Revelation and Projection of Historic and Future Precipitation Characteristics in the Haihe River Basin, China
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Datasets in This Study
2.3. Methodology
2.3.1. Extreme Precipitation Indexes
2.3.2. Evaluation Indicators of Precipitation Performance
2.3.3. The Once-in-a-Century Precipitation Amount
2.3.4. Cross-Wavelet Transforms
3. Results
3.1. Evaluating the Precipitation Performance of CMIP6 Models
3.1.1. Evaluating the Performance of Monthly Precipitation
3.1.2. Evaluating the Performance of Extreme Precipitation
3.2. Precipitation Change Characteristics
3.2.1. Precipitation Change Trend
3.2.2. Degree of Contribution of Extreme Precipitation
3.3. Periodicity of Precipitation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Madakumbura, G.D.; Thackeray, C.W.; Norris, J.; Goldenson, N.; Hall, A. Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets. Nat. Commun. 2021, 12, 3944. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Chen, T.; Zheng, G.; Wang, Y.; Jiang, L.; De Maeyer, P. Assessment of CMIP6 in simulating precipitation over arid Central Asia. Atmos. Res. 2021, 252, 105451. [Google Scholar] [CrossRef]
- Kotz, M.; Levermann, A.; Wenz, L. The effect of rainfall changes on economic production. Nature 2022, 601, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Li, C.; Zwiers, F.; Zhang, X.; Li, G.; Sun, Y.; Wehner, M. Changes in Annual Extremes of Daily Temperature and Precipitation in CMIP6 Models. J. Clim. 2021, 34, 3441–3460. [Google Scholar] [CrossRef]
- John, A.; Douville, H.; Ribes, A.; Yiou, P. Quantifying CMIP6 model uncertainties in extreme precipitation projections. Weather Clim. Extrem. 2022, 36, 100435. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Jeferson de Medeiros, F.; Prestrelo de Oliveira, C.; Avila-Diaz, A. Evaluation of extreme precipitation climate indices and their projected changes for Brazil: From CMIP3 to CMIP6. Weather Clim. Extrem. 2022, 38, 100511. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, J.; Yu, M.; Liang, X.; Xia, R.; Gao, Y.; Gao, X.; Yin, J. On the Influences of Urbanization on the Extreme Rainfall over Zhengzhou on 20 July 2021: A Convection-Permitting Ensemble Modeling Study. Adv. Atmos. Sci. 2022, 40, 393–409. [Google Scholar] [CrossRef]
- Xiao, S.; Zou, L.; Xia, J.; Dong, Y.; Yang, Z.; Yao, T. Assessment of the urban waterlogging resilience and identification of its driving factors: A case study of Wuhan City, China. Sci. Total Environ. 2023, 866, 161321. [Google Scholar] [CrossRef]
- Liu, S.; Huang, S.; Huang, Q.; Xie, Y.; Leng, G.; Luan, J.; Song, X.; Wei, X.; Li, X. Identification of the non-stationarity of extreme precipitation events and correlations with large-scale ocean-atmospheric circulation patterns: A case study in the Wei River Basin, China. J. Hydrol. 2017, 548, 184–195. [Google Scholar] [CrossRef]
- Wang, P.; Huang, Q.; Tang, Q.; Chen, X.; Yu, J.; Pozdniakov, S.P.; Wang, T. Increasing annual and extreme precipitation in permafrost-dominated Siberia during 1959–2018. J. Hydrol. 2021, 603, 126865. [Google Scholar] [CrossRef]
