | 35.49 | 1.20 | 7 | ||
15–23 | 3 | 24.01 | 23.30 | 0.97 | 5.68 | ||
9–15 | 5 | 15.00 | 9.93 | 0.66 | 3.87 | ||
4.5–9 | 7 | 9.26 | 7.24 | 0.77 | 4.57 | ||
Net recharge (cm/year) | 0–5 | 1 | 4 | 26.46 | 23.47 | 0.89 | 4.45 |
5–10 | 3 | 50.37 | 60.21 | 1.20 | 6 | ||
10–18 | 6 | 23.17 | 16.32 | 0.70 | 3.53 | ||
Aquifer media | Metamorphic igneous | 3 | 3 | 0.81 | 0.95 | 1.17 | 8.21 |
Weathered metamorphic igneous | 4 | 2.04 | 2.63 | 1.29 | 9 | ||
Massive sandstone | 6 | 39.46 | 30.93 | 0.78 | 5.48 | ||
Gravel and sand | 8 | 22.05 | 26.44 | 1.20 | 8.38 | ||
Basalt | 9 | 35.64 | 39.04 | 1.10 | 7.65 | ||
Soil media | Clay | 1 | 2 | 12.89 | 14.87 | 1.15 | 10 |
Clay loam | 3 | 17.91 | 13.57 | 0.76 | 6.57 | ||
Loam | 5 | 19.41 | 15.49 | 0.80 | 6.92 | ||
Sand | 10 | 49.79 | 56.07 | 1.13 | 9.77 | ||
Topography (Slope, %) | >18 | 1 | 1 | 0.63 | 0.76 | 1.20 | 9.63 |
12–18 | 3 | 3.18 | 3.97 | 1.25 | 9.99 | ||
6–12 | 5 | 13.51 | 16.89 | 1.25 | 10.00 | ||
2–6 | 9 | 53.45 | 55.20 | 1.03 | 8.27 | ||
0–2 | 10 | 29.23 | 23.19 | 0.79 | 6.35 | ||
Impact of vadose media | Gravel and sand | 8 | 5 | 100 | 100 | 1.00 | 8.00 |
Hydraulic conductivity (m/day) | 0.05–5 | 1 | 3 | 2.85 | 3.58 | 1.26 | 10.00 |
5–15 | 2 | 12.71 | 11.67 | 0.92 | 7.31 | ||
35–50 | 6 | 22.94 | 16.13 | 0.70 | 5.60 | ||
50–100 | 8 | 6.97 | 5.08 | 0.73 | 5.80 | ||
>100 | 10 | 54.52 | 63.54 | 1.17 | 9.28 |
DRASTIC-Entropy | FR-Entropy | |||
---|---|---|---|---|
Parameters | Entropy | Modified Weight | Entropy | Modified Weight |
Depth of water | 0.978 | 0.392 | 0.9976 | 0.271 |
Net recharge | 0.979 | 0.288 | 0.9972 | 0.259 |
Aquifer media | 0.997 | 0.027 | 0.9979 | 0.146 |
Soil media | 0.978 | 0.152 | 0.9981 | 0.089 |
Topography | 0.996 | 0.014 | 0.9985 | 0.035 |
Impact of vadose media | 1.000 | 0.000 | 1.0000 | 0.000 |
Hydraulic conductivity | 0.988 | 0.128 | 0.9971 | 0.199 |
Parameters | Theoretical Weight (%) | DRASTIC Weight | Modified Weight | Effective Weight (%) | ||
---|---|---|---|---|---|---|
Min | Max | Mean | ||||
Depth of water | 21.74 | 5 | 2.48 | 3.47 | 28.46 | 10.77 |
Net recharge | 17.39 | 4 | 2.15 | 2.41 | 19.67 | 9.36 |
Aquifer media | 13.04 | 3 | 3.83 | 8.11 | 23.08 | 16.64 |
Soil media | 8.70 | 2 | 2.26 | 1.46 | 20.83 | 9.82 |
Topography | 4.35 | 1 | 1.47 | 0.69 | 11.49 | 6.39 |
Impact of vadose media | 21.74 | 5 | 6.95 | 23.12 | 50.00 | 30.21 |
Hydraulic conductivity | 13.04 | 3 | 3.87 | 2.44 | 25.46 | 16.81 |
Parameters | Theoretical Weight (%) | DRASTIC Weight | Modified Weight | Effective Weight (%) | ||
---|---|---|---|---|---|---|
Min | Max | Mean | ||||
Depth of water | 21.74 | 5 | 4.20 | 11.83 | 24.67 | 18.26 |
Net recharge | 17.39 | 4 | 2.87 | 8.72 | 16.57 | 12.47 |
Aquifer media | 13.04 | 3 | 3.01 | 9.95 | 17.97 | 13.10 |
Soil media | 8.70 | 2 | 2.50 | 7.60 | 15.03 | 10.86 |
Topography | 4.35 | 1 | 1.16 | 3.56 | 7.20 | 5.04 |
Impact of vadose media | 21.74 | 5 | 5.00 | 21.98 | 31.69 | 25.43 |
Hydraulic conductivity | 13.04 | 3 | 3.41 | 10.97 | 19.58 | 14.84 |
Vulnerability Index | Pearson’s Correlation Coefficient | Grey Relational Grade |
---|---|---|
Original DRASTIC | 0.22 | 0.48 |
DRASTIC-Entropy | 0.41 | 0.56 |
FR-DRASTIC | 0.74 | 0.61 |
DRASTIC_SPSA | 0.34 | 0.52 |
FR-SPSA | 0.78 | 0.63 |
FR-Entropy | 0.85 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torkashvand, M.; Neshat, A.; Javadi, S.; Yousefi, H.; Berndtsson, R. Groundwater Vulnerability to Nitrate Contamination from Fertilizers Using Modified DRASTIC Frameworks. Water 2023, 15, 3134. https://doi.org/10.3390/w15173134
Torkashvand M, Neshat A, Javadi S, Yousefi H, Berndtsson R. Groundwater Vulnerability to Nitrate Contamination from Fertilizers Using Modified DRASTIC Frameworks. Water. 2023; 15(17):3134. https://doi.org/10.3390/w15173134
Chicago/Turabian StyleTorkashvand, Maryam, Aminreza Neshat, Saman Javadi, Hossein Yousefi, and Ronny Berndtsson. 2023. "Groundwater Vulnerability to Nitrate Contamination from Fertilizers Using Modified DRASTIC Frameworks" Water 15, no. 17: 3134. https://doi.org/10.3390/w15173134
APA StyleTorkashvand, M., Neshat, A., Javadi, S., Yousefi, H., & Berndtsson, R. (2023). Groundwater Vulnerability to Nitrate Contamination from Fertilizers Using Modified DRASTIC Frameworks. Water, 15(17), 3134. https://doi.org/10.3390/w15173134