Heavy Metal Distribution Characteristics, Water Quality Evaluation, and Health Risk Evaluation of Surface Water in Abandoned Multi-Year Pyrite Mine Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Preparation
2.3. Nemerow Composite Pollution Index Method
2.4. Health Risk Assessment Methods
2.5. Multivariate Statistical Analysis
3. Results and Discussion
3.1. Spatial Distribution Characteristics of Trace Metal Concentration
3.2. Heavy Metal Pollution Index of Surface Water in the Study Area
3.3. Health Risk Evaluation
3.4. Multivariate Statistical Analysis
3.4.1. Correlation Analysis
3.4.2. Principal Component Analysis
3.4.3. Cluster Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ya’ni, G. Research Progress of Heavy Metal Pollution in River. Chin. Agric. Sci. Bull. 2012, 28, 262–265. [Google Scholar]
- Li, W.; Qian, H.; Xu, P.; Zhang, Q.; Chen, J.; Hou, K.; Ren, W.; Qu, W.; Chen, Y. Distribution Characteristics, Source Identification and Risk Assessment of Heavy Metals in Surface Sediments of the Yellow River, China. Catena 2022, 216, 106376. [Google Scholar] [CrossRef]
- Cui, L.; Wang, X.; Li, J.; Gao, X.; Zhang, J.; Liu, Z.; Liu, Z. Ecological and Health Risk Assessments and Water Quality Criteria of Heavy Metals in the Haihe River. Environ. Pollut. 2021, 290, 117971. [Google Scholar] [CrossRef] [PubMed]
- Zhelev, Z.M.; Arnaudova, D.N.; Popgeorgiev, G.S.; Tsonev, S.V. In Situ Assessment of Health Status and Heavy Metal Bioaccumulation of Adult Pelophylax ridibundus (Anura: Ranidae) Individuals Inhabiting Polluted Area in Southern Bulgaria. Ecol. Indic. 2020, 115, 106413. [Google Scholar] [CrossRef]
- Bhuyan, M.S.; Haider, S.M.B.; Meraj, G.; Bakar, M.A.; Islam, M.T.; Kunda, M.; Siddique, M.A.B.; Ali, M.M.; Mustary, S.; Mojumder, I.A.; et al. Assessment of Heavy Metal Contamination in Beach Sediments of Eastern St. Martin’s Island, Bangladesh: Implications for Environmental and Human Health Risks. Water 2023, 15, 2494. [Google Scholar] [CrossRef]
- Singovszka, E.; Balintova, M.; Junakova, N. The Impact of Heavy Metals in Water from Abandoned Mine on Human Health. SN Appl. Sci. 2020, 2, 934. [Google Scholar] [CrossRef]
- Munir, N.; Jahangeer, M.; Bouyahya, A.; El Omari, N.; Ghchime, R.; Balahbib, A.; Aboulaghras, S.; Mahmood, Z.; Akram, M.; Ali Shah, S.M.; et al. Heavy Metal Contamination of Natural Foods Is a Serious Health Issue: A Review. Sustainability 2022, 14, 161. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E. Trophic Transfer, Bioaccumulation, and Biomagnification of Non-Essential Hazardous Heavy Metals and Metalloids in Food Chains/Webs-Concepts and Implications for Wildlife and Human Health. Hum. Ecol. Risk Assess. 2019, 25, 1353–1376. [Google Scholar] [CrossRef]
- Kumari, P.; Chowdhury, A.; Maiti, S.K. Assessment of Heavy Metal in the Water, Sediment, and Two Edible Fish Species of Jamshedpur Urban Agglomeration, India with Special Emphasis on Human Health Risk. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 1477–1500. [Google Scholar] [CrossRef]
- Sharma, S.; Nagpal, A.K.; Kaur, I. Appraisal of Heavy Metal Contents in Groundwater and Associated Health Hazards Posed to Human Population of Ropar Wetland, Punjab, India and Its Environs. Chemosphere 2019, 227, 179–190. [Google Scholar] [CrossRef]