- Yuan, Z.; Yang, Z.; Yan, D.; Yin, J. Historical changes and future projection of extreme precipitation in China. Theor. Appl. Climatol. 2015, 127, 393–407. [Google Scholar] [CrossRef]
- Li, L.; Yao, N.; Liu, D.L.; Song, S.; Lin, H.; Chen, X.; Li, Y. Historical and future projected frequency of extreme precipitation indicators using the optimized cumulative distribution functions in China. J. Hydrol. 2019, 579, 124170. [Google Scholar] [CrossRef]
- Almazroui, M.; Saeed, S. Contribution of extreme daily precipitation to total rainfall over the Arabian Peninsula. Atmos. Res. 2020, 231, 104672. [Google Scholar] [CrossRef]
- Ullah, W.; Wang, G.; Lou, D.; Ullah, S.; Bhatti, A.S.; Ullah, S.; Karim, A.; Hagan, D.F.T.; Ali, G. Large-scale atmospheric circulation patterns associated with extreme monsoon precipitation in Pakistan during 1981–2018. Atmos. Res. 2021, 253, 105489. [Google Scholar] [CrossRef]
- Liu, Y.; Han, J.; Jiao, J.; Liu, B.; Ge, W.; Pan, Q.; Wang, F. Responses of flood peaks to land use and landscape patterns under extreme rainstorms in small catchments—A case study of the rainstorm of Typhoon Lekima in Shandong, China. Int. Soil Water Conserv. Res. 2022, 10, 228–239. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; El-Shirbeny, M.A.; Fadl, M.E. A new attempt for modeling erosion risks using remote sensing-based mapping and the index of land susceptibility to wind erosion. Catena 2023, 227, 107130. [Google Scholar] [CrossRef]
- Huang, C.; Zheng, X.; Tait, A.; Dai, Y.; Yang, C.; Chen, Z.; Li, T.; Wang, Z. On using smoothing spline and residual correction to fuse rain gauge observations and remote sensing data. J. Hydrol. 2014, 508, 410–417. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Li, M.; Li, L.; Liu, F.; Liu, D.L.; Pulatov, B. Projection of precipitation extremes in China’s mainland based on the statistical downscaled data from 27 GCMs in CMIP6. Atmos. Res. 2022, 280, 106462. [Google Scholar] [CrossRef]
- Ding, Y.; Jiang, C.; Zhou, Z.; Gao, T.; Wang, S.; Zhang, X.; Cai, H.; Shi, H. Evaluation of precipitation and its time series components in CMIP6 over the Yellow River Basin. Clim. Dyn. 2022, 60, 1203–1223. [Google Scholar] [CrossRef]
- Li, G.; Yu, Z.; Wang, W.; Ju, Q.; Chen, X. Analysis of the spatial Distribution of precipitation and topography with GPM data in the Tibetan Plateau. Atmos. Res. 2021, 247, 105259. [Google Scholar] [CrossRef]
- Martinsen, G.; Liu, S.; Mo, X.; Bauer-Gottwein, P. Joint optimization of water allocation and water quality management in Haihe River basin. Sci. Total Environ. 2019, 654, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.-Y.; Yin, S.-Q.; Wang, W.-T. Spatial interpolation of the extreme hourly precipitation at different return levels in the Haihe River basin. J. Hydrol. 2021, 598, 126273. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, B.; Xu, Y.; Han, Z. CMIP6 Evaluation and Projection of Temperature and Precipitation over China. Adv. Atmos. Sci. 2021, 38, 817–830. [Google Scholar] [CrossRef]
- Ling, M.; Guo, X.; Shi, X.; Han, H. Temporal and spatial evolution of drought in Haihe River Basin from 1960 to 2020. Ecol. Indic. 2022, 138, 108809. [Google Scholar] [CrossRef]
