Effect of Different Fertilization Measures on Soil Salinity and Nutrients in Salt-Affected Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Site
2.2. Experimental Treatments and Sample Collection
2.3. Soil Testing Methods
2.4. Statistical Analysis
3. Results
3.1. Effect of Different Fertilization Measures on Soil Salinity and Water Content
3.1.1. Effect of Different Fertilization Measures on Soil Salinity in the 0–20 cm Soil Layer
3.1.2. Effect of Different Fertilization Measures on Soil Salinity in the 20–40 cm Soil Layer
3.1.3. Effect of Different Fertilization Measures on Soil Salt Content in the 0–100 cm Soil Layer
3.2. Effect of Different Fertilization Practices on Soil pH
3.2.1. Effect of Different Fertilizer Application Measures on pH in the 0–20 cm Soil Layer
3.2.2. Effect of Different Fertilizer Applications on pH in the 20–40 cm Soil Layer
3.2.3. Effect of Different Fertilization Measures on Soil pH of 0–100 cm Soil Layer
3.3. Effect of Different Fertilization Practices on Top Soil Moisture
3.4. Effects of Different Fertilization Practices on Soil Nutrients
3.4.1. Effect of Different Fertilizer Application Measures on Soil Organic Matter
3.4.2. Effect of Different Fertilization Measures on Soil Total Nitrogen
4. Discussion
4.1. Effect of Different Fertilizer Applications on Soil Salt Content and pH
4.2. Effect of Different Fertilizer Application Measures on Soil Organic Matter
4.3. Effect of Different Fertilization Measures on Soil Total Nitrogen Content
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hopmans, J.W.; Qureshi, A.S.; Kisekka, I.; Munns, R.; Taleisnik, E. Critical knowledge gaps and research priorities in global soil salinity. Adv. Agron. 2021, 169, 1–191. [Google Scholar]
- Hassani, A.; Azapagic, A.; Shokri, N. Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proc. Natl. Acad. Sci. USA 2020, 117, 33017–33027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Jilili, A.; Hamid, Y. The Occurrence, Sources and Spatial Characteristics of Soil Salt and Assessment of Soil Salinization Risk in Yanqi Basin, Northwest China. PLoS ONE 2014, 9, e106079. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, P.M.; Bressan, R.A.; Zhu, J.K.; Bohnert, H.J. Plant cellular and molecular responses to high salinity. ann rev plant physiol plant mol biol. Annu. Rev. Plant Biol. 2020, 51, 463–499. [Google Scholar]
- Karimi, G.; Ghorbanli, M.; Heidari, H.; Nejad, R.A.K.; Assareh, M.H. The effects of nacl on growth, water relations, osmolytes and ion content in Kochia prostrata. Biol. Plantarum. 2005, 49, 301–304. [Google Scholar] [CrossRef]
- Murat, A.H.A.; Hassan, A.; Elkarim, A.; Taban, S. Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant. Afr. J. Agric. Res. 2010, 5, 584–588. [Google Scholar]
- Yang, J.S.; Yao, R.J.; Wang, X.P.; Xie, W.P.; Zhang, X.; Zhu, W.; Zhang, L.; Sun, R.J. Research on Salt-affected Soils in China: History, Status Quo and Prospect. Acta Pedol. Sin. 2022, 59, 10–27. [Google Scholar]
- Chen, T.; Zhang, Y.; Fu, J.; Yang, L.; Chi, Y.X.; Yang, K.J.; Wang, Y.F. Effects of tillage methods on soil physical properties and maize growth in a saline–alkali soil. Crop Sci. 2021, 5, 3702–3718. [Google Scholar] [CrossRef]
- Chen, G.; Wei, Z.M.; Liu, H. Study on Soil Desalination Process of Saline-Alkaline Grassland along the Yellow River in Western Inner Mongolia under Subsurface Drainage. Sustainability 2022, 21, 14494. [Google Scholar] [CrossRef]