- Gerson, J.R.; Topp, S.N.; Vega, C.M.; Gardner, J.R.; Yang, X.; Fernandez, L.E.; Bernhardt, E.S.; Pavelsky, T.M. Pavelsky Artificial Lake Expansion Amplifies Mercury Pollution from Gold Mining. Sci. Adv. 2020, 6, eabd4953. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Ali, B.N.M.; Tair, R.; Musta, B.; Abdullah, M.H.; Cleophas, F.; Isidore, F.; Nadzir, M.S.M.; Roselee, M.H.; Yusoff, I. Distance Impacts Toxic Metals Pollution in Mining Affected River Sediments. Environ. Res. 2022, 214, 113757. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, P.; Gojenko, B.; Yu, J.; Wei, L.; Luo, D.; Xiao, T. A Review of Water Pollution Arising from Agriculture and Mining Activities in Central Asia: Facts, Causes and Effects. Environ. Pollut. 2021, 291, 118209. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sharma, A.; Kumar, R.; Bhardwaj, R.; Kumar Thukral, A.; Rodrigo-Comino, J. Assessment of Heavy-Metal Pollution in Three Different Indian Water Bodies by Combination of Multivariate Analysis and Water Pollution Indices. Hum. Ecol. Risk Assess. 2020, 26, 1–16. [Google Scholar] [CrossRef]
- Sun, Z.; Xie, X.; Wang, P.; Hu, Y.; Cheng, H. Heavy Metal Pollution Caused by Small-Scale Metal Ore Mining Activities: A Case Study from a Polymetallic Mine in South China. Sci. Total Environ. 2018, 639, 217–227. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A Review of Soil Heavy Metal Pollution from Mines in China: Pollution and Health Risk Assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy Metal Pollution in Surface Water and Sediment: A Preliminary Assessment of an Urban River in a Developing Country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Ali, M.M.; Ali, M.L.; Islam, M.S.; Rahman, M.Z. Preliminary Assessment of Heavy Metals in Water and Sediment of Karnaphuli River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2016, 5, 27–35. [Google Scholar] [CrossRef]
- Adamovic, D.; Ishiyama, D.; Dordievski, S.; Ogawa, Y.; Stevanovic, Z.; Kawaraya, H.; Sato, H.; Obradovic, L.; Marinkovic, V.; Petrovic, J.; et al. Estimation and Comparison of the Environmental Impacts of Acid Mine Drainage-Bearing River Water in the Bor and Majdanpek Porphyry Copper Mining Areas in Eastern Serbia. Resour. Geol. 2021, 71, 123–143. [Google Scholar] [CrossRef]
- Skousen, J.; Zipper, C.E.; Rose, A.; Ziemkiewicz, P.F.; Nairn, R.; McDonald, L.M.; Kleinmann, R.L. Review of Passive Systems for Acid Mine Drainage Treatment. Mine Water Environ. 2017, 36, 133–153. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Hydrogeochemical Processes Governing the Origin, Transport and Fate of Major and Trace Elements from Mine Wastes and Mineralized Rock to Surface Waters. Appl. Geochem. 2011, 26, 1777–1791. [Google Scholar] [CrossRef]
- Skousen, J.G.; Ziemkiewicz, P.F.; McDonald, L.M. Acid Mine Drainage Formation, Control and Treatment: Approaches and Strategies. Extr. Ind. Soc. 2019, 6, 241–249. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, C.; Su, P.; Tang, Y.; Huang, Z.; Ma, T. A Review of Acid Mine Drainage: Formation Mechanism, Treatment Technology, Typical Engineering Cases and Resource Utilization. Process Saf. Environ. 2023, 170, 1240–1260. [Google Scholar] [CrossRef]