- Johnson, F.; Hutchinson, M.F.; The, C.; Beesley, C.; Green, J. Topographic relationships for design rainfalls over Australia. J. Hydrol. 2016, 533, 439–451. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wen, J.; Gao, J.; Wang, J. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. J. Hydrol. 2021, 595, 125660. [Google Scholar] [CrossRef]
- Du, Y.; Wang, D.; Zhu, J.; Lin, Z.; Zhong, Y. Intercomparison of multiple high-resolution precipitation products over China: Climatology and extremes. Atmos. Res. 2022, 278, 106342. [Google Scholar] [CrossRef]
- Ye, B.S.; Yang, D.Q.; Ding, Y.J.; Han, T.D.; Koike, T. A bias-corrected precipitation climatology for China. J. Hydrometeorol. 2004, 5, 1147–1160. [Google Scholar] [CrossRef]
- Chao, L.; Zhang, K.; Li, Z.; Zhu, Y.; Wang, J.; Yu, Z. Geographically weighted regression based methods for merging satellite and gauge precipitation. J. Hydrol. 2018, 558, 275–289. [Google Scholar] [CrossRef]
- Supharatid, S. Skill of precipitation projectionin the Chao Phraya river Basinby multi-model ensemble CMIP3-CMIP5. Weather Clim. Extrem. 2016, 12, 1–14. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Ding, Y.B.; Shi, H.Y.; Cai, H.J.; Fu, Q.; Liu, S.N.; Li, T.X. Analysis and prediction of vegetation dynamic changes in China: Past, present and future. Ecol. Indic. 2020, 117, 11. [Google Scholar] [CrossRef]
- He, Y.; Lee, E.; Warner, T.A. A time series of annual land use and land cover maps of China from 1982 to 2013 generated using AVHRR GIMMS NDVI3g data. Remote Sens. Environ. 2017, 199, 201–217. [Google Scholar] [CrossRef]
- Shi, X.; Chen, J.; Gu, L.; Xu, C.Y.; Chen, H.; Zhang, L. Impacts and socioeconomic exposures of global extreme precipitation events in 1.5 and 2.0 degrees C warmer climates. Sci. Total Environ. 2021, 766, 142665. [Google Scholar] [CrossRef]
- Zhu, Y.-Y.; Yang, S. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv. Clim. Chang. Res. 2020, 11, 239–251. [Google Scholar] [CrossRef]
- Pilon, P.J.; Adamowski, K. Asymptotic variance of flood quantile in log Pearson Type III distribution with historical information. J. Hydrol. 1993, 143, 481–503. [Google Scholar] [CrossRef]
- Qin, X.; Dai, C. Comparison of different quantile delta mapping schemes in frequency analysis of precipitation extremes over mainland Southeast Asia under climate change. J. Hydrol. 2022, 606, 127421. [Google Scholar] [CrossRef]
- Zhou, Z.; Shi, H.; Fu, Q.; Li, T.; Gan, T.Y.; Liu, S.; Liu, K. Is the cold region in Northeast China still getting warmer under climate change impact? Atmos. Res. 2020, 237, 104864. [Google Scholar] [CrossRef]
- Zhou, Z.; Shi, H.; Fu, Q.; Li, T.; Gan, T.Y.; Liu, S. Assessing spatiotemporal characteristics of drought and its effects on climate-induced yield of maize in Northeast China. J. Hydrol. 2020, 588, 125097. [Google Scholar] [CrossRef]
- Torrence, C.G.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Aihaiti, A.; Jiang, Z.; Zhu, L.; Li, W.; You, Q. Risk changes of compound temperature and precipitation extremes in China under 1.5 °C and 2 °C global warming. Atmos. Res. 2021, 264, 105838. [Google Scholar]