- Mao, Y.M.; Li, X.P. Desalting effect of flue gas desulfurization gypsum (FGDG) on coastal saline-sodic soil with different textures. J. Soils Sediments 2022, 2, 765–776. [Google Scholar] [CrossRef]
- Day, S.J.; Norton, J.B.; Strom, C.F.; Kelleners, T.J.; Aboukila, E.F. Gypsum, langbeinite, sulfur, and compost for reclamation of drastically disturbed calcareous saline–sodic soils. Int. J. Environ. Sci. Technol. 2019, 16, 295–304. [Google Scholar] [CrossRef]
- Singh, Y.P.; Arora, S.; Mishra, V.K.; Singh, A. Composting of Municipal Solid Waste Using Earthworms and Ligno-Cellulolytic Microbial Consortia for Reclamation of the Degraded Sodic Soils and Harnessing Their Productivity Potential. Sustainability 2023, 3, 2317. [Google Scholar] [CrossRef]
- Ravindran, K.C.; Venkatesan, K.; Balakrishnan, V.; Chellappan, K.P.; Balasubramanian, T. Restoration of saline land by halophytes for Indian soils. Soil Biol. Biochem. 2007, 39, 2661–2664. [Google Scholar] [CrossRef]
- Munns, R.; James, R.A.; Xu, B.; Athman, A.; Conn, S.J.; Jordans, C.; Byrt, C.S.; Hare, R.A.; Tyerman, S.D.; Tester, M.; et al. Wheat grain yield on saline soils is improved by an ancestral Na⁺ transporter gene. Nat. Biotechnol. 2012, 4, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.J.; Hu, W.Y.; Li, Q.Y. Phytosynthetic bacteria (PSB) as awater quality improvement mechanism in sa line-alkali wetland ponds. J. Environ. Sci. 2002, 14, 339–344. [Google Scholar]
- Mohanavelu, A.; Naganna, S.R.; Al-Ansari, N. Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies. Agriculture 2021, 11, 983. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Zheng, C.; Zhang, Y.; Sun, Z. Organic amendment application influence soil organism abundance in saline alkali soil. Eur. J. Soil Biol. 2013, 54, 32–40. [Google Scholar] [CrossRef]
- Xiao, M.; Liu, G.; Jiang, S.; Guan, X.; Chen, J.; Yao, R.; Wang, X. Bio-Organic Fertilizer Combined with Different Amendments Improves Nutrient Enhancement and Salt Leaching in Saline Soil: A Soil Column Experiment. Water 2022, 14, 4084. [Google Scholar] [CrossRef]
- Miranda, M.F.A.; Freire, M.B.G.D.; De Almeida, B.G.; Freire, F.J.; Pessoa, L.G.M.; Freire, A.G. Phyto-desalination and chemical and organic conditioners to recover the chemical properties of saline-sodic soil. Soil Sci. Soc. Am. J. 2020, 85, 132–145. [Google Scholar] [CrossRef]
- Githinji, L.J.M. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2014, 60, 457–470. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Xie, X.; Zhu, J.; Li, R.; Qin, T. Removal of Norfloxacin from aqueous solution by clay-biochar composite prepared from potato stem and natural attapulgite. Colloids Surf. A Physicochem. Eng. Asp. 2017, 514, 126–136. [Google Scholar] [CrossRef]
- Xu, C.; Qi, J.; Yang, W.; Chen, Y.; Yang, C.; He, Y.; Wang, J.; Lin, A. Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay. Sci. Total Environ. 2019, 686, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Liu, M.; Ni, B.; Zhang, X.; Wang, Y. Slow-release nitrogen and boron fertilizer from a functional superabsorbent formulation based on wheat straw and attapulgite. Chem. Eng. J. 2011, 167, 342–348. [Google Scholar] [CrossRef]