- Shi, A.; Shao, Y.; Zhao, K.; Fu, W. Long-Term Effect of E-Waste Dismantling Activities on the Heavy Metals Pollution in Paddy Soils of Southeastern China. Sci. Total Environ. 2020, 705, 135971. [Google Scholar] [CrossRef]
- Park, I.; Tabelin, C.B.; Jeon, S.; Li, X.; Seno, K.; Ito, M.; Hiroyoshi, N. A Review of Recent Strategies for Acid Mine Drainage Prevention and Mine Tailings Recycling. Chemosphere 2019, 219, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Lefcort, H.; Vancura, J.; Edward, L. Lider 75 Years after Mining Ends Stream Insect Diversity Is Still Affected by Heavy Metals. Ecotoxicology 2010, 19, 1416–1425. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; Zhang, Z.; Zhang, Y. Review: Acid Mine Drainage (AMD) in Abandoned Coal Mines of Shanxi, China. Water 2020, 13, 8. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Guo, L.; Deng, Z.; Wang, D.; Liu, L. Assessment of Heavy Metal Pollution and Water Quality Characteristics of the Reservoir Control Reaches in the Middle Han River, China. Sci. Total Environ. 2021, 799, 149472. [Google Scholar] [CrossRef] [PubMed]
- Hammarstrom, J.M.; Seal, R.R.; Meier, A.L.; Jackson, J.C. Weathering of Sulfidic Shale and Copper Mine Waste: Secondary Minerals and Metal Cycling in Great Smoky Mountains National Park, Tennessee, and North Carolina, USA. Environ. Geol. 2003, 45, 23. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, R.; Zhou, Y.; Luo, X. Characteristics of Groundwater Discharge to River and Related Heavy Metal Transportation in a Mountain Mining Area of Dabaoshan, Southern China. Sci. Total Environ. 2019, 679, 346–358. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Tang, X.; Yu, C.; Xie, S.; Xiao, M.; Song, Z.; Tu, X. Heavy Metal Geochemistry of the Acid Mine Drainage Discharged from the Hejiacun Uranium Mine in Central Hunan, China. Environ. Geol. 2009, 57, 421–434. [Google Scholar] [CrossRef]
- Shu, X.-H.; Zhang, Q.; Lu, G.-N.; Yi, X.-Y.; Dang, Z. Pollution Characteristics and Assessment of Sulfide Tailings from the Dabaoshan Mine, China. Int. Biodeterior. Biodegrad. 2018, 128, 122–128. [Google Scholar] [CrossRef]
- Zhang, W.J.; Xin, C.L.; Yu, S.; Liu, Q.; Zeng, P. Spatial and temporal distribution and pollution evaluation of dissolved heavy metals in Liujiang River Basin. Environ. Sci. 2021, 42, 4234–4245. [Google Scholar] [CrossRef]
- Yangming, N.; Faneng, Y. Water quality evaluation based on improved Nemerow pollution index method and grey clustering method. J. Cent. China Norm. Univ. (Nat. Sci.) 2020, 54, 149–155. [Google Scholar] [CrossRef]
- Guo, H. Application of different water quality evaluation methods in Qinghe River water quality evaluation. Yangtze River 2012, 43, 132–134. [Google Scholar] [CrossRef]
- Huanhuan, Q.I.; Bai, G.A.; Zhanxue, S.U. Concentration properties and health risk assessment of heavy metals in Lhasa River, Tibet. J. Water Resour. Water Eng. 2022, 33, 1–7. [Google Scholar]
- Tong, S.; Li, H.; Tudi, M.; Yuan, X.; Yang, L. Comparison of Characteristics, Water Quality and Health Risk Assessment of Trace Elements in Surface Water and Groundwater in China. Ecotoxicol. Environ. Saf. 2021, 219, 112283. [Google Scholar] [CrossRef]