- Wang, G.; Wang, D.; Trenberth, K.E.; Erfanian, A.; Yu, M.; Bosilovich, M.G.; Parr, D.T. The peak structure and future changes of the relationships between extreme precipitation and temperature. Nat. Clim. Chang. 2017, 7, 268–274. [Google Scholar]
- Wasko, C.; Nathan, R.; Stein, L.; O’Shea, D. Evidence of shorter more extreme rainfalls and increased flood variability under climate change. J. Hydrol. 2021, 603, 126994. [Google Scholar] [CrossRef]
- Deng, P.; Zhang, M.; Hu, Q.; Wang, L.; Bing, J. Pattern of spatio-temporal variability of extreme precipitation and flood-waterlogging process in Hanjiang River basin. Atmos. Res. 2022, 276, 106258. [Google Scholar] [CrossRef]
- Dottori, F.; Mentaschi, L.; Bianchi, A.; Alfieri, L.; Feyen, L. Cost-effective adaptation strategies to rising river flood risk in Europe. Nat. Clim. Chang. 2023, 13, 196–202. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; She, D.; Wang, G.; Zhang, Q. Future projections of flooding characteristics in the Lancang-Mekong River Basin under climate change. J. Hydrol. 2021, 602, 126778. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Chen, Y.; Xu, Y.; Zhang, G.; Lin, Q.; Luo, R. Projection of changes in flash flood occurrence under climate change at tourist attractions. J. Hydrol. 2021, 595, 126039. [Google Scholar] [CrossRef]
- Pabi, O.; Egyir, S.; Attua, E.M. Flood hazard response to scenarios of rainfall dynamics and land use and land cover change in an urbanized river basin in Accra, Ghana. City Environ. Interact. 2021, 12, 100075. [Google Scholar] [CrossRef]
- Milazzo, F.; Francksen, R.M.; Zavattaro, L.; Abdalla, M.; Hejduk, S.; Enri, S.R.; Pittarello, M.; Price, P.N.; Schils, R.L.M.; Smith, P.; et al. The role of grassland for erosion and flood mitigation in Europe: A meta-analysis. Agric. Ecosyst. Environ. 2023, 348, 108443. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Wang, C.; Zhao, W. Runoff sensitivity increases with land use/cover change contributing to runoff decline across the middle reaches of the Yellow River basin. J. Hydrol. 2021, 600, 126536. [Google Scholar] [CrossRef]
- Lei, Y.; Gu, H.; Cui, P. Vulnerability assessment for buildings exposed to torrential hazards at Sichuan-Tibet transportation corridor. Eng. Geol. 2022, 308, 106803. [Google Scholar] [CrossRef]
- Tan, M.; Li, X.; Li, S.; Xin, L.; Wang, X.; Li, Q.; Li, W.; Li, Y.; Xiang, W. Modeling population density based on nighttime light images and land use data in China. Appl. Geogr. 2018, 90, 239–247. [Google Scholar] [CrossRef]
Number | Code | Model | Country | Number of Grid Points |
---|---|---|---|---|
1 | A | ACCESS-CM2 | Australia | 192 × 144 |
2 | B | ACCESS-ESM1-5 | Australia | 192 × 145 |
3 | C | BCC-CSM2-MR | China | 320 × 160 |
4 | D | CanESM5 | Canada | 128 × 64 |
5 | E | EC-Earth3 | Ireland | 512 × 256 |
6 | F | EC-Earth3-Veg | Ireland | 512 × 256 |
7 | G | GFDL-CM4 | USA | 288 × 180 |
8 | H | GFDL-ESM4 | USA | 288 × 180 |
9 | I | INM-CM4-8 | Russia | 180 × 120 |
10 | J | INM-CM5-0 | Russia | 180 × 120 |
11 | K | KACE-1-0-G | Korea | 192 × 96 |
12 | L | KIOST-ESM | Korea | 192 × 144 |