- Sun, Z.; Ge, J.; Li, C.; Wang, Y.; Zhang, F.; Lei, X. Enhanced improvement of soda saline-alkali soil by in-situ formation of super-stable mineralization structure based on cafe layered double hydroxide and its large-scale application. Chemosphere. 2022, 300, 134543. [Google Scholar] [CrossRef]
- Kebede, B.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Mulualem, T.; Mamedov, A.I.; Meshesha, D.T.; Adgo, E.; Fenta, A.A.; Ebabu, K.; et al. Effect of polyacrylamide integrated with other soil amendments on runoff and soil loss: Case study from northwest ethiopia. Int. Soil Water Conserv. Res. 2022, 10, 487–496. [Google Scholar] [CrossRef]
- Pavlovich, L.B.; Strakhov, V.M. Effect of humic fertilizers from brown coal on the mineral composition of vegetable crops. Solid Fuel Chem. 2018, 52, 206–210. [Google Scholar] [CrossRef]
- Liu, X.Y.; Yang, J.S.; Tao, J.Y.; Yao, R.J. Integrated application of inorganic fertilizer with fulvic acid for improving soil nutrient supply and nutrient use efficiency of winter wheat in a salt-affected soil. Appl. Soil Ecol. 2022, 170, 104255. [Google Scholar] [CrossRef]
- Pulatov, A.; Amanturdiev, S.; Nazarov, K.; Adilov, M.; Khaitov, B. Effect of biofertilizers on growth and yield of cotton in different soil conditions. Cotton Genom. Genet. 2016, 7, 1925–1947. [Google Scholar] [CrossRef]
- Huang, R. The effect of humic acid on the desalinization of coastal clayey saline soil. Water Supply 2022, 22, 7242–7255. [Google Scholar] [CrossRef]
- Abulaiti, A.; She, D.L.; Liu, Z.P.; Sun, X.Q.; Wang, H.D. Application of biochar and polyacrylamide to revitalize coastal saline soil quality to improve rice growth. Environ. Sci. Pollut. Res. Int. 2022, 30, 18731–18747. [Google Scholar] [CrossRef]
- Xie, X.; Pu, L.; Shen, H.; Wang, X.; Zhu, M.; Ge, Y.; Sun, L. Effects of soil reclamation on the oat cultivation in the newly reclaimed coastal land, eastern China. Ecol. Eng. 2019, 129, 115–122. [Google Scholar] [CrossRef]
- McLeod, S. Determination of total soil and plant nitrogen using a micro-distillation unit in a continuous flow analyzer. Anal. Chim. Acta 1992, 266, 113–117. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, X.; Yang, J.; Luo, Y.; Yao, R.; Wang, X.; Zhang, X. Coastal Soil Salinity Amelioration and Crop Yield Improvement by Biomaterial Addition in East China. Water 2022, 20, 3266. [Google Scholar] [CrossRef]
- Chen, W.P.; Hou, Z.A.; Wu, L.S.; Liang, Y.C.; Wei, C.Z. Effects of salinity and nitrogen on cotton growth in arid environment. Plant Soil. 2010, 326, 61–73. [Google Scholar] [CrossRef]
- Bello, S.K.; Alayafi, A.H.; AL-Solaimani, S.G.; Abo-Elyousr, K.A.M. Mitigating Soil Salinity Stress with Gypsum and Bio-Organic Amendments: A Review. Agronomy 2021, 11, 1735. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, X.; Meng, Q. Additional application of aluminum sulfate with different fertilizers ameliorates saline-sodic soil of Songnen Plain in Northeast China. J. Soils Sediments 2019, 19, 3521–3533. [Google Scholar] [CrossRef]
- Li, J.; Xu, Y.; Liu, H. Variations of soil quality from continuously planting greenhouses in North China. Int. J. Agric. Biol. Eng. 2019, 12, 139–145. [Google Scholar] [CrossRef]
- Zhao, T.W.; Li, H.D.; Zhou, W.; Dai, Y.C.; Lu, J.L. Effects of attapulgite application on soil nutrients in Cd-contaminated farmland. J. Agro-Environ. Sci. 2019, 38, 2313–2318. [Google Scholar]