- Wu, B.; Zhao, D.Y.; Jia, H.Y.; Zhang, Y.; Zhang, X.X.; Cheng, S.P. Preliminary Risk Assessment of Trace Metal Pollution in Surface Water from Yangtze River in Nanjing Section, China. Bull. Environ. Contam. Toxicol. 2009, 82, 405–409. [Google Scholar] [CrossRef]
- Wang, J.; Gao, B.; Yin, S.; Xu, D.; Liu, L.; Li, Y. Simultaneous Health Risk Assessment of Potentially Toxic Elements in Soils and Sediments of the Guishui River Basin, Beijing. Int. J. Environ. Res. Public Health 2019, 16, 4539. [Google Scholar] [CrossRef]
- Emenike, P.C.; Neris, J.B.; Tenebe, I.T.; Nnaji, C.C.; Jarvis, P. Estimation of Some Trace Metal Pollutants in River Atuwara Southwestern Nigeria and Spatio-Temporal Human Health Risks Assessment. Chemosphere 2020, 239, 124770. [Google Scholar] [CrossRef]
- Li, M.; Liu, Z.; Zhang, M.; Chen, Y. A Workflow for Spatio-Seasonal Hydro-Chemical Analysis Using Multivariate Statistical Techniques. Water Res. 2021, 188, 116550. [Google Scholar] [CrossRef] [PubMed]
- Paliy, O.; Shankar, V. Application of Multivariate Statistical Techniques in Microbial Ecology. Mol. Ecol. 2016, 25, 1032–1057. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Sillanpää, M.; Gjessing, E.T.; Peräniemi, S.; Vogt, R.D. Environmental Impact of Mining Activities on the Surface Water Quality in Tibet: Gyama Valley. Sci. Total Environ. 2010, 408, 4177–4184. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, F.; Tao, M.; Hu, L.; Shi, Y.; Liu, Y. Distribution and Ecological Risks of Heavy Metals in River Sediments and Overlying Water in Typical Mining Areas of China. Mar. Pollut. Bull. 2019, 146, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Candeias, C.; Ávila, P.F.; Da Silva, E.F.; Ferreira, A.; Durães, N.; Teixeira, J.P. Water–Rock Interaction and Geochemical Processes in Surface Waters Influenced by Tailings Impoundments: Impact and Threats to the Ecosystems and Human Health in Rural Communities (Panasqueira Mine, Central Portugal). Water Air Soil Poll. 2015, 226, 23. [Google Scholar] [CrossRef]
- Wu, J.; Lu, J.; Zhang, C.; Zhang, Y.; Lin, Y.; Xu, J. Pollution, Sources, and Risks of Heavy Metals in Coastal Waters of China. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 2011–2026. [Google Scholar] [CrossRef]
- El-Sorogy, A.S.; Youssef, M.; Al-Hashim, M.H. Water Quality Assessment and Environmental Impact of Heavy Metals in the Red Sea Coastal Seawater of Yanbu, Saudi Arabia. Water 2023, 15, 201. [Google Scholar] [CrossRef]
- NAbdel-Ghani, N.T.; Elchaghaby, G.A. Influence of Operating Conditions on the Removal of Cu, Zn, Cd and Pb Ions from Wastewater by Adsorption. Int. J. Environ. Sci. Technol. 2007, 4, 451–456. [Google Scholar] [CrossRef]
- D’Mello, S.R.; Mark, C. Kindy Overdosing on Iron: Elevated Iron and Degenerative Brain Disorders. Exp. Biol. Med. 2020, 245, 1444–1473. [Google Scholar] [CrossRef]
- Polito, L.; Greco, A.; Seripa, D. Genetic Profile, Environmental Exposure, and Their Interaction in Parkinson’s Disease. Park. Dis. 2016, 2016, 6465793. [Google Scholar] [CrossRef]
- Liang, C.-P.; Chen, J.-S.; Chien, Y.-C.; Chen, C.-F. Spatial Analysis of the Risk to Human Health from Exposure to Arsenic Contaminated Groundwater: A Kriging Approach. Sci. Total Environ. 2018, 627, 1048–1057. [Google Scholar] [CrossRef]