13 | M | MIROC6 | Japan | 256 × 128 |
14 | N | MME | ||
15 | O | MPI-ESM1-2-HR | Germany | 384 × 192 |
16 | P | MPI-ESM1-2-LR | Germany | 192 × 96 |
17 | Q | MRI-ESM2-0 | Japan | 320 × 160 |
18 | R | NESM3 | China | 192 × 96 |
19 | S | NorESM2-LM | Norway | 144 × 96 |
20 | T | NorESM2-MM | Norway | 288 × 192 |
Extreme Precipitation Index | Explanation | Unit |
---|---|---|
PRCPTOT | Annual summed precipitation (more than 1 mm) | mm |
R10mm | Daily precipitation of more than 10 cm for the same number of days in the year | day |
R20mm | Daily precipitation of more than 20 cm for the same number of days in the year | day |
R95p | The total daily precipitation of more than the 95th daily precipitation percentile annually | mm |
R99p | The total daily precipitation of more than the 99th daily precipitation percentile annually | mm |
Rx1day | The maximum total precipitation in one consecutive day annually | mm |
Rx5day | The maximum total precipitation in five consecutive days annually | mm |
SDII | Mean precipitation amount per wet day | mm/day |
Model | PRCPTOT | R10mm | R20mm | R95p | R99p | Rx1day | Rx5day | SDII |
---|---|---|---|---|---|---|---|---|
ACCESS-CM2 | 11 | 10 | 17 | 2 | 1 | 2 | 14 | 15 |
ACCESS-ESM1-5 | 17 | 16 | 18 | 1 | 2 | 6 | 20 | 10 |
BCC-CSM2-MR | 3 | 1 | 2 | 6 | 5 | 3 | 1 | 3 |
CanESM5 | 10 | 9 | 13 | 9 | 9 | 5 | 10 | 16 |
EC-Earth3 | 5 | 5 | 4 | 18 | 16 | 18 | 17 | 5 |
EC-Earth3-Veg | 2 | 3 | 3 | 15 | 19 | 20 | 18 | 1 |
GFDL-CM4 | 4 | 4 | 9 | 10 | 13 | 12 | 4 | 8 |
GFDL-ESM4 | 6 | 6 | 5 | 8 | 8 | 8 | 6 | 4 |
INM-CM4-8 | 20 | 20 | 10 | 5 | 7 | 15 | 13 | 7 |
INM-CM5-0 | 19 | 18 | 15 | 3 | 3 | 9 | 19 | 6 |
KACE-1-0-G | 8 | 8 | 14 | 4 | 4 | 1 | 11 | 17 |
KIOST-ESM | 1 | 2 | 1 | 19 | 15 | 13 | 16 | 2 |
MIROC6 | 18 | 17 | 20 | 7 | 6 | 4 | 7 | 19 |
MME | 12 | 12 | 11 | 11 | 10 | 11 | 2 | 11 |
MPI-ESM1-2-HR | 9 | 13 | 6 | 17 | 17 | 16 | 15 | 18 |
MPI-ESM1-2-LR | 16 | 19 | 8 | 20 | 20 | 19 | 9 | 12 |
MRI-ESM2-0 | 7 | 7 | 7 | 14 | 11 | 10 | 5 | 9 |
NESM3 | 15 | 15 | 12 | 12 | 14 | 14 | 3 | 20 |
NorESM2-LM | 14 | 14 | 19 | 16 | 18 | 17 | 8 | 14 |
NorESM2-MM | 13 | 11 | 16 | 13 | 12 | 7 | 12 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, L.; Sha, J.; Wang, B.; Li, G.; Ma, Q.; Ding, Y. Revelation and Projection of Historic and Future Precipitation Characteristics in the Haihe River Basin, China. Water 2023, 15, 3245. https://doi.org/10.3390/w15183245
Huo L, Sha J, Wang B, Li G, Ma Q, Ding Y. Revelation and Projection of Historic and Future Precipitation Characteristics in the Haihe River Basin, China. Water. 2023; 15(18):3245. https://doi.org/10.3390/w15183245
Chicago/Turabian StyleHuo, Litao, Jinxia Sha, Boxin Wang, Guangzhi Li, Qingqing Ma, and Yibo Ding. 2023. "Revelation and Projection of Historic and Future Precipitation Characteristics in the Haihe River Basin, China" Water 15, no. 18: 3245. https://doi.org/10.3390/w15183245
APA StyleHuo, L., Sha, J., Wang, B., Li, G., Ma, Q., & Ding, Y. (2023). Revelation and Projection of Historic and Future Precipitation Characteristics in the Haihe River Basin, China. Water, 15(18), 3245. https://doi.org/10.3390/w15183245