- Santos, F.L.; Serralheiro, R.P. Improving infiltration of irrigated mediterranean soils with polyacrylamide. J. Agric. Eng. Res. 2000, 76, 83–90. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Wang, F.; Xie, Y. Maize (Zea mays) growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil. Appl. Soil Ecol. 2019, 142, 147–154. [Google Scholar] [CrossRef]
- Rekaby, S.A.; Al-Huqail, A.A.; Gebreel, M.; Alotaibi, S.S.; Ghoneim, A.M. Compost and humic acid mitigate the salinity stress on quinoa (Chenopodium quinoa Willd L.) and improve some sandy soil properties. J. Soil Sci. Plant Nutr. 2023, 23, 2651–2661. [Google Scholar] [CrossRef]
- Wandansari, R.N.; Kurniawan, S.; Suntari, R.; Soemarno. Improving Soil Fertility and Maize Growth in Suboptimal Land Through Application of Humic Acid. Int. J. Des. Nat. Ecodynamics 2022, 17, 679–690. [Google Scholar] [CrossRef]
- Li, Z.F.; Huang, B.Z.; Ma, Y.; Sun, Z.J. Improvement Effects of Different Environmental Materials on Coastal Saline-Alkali Soil in Yellow River Delta. Mater. Sci. Forum 2018, 4740, 879–886. [Google Scholar] [CrossRef]
- Zhang, Y.; Pang, X.Y.; Bao, W.K.; You, C.; Tang, H.R.; Hu, T.X. A review of soil organic matter and its research methods. World Sci-Tech R D 2005, 27, 72–78. [Google Scholar]
- Liu, X.; Zhang, L. The effectiveness of composted green waste amended with vermiculite and humic acid powders as an alternative cultivation substrate for cornflower cultivation. Commun. Soil Sci. Plant Anal. 2021, 52, 2945–2957. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, L. Vermiculite and humic acid improve the quality of green waste compost as a growth medium for Centaurea cyanus L. Environ. Technol. Innov. 2021, 24, 101945. [Google Scholar] [CrossRef]
- Dębska, B.; Długosz, J.; Piotrowska-Długosz, A.; Banach-Szott, M. The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration—Results from a field-scale study. J. Soils Sediments 2016, 16, 2335–2343. [Google Scholar] [CrossRef]
- Aseri, G.K.; Jain, N.; Rao, A.V.; Meghwal, P.R. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in indian thar desert. Sci. Hortic. 2008, 117, 130–135. [Google Scholar] [CrossRef]
- Yang, S.; Li, C.; Xu, C.; Wu, D.; Wang, J.; Zhang, Y.; Ai, Y.; Li, H. Effects of Adding Straw and Attapulgite on Soil Structure and Carbon and Nitrogen Contents of Old Yellow River Course. Bull. Soil Water Conserv. 2020, 40, 199–204. [Google Scholar]
- Ma, H.; Chen, B.; Yang, T.; Cheng, Z.; Niu, X.; Ma, X. Effects of Different Fertilization on the Growth and Soil Nutrient of Fritillaria pallidiflora Schrek. Xinjiang Agric. Sci. 2017, 54, 281–288. [Google Scholar]
pH | EC (µS/cm) | SOM (%) | TN (g/kg) | |
---|---|---|---|---|
CK | 8.54 | 844.40 | 0.63 | 0.50 |
CK0 | 8.46 | 567.03 | 0.59 | 0.37 |
N | 8.43 | 1037.33 | 0.64 | 0.38 |
NA | 8.29 | 1166.00 | 0.68 | 0.57 |
NF | 8.21 | 898.77 | 0.73 | 0.52 |
NP | 8.44 | 774.53 | 1.05 | 0.58 |
NFE | 8.43 | 861.63 | 0.79 | 0.64 |
Sampling Date | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | November 2020 | December 2020 | January 2021 | April 2021 | May 2021 | June 2021 | August 2021 | September 2021 | October 2021 | November 2021 |
CK | 8.54 ± 0.06 a | 8.85 ± 0.08 a | 8.95 ± 0.02 a | 9.42 ± 0.04 a | 8.83 ± 0.02 a | 9.15 ± 0.05 a | 9.28 ± 0.03 b | 8.96 ± 0.01 b | 9.39 ± 0.02 a | 8.64 ± 0.03 a |