- Sohrabi, N.; Kalantari, N.; Amiri, V.; Saha, N.; Berndtsson, R.; Bhattacharya, P.; Ahmad, A. A Probabilistic-Deterministic Analysis of Human Health Risk Related to the Exposure to Potentially Toxic Elements in Groundwater of Urmia Coastal Aquifer (NW of Iran) with a Special Focus on Arsenic Speciation and Temporal Variation. Stoch. Environ. Res. Risk Assess. 2021, 35, 1509–1528. [Google Scholar] [CrossRef]
- Godt, J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; David, A. Groneberg The Toxicity of Cadmium and Resulting Hazards for Human Health. J. Occup. Med. Toxicol. 2006, 1, 22. [Google Scholar] [CrossRef] [PubMed]
- Ipek, Y.; Kocak, B.; Moussavi-Harami, R.; Zand-Moghadam, H.; Mahboubi, A.; Tohidi, M.R. Spatial Dispersion Hot Spots of Contamination and Human Health Risk Assessments of PTEs in Surface Sediments of Streams around Porphyry Copper Mine, Iran. Environ. Geochem. Health 2023, 45, 3907–3931. [Google Scholar] [CrossRef]
- Shakhari, S.; Verma, A.K.; Ghosh, D.; Bhar, K.K.; Banerjee, I. Diverse Water Quality Data Pattern Study of the Indian River Ganga: Correlation and Cluster Analysis. In Proceedings of the 2019 17th International Conference on ICT and Knowledge Engineering (ICT & KE), Bangkok, Thailand, 20–22 November 2019; pp. 93–99. [Google Scholar]
- Wang, J.; Liu, G.; Liu, H.; Paul, K.S. Lam Multivariate Statistical Evaluation of Dissolved Trace Elements and a Water Quality Assessment in the Middle Reaches of Huaihe River, Anhui, China. Sci. Total Environ. 2017, 583, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Mitryasova, O.; Pohrebennyk, V.; Cygnar, M.; Sopilnyak, I. Environmental Natural Water Quality Assessment by Method of Correlation Analysis. Int. Multidiscip. Sci. GeoConference SGEM 2016, 2, 317–324. [Google Scholar]
- Nordstrom, D.K.; Ball, J.W. Toxic Element Composition of Acid Mine Waters from Sulfide Ore Deposits. Mine Water Cong. 1985, 2, 749–757. [Google Scholar]
- Mirazimi, M.; Fan, J.; Liu, W. Kinetics of Arsenic and Sulfur Release from Amorphous Arsenic Trisulfide. Hydrometallurgy 2021, 200, 105555. [Google Scholar] [CrossRef]
- Hao, R.X.; Li, S.M.; Li, J.B.; Zhang, Q.K.; Liu, F. Water Quality Assessment for Wastewater Reclamation Using Principal Component Analysis. J. Environ. Inform. 2013, 21, 45–54. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Gupta, A.; Garg, J.K. Evaluation of Heavy Metal Contamination Using Environmetrics and Indexing Approach for River Yamuna, Delhi Stretch, India. Water Sci. 2017, 31, 52–66. [Google Scholar] [CrossRef]
- Wang, Q.L.; Song, Y.T.; Wang, C.W.; Xu, R.T.; Peng, M.; Zhou, Y.L.; Han, W. Source identification and spatial distribution of soil heavy metals in Western Yunnan. China Environ. Sci. 2021, 41, 3693–3703. [Google Scholar] [CrossRef]
- Manli, C. Study on the Transfer Rule of Hg, As, Se for Weihe River in Xi’an. Bachelor’s Thesis, Chang’an University, Xi’an, China, 2016. [Google Scholar]
- Grande, J.A.; Borrego, J.; De La Torre, M.L.; Sáinz, A. Application of Cluster Analysis to the Geochemistry Zonation of the Estuary Waters in the Tinto and Odiel Rivers (Huelva, Spain). Environ. Geochem. Health 2003, 25, 233–246. [Google Scholar] [CrossRef] [PubMed]