CK0 | 8.46 ± 002 b | 8.68 ± 0.08 b | 8.39 ± 0.05 c | 8.6 ± 0.04 c | 8.66 ± 0.04 bc | 8.54 ± 0.05 c | 9.37 ± 0.02 a | 8.85 ± 0.04 c | 9.38 ± 0.04 a | 8.65 ± 0.03 a |
N | 8.43 ± 0.04 b | 8.37 ± 0.05 d | 8.73 ± 0.02 b | 8.83 ± 0.03 b | 8.57 ± 0.11 cd | 8.85 ± 0.05 b | 9.05 ± 0.05 d | 8.72 ± 0.03 d | 9.42 ± 0.04 a | 8.52 ± 0.07 b |
NA | 8.29 ± 0.08 c | 8.15 ± 0.03 e | 8.32 ± 0.04 d | 8.52 ± 0.02 c | 8.40 ± 0.02 e | 8.56 ± 0.03 c | 9.10 ± 0.02 c | 8.98 ± 0.03 b | 9.15 ± 0.03 b | 8.61 ± 0.02 a |
NF | 8.21 ± 0.04 c | 8.55 ± 0.01 c | 8.25 ± 0.02 e | 8.28 ± 0.02 d | 8.71 ± 0.03 b | 8.86 ± 0.03 b | 8.67 ± 0.01 e | 8.65 ± 0.02 e | 9.38 ± 0.05 a | 8.47 ± 0.02 b |
NP | 8.44 ± 0.02 b | 8.06 ± 0.03 e | 8.16 ± 0.02 f | 8.29 ± 0.02 d | 8.55 ± 0.04 d | 8.51 ± 0.04 c | 9.38 ± 0.01 a | 9.05 ± 0.02 a | 9.21 ± 0.04 b | 8.46 ± 0.04 b |
NFE | 8.43 ± 0.04 b | 8.14 ± 0.05 e | 8.27 ± 0.04 de | 8.57 ± 0.11 c | 7.99 ± 0.07 f | 8.86 ± 0.02 b | 9.07 ± 0.02 cd | 8.83 ± 0.02 c | 9.00 ± 0.04 c | 8.52 ± 0.03 b |
Sampling Date | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | November 2020 | December 2020 | January 2021 | April 2021 | May 2021 | June 2021 | August 2021 | September 2021 | October 2021 | November 2021 |
CK | 9.32 ± 0.03 a | 8.37 ± 0.03 b | 8.64 ± 0.05 a | 9.17 ± 0.04 a | 8.88 ± 0.02 a | 8.72 ± 0.01 a | 9.26 ± 0.02 a | 9.57 ± 0.06 a | 9.14 ± 0.03 bc | 9.27 ± 0.01 a |
CK0 | 8.94 ± 0.02 b | 8.50 ± 0.04 a | 8.29 ± 0.01 cd | 8.23 ± 0.04 e | 8.68 ± 0.03 b | 8.53 ± 0.05 b | 9.29 ± 0.04 a | 9.28 ± 0.03 b | 9.18 ± 0.02 b | 9.07 ± 0.05 b |
N | 8.45 ± 0.04 d | 8.23 ± 0.01 c | 8.25 ± 0.02 de | 8.74 ± 0.03 b | 8.33 ± 0.06 f | 8.73 ± 0.05 a | 8.21 ± 0.04 c | 8.74 ± 0.03 e | 8.94 ± 0.02 d | 9.08 ± 0.01 b |
NA | 8.39 ± 0.04 e | 7.96 ± 0.03 e | 8.47 ± 0.03 b | 8.54 ± 0.03 c | 8.56 ± 0.01 c | 8.43 ± 0.03 c | 9.16 ± 0.02 b | 9.23 ± 0.04 b | 9.36 ± 0.07 a | 8.92 ± 0.07 c |
NF | 8.41 ± 0.04 de | 8.16 ± 0.02 d | 8.21 ± 0.04 e | 8.05 ± 0.01 f | 8.41 ± 0.03 de | 8.45 ± 0.06 c | 9.17 ± 0.05 b | 8.75 ± 0.04 e | 9.09 ± 0.05 c | 9.11 ± 0.0 b |
NP | 8.36 ± 0.03 e | 8.16 ± 0.03 d | 8.35 ± 0.04 c | 8.43 ± 0.03 d | 8.35 ± 0.02 ef | 8.25 ± 0.05 d | 9.11 ± 0.01 b | 8.95 ± 0.02 d | 8.74 ± 0.02 e | 8.74 ± 0.03 d |
NFE | 8.70 ± 0.04 c | 8.13 ± 0.03 d | 8.32 ± 0.02 c | 8.45 ± 0.05 d | 8.44 ± 0.04 d | 8.44 ± 0.03 c | 9.15 ± 0.04 b | 9.15 ± 0.03 c | 9.09 ± 0.04 c | 9.04 ± 0.05 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Xie, W.; Yang, J.; Yao, R.; Wang, X.; Li, W. Effect of Different Fertilization Measures on Soil Salinity and Nutrients in Salt-Affected Soils. Water 2023, 15, 3274. https://doi.org/10.3390/w15183274
Liu J, Xie W, Yang J, Yao R, Wang X, Li W. Effect of Different Fertilization Measures on Soil Salinity and Nutrients in Salt-Affected Soils. Water. 2023; 15(18):3274. https://doi.org/10.3390/w15183274
Chicago/Turabian StyleLiu, Junyao, Wenping Xie, Jingsong Yang, Rongjiang Yao, Xiangping Wang, and Wenxiu Li. 2023. "Effect of Different Fertilization Measures on Soil Salinity and Nutrients in Salt-Affected Soils" Water 15, no. 18: 3274. https://doi.org/10.3390/w15183274
APA StyleLiu, J., Xie, W., Yang, J., Yao, R., Wang, X., & Li, W. (2023). Effect of Different Fertilization Measures on Soil Salinity and Nutrients in Salt-Affected Soils. Water, 15(18), 3274. https://doi.org/10.3390/w15183274