- GShenbagalakshmi, G.; Shenbagarajan, A.; Thavasi, S.; Nayagam, M.G.; Venkatesh, R. Determination of Water Quality Indicator Using Deep Hierarchical Cluster Analysis. Urban Clim. 2023, 49, 101468. [Google Scholar] [CrossRef]
- Sarmiento, A.M.; Nieto, J.M.; Olías, M.; Cánovas, C.R. Hydrochemical Characteristics and Seasonal Influence on the Pollution by Acid Mine Drainage in the Odiel River Basin (SW Spain). Appl. Geochem. 2009, 24, 697–714. [Google Scholar] [CrossRef]
Pollution Level | Pollution Evaluation | ||
---|---|---|---|
≤ 1 | Cleaning | ≤ 0.7 | Non-polluting |
≤ 2 | Light pollution | ≤ 1 | Low pollution |
≤ 3 | Moderate pollution | ≤ 2 | Moderate pollution |
> 3 | Severe pollution | > 2 | Strong pollution |
Parameters | Physical Meaning | Units | Adult | Child |
---|---|---|---|---|
ADDingestion | daily dose consumed through direct water intake | |||
ADDdermal | daily dosage absorbed by the skin | / | / | |
Cw | average heavy metal element concentration in every water sample | μg/L | / | / |
BW | average body weight | kg | 70 | 15 |
IR | ingestion rate | L/day | 2 | 0.64 |
EF | exposure frequency | days/year | 350 | 350 |
ED | exposure duration | years | 30 | 6 |
AT | average time | days | 25,550 | 2190 |
SA | exposed skin area | cm2 | 18,000 | 6600 |
ET | exposure time | 1 h/day | 0.58 | 1 |
Kp | dermal permeability coefficient | cm/h |
Kp | ABSGI | RfDingestion | RfDdermal | |
---|---|---|---|---|
cm/h | μg/kg/Day | |||
Fe | 0.001 | 0.014 | 700 | 140 |
Mn | 0.001 | 0.06 | 24 | 0.96 |
Cu | 0.001 | 0.57 | 40 | 8 |
Zn | 0.006 | 0.01 | 300 | 60 |
Cd | 0.001 | 0.57 | 0.5 | 0.025 |
As | 0.001 | 0.01 | 0.3 | 0.285 |
Se | 0.001 | 0.05 | 5 | 2.2 |
Creek | pH | SO42− | Fe | Mn | Cu | Zn | As | Cd | Se | ||
---|---|---|---|---|---|---|---|---|---|---|---|
China a | 6–9 | 250 | 0.3 | 0.1 | 1 | 1 | 0.05 | 0.005 | 0.01 | ||
WHO b | 6.5–8.5 | 250 | 0.3 | 0.4 | 2 | 3 | 0.01 | 0.003 | 0.01 | ||
USEPA c | MCLG | 1.3 | 0.05 | 0.05 | |||||||
MCL | 1.3 | 0.05 | 0.05 | 0.05 | |||||||
Jiancao Creek | Mean | 2.72 | 1299.27 | 96.1 | 3.88 | 0.73 | 1.35 | 0.005 | 0.06 | 0.0017 | |
Var | 0.03 | 8.0 × 105 | 1.2 × 104 | 2.08 | 0.21 | 0.89 | 4 × 10−5 | 0 | 1.14 × 10−7 | ||
Min | 2.41 | 570.8 | 3.19 | 1.39 | 0.26 | 0.26 | <0.0003 | <0.05 | <0.0004 | ||
Max | 2.99 | 3684 | 358.8 | 6.2 | 1.8 | 3.57 | 0.02 | 0.06 | 0.002 | ||
Daoban Creek | Mean | 5.55 | 5.15 | 7.92 | 2.40 | 0.20 | 0.44 | 0.15 | / | 0.01 | |
Var | 5.15 | 4.51 × 104 | 4.46 × 103 | 0.71 | 0.08 | 0.24 | 0.11 | / | 0.00 | ||
Min | 2.4 | 0.2 | <0.03 | <0.01 | <0.05 | <0.05 | <0.0003 | <0.05 | <0.0004 | ||
Max | 7.92 | 656.7 | 197.2 | 1.96 | 0.77 | 1.45 | 0.875 | <0.05 | 0.026 | ||
Tielu Creek | Mean | 2.21 | 7.7 × 103 | 1977 | 21.48 | 6.73 | 862.18 | 0.13 | 0.1 | 4 × 10−3 | |
Var | 0.01 | 1.7 × 107 | 5.3 × 105 | 78.38 | 5.07 | 6.5 × 106 | 7 × 10−3 | 0.019 | 3.7 × 10−7 | ||
Min | 2 | 0.205 | 1010 | 9.06 | 3.78 | 3.39 | 0.041 | 0.14 | 3 × 10−3 | ||
Max | 2.4 | 1.4 × 104 | 3428 | 36.75 | 11.1 | 8526 | 0.27 | 3.6 × 10−2 | 4.5 × 10−2 |
Creek | HQingestion | HQdermal | HI | ||||
---|---|---|---|---|---|---|---|
Adult | Child | Adult | Child | Adult | Child | ||
Fe | Jiancao Creek | 3.76 | 5.62 | 7.01 | 2.07 | 1.08 | 2.63 |
Daoban Creek | 1.44 | 2.15 | 2.69 | 7.92 | 4.13 | 1.01 × 101 | |
Tielu Creek | 7.74 × 101 | 1.16 × 102 | 1.44 × 102 | 4.26 × 102 | 2.22 × 102 | 5.41 × 102 | |
Mn | Jiancao Creek | 4.43 | 6.61 | 9.63 | 2.84 × 101 | 1.41 × 101 | 3.50 × 101 |
Daoban Creek | 1.36 | 2.03 | 2.95 | 8.70 | 4.31 | 1.07 | |
Tielu Creek | 2.45 × 101 | 3.66 × 101 | 5.33 × 101 | 1.57 × 102 | 7.79 × 101 | 1.94 × 102 | |
Cu | Jiancao Creek | 5.00 × 10−1 | 7.47 × 10−1 | 2.29 × 10−2 | 6.75 × 10−2 | 5.23 × 10−1 | 8.14 × 10−1 |
Daoban Creek | 2.99 × 10−1 | 4.47 × 10−1 | 1.37 × 10−1 | 4.04 × 10−2 | 3.13 × 10−1 | 4.87 × 10−1 | |
Tielu Creek | 4.61 | 6.88 | 2.11 × 10−1 | 6.23 × 10−1 | 4.82 | 7.51 | |
Zn | Jiancao Creek | 1.23 × 10−1 | 1.84 × 10−1 | 1.93 × 10−1 | 5.70 × 10−1 | 3.16 × 10−1 | 7.54 × 10−1 |
Daoban Creek | 4.03 × 10−2 | 6.02 × 10−2 | 6.32 × 10−2 | 1.86 × 10−1 | 1.03 × 10−1 | 2.47 × 10−1 | |
Tielu Creek | 7.87 × 101 | 1.18 × 102 | 1.23 × 102 | 3.64 × 102 | 2.02 × 102 | 4.81 × 102 | |
Cd | Jiancao Creek | 3.29 | 4.91 | 6.86 | 2.03 × 101 | 1.02 × 101 | 2.52 × 101 |
Daoban Creek | / | / | / | / | / | / | |
Tielu Creek | 5.48 | 8.18 | 1.14 × 101 | 3.38 × 101 | 1.69 × 101 | 4.19 × 101 | |
As | Jiancao Creek | 4.57 × 10−1 | 6.82 × 10−1 | 2.51 × 10−1 | 7.40 × 10−1 | 7.08 × 10−1 | 1.42 |
Daoban Creek | 1.35 × 101 | 2.01 × 101 | 7.39 | 2.18 × 101 | 2.08 × 101 | 4.19 × 101 | |
Tielu Creek | 1.19 × 101 | 1.77 × 101 | 6.52 | 1.92 × 101 | 1.84 × 101 | 3.70 × 101 | |
Se | Jiancao Creek | 9.32 × 10−3 | 1.39 × 10−2 | 1.11 × 10−2 | 3.26 × 10−1 | 2.04 × 10−1 | 4.65 × 10−1 |
Daoban Creek | 4.71 × 10−2 | 7.04 × 10−2 | 5.59 × 10−2 | 1.65 × 10−1 | 1.03 × 10−1 | 2.35 × 10−1 | |
Tielu Creek | 2.19 × 10−2 | 3.27 × 10−2 | 2.60 × 10−2 | 7.67 × 10−2 | 4.79 × 10−2 | 1.09 × 10−1 |
Variable | Factor 1 | Factor 2 | Factor 3 |
---|---|---|---|
Fe | 0.979 | 0.091 | 0.074 |
Mn | 0.965 | 0.106 | 0.067 |
Cu | 0.862 | 0.447 | 0.065 |
Zn | 0.083 | 0.972 | 0.036 |
As | 0.147 | −0.126 | 0.749 |
Cd | 0.928 | −0.217 | 0.096 |
Se | 0.011 | −0.176 | −0.773 |
Eigenvalues | 3.667 | 1.187 | 1.109 |
Variance (%) | 52.388 | 16.960 | 15.838 |
Cumulative (%) | 52.388 | 69.349 | 85.186 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, Y.; Liu, Y.; Wang, W.; Li, Y.; Chang, W.; Zhou, A.; Mu, R. Heavy Metal Distribution Characteristics, Water Quality Evaluation, and Health Risk Evaluation of Surface Water in Abandoned Multi-Year Pyrite Mine Area. Water 2023, 15, 3138. https://doi.org/10.3390/w15173138
Jiao Y, Liu Y, Wang W, Li Y, Chang W, Zhou A, Mu R. Heavy Metal Distribution Characteristics, Water Quality Evaluation, and Health Risk Evaluation of Surface Water in Abandoned Multi-Year Pyrite Mine Area. Water. 2023; 15(17):3138. https://doi.org/10.3390/w15173138
Chicago/Turabian StyleJiao, Yiwen, Yitian Liu, Wei Wang, Yujiao Li, Wentong Chang, Ao Zhou, and Ronglong Mu. 2023. "Heavy Metal Distribution Characteristics, Water Quality Evaluation, and Health Risk Evaluation of Surface Water in Abandoned Multi-Year Pyrite Mine Area" Water 15, no. 17: 3138. https://doi.org/10.3390/w15173138
APA StyleJiao, Y., Liu, Y., Wang, W., Li, Y., Chang, W., Zhou, A., & Mu, R. (2023). Heavy Metal Distribution Characteristics, Water Quality Evaluation, and Health Risk Evaluation of Surface Water in Abandoned Multi-Year Pyrite Mine Area. Water, 15(17), 3138. https://doi.org/10.3390/w15173138