Multivariate Drought Risk Analysis for the Weihe River: Comparison between Parametric and Nonparametric Copula Methods
Abstract
:1. Introduction
2. Methodology
2.1. Copula Method
2.2. Parametric Copulas
2.3. Nonparametric Copulas
2.4. Primary and Secondary Return Periods
3. Case Study
3.1. Overview of Wei River Basin
3.2. Data Collection and Drought Identification
4. Results Analysis
4.1. Probability Estimation of Individual Drought Index
4.2. Quantification of Interdependence between SPI and SPEI through Both Parametric and Nonparametric Copulas
4.3. Primary and Joint Return Period of SPI and SPEI
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilhite, D.A. (Ed.) Drought as a natural hazard: Concepts and definitions. In Drought: A Global Assessment; Routledge: London, UK, 2000; Chapter 1; Volume I, pp. 3–18. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Li, X.; Sha, J.; Wang, Z.L. Comparison of drought indices in the analysis of spatial and temporal changes of climatic drought events in a basin. Environ. Sci. Pollut. Res. 2019, 26, 10695–10707. [Google Scholar] [CrossRef] [PubMed]
- Chong, K.L.; Huang, Y.F.; Koo, C.H.; Ahmed, A.N.; El-Shafie, A. Spatiotemporal variability analysis of standardized precipitation indexed droughts using wavelet transform. J. Hydrol. 2022, 605, 127299. [Google Scholar] [CrossRef]
- Huang, Y.F.; Ahmed, A.N.; Ng, J.L.; Tan, K.W.; Kumar, P.; El-Shafie, A. Rainfall Variability Index (RVI) analysis of dry spells in Malaysia. Nat. Hazards 2022, 112, 1423–1475. [Google Scholar] [CrossRef]
- Yong, S.L.S.; Ng, J.L.; Huang, Y.F.; Ang, C.K.; Mirzaei, M.; Ahmed, A.N. Local and global sensitivity analysis and its contributing factors in reference crop evapotranspiration. Water Supply 2023, 23, 1672–1683. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A. Multivariate standardized drought index: A parametric multi-index model. Adv. Water Resour. 2013, 57, 12–18. [Google Scholar] [CrossRef]
- Kao, S.C.; Govindaraju, R.S. A copula-based joint deficit index for droughts. J. Hydrol. 2010, 380, 121–134. [Google Scholar] [CrossRef]
- Serinaldi, F.; Kilsby, C.G. Stationarity is undead: Uncertainty dominates the distribution of extremes. Adv. Water Resour. 2015, 77, 17–36. [Google Scholar]
- Wang, F.; Wang, Z.; Yang, H.; Di, D.; Zhao, Y.; Liang, Q. A new copula-based standardized precipitation evapotranspiration streamflow index for drought monitoring. J. Hydrol. 2020, 585, 124793. [Google Scholar] [CrossRef]
- De Michele, C.; Salvadori, G.; Vezzoli, R.; Pecora, S. Multivariate assessment of droughts: Frequency analysis and dynamic return period. Water Resour. Res. 2013, 49, 6985–6994. [Google Scholar] [CrossRef]
- Xiao, M.; Yu, Z.; Zhu, Y. Copula-based frequency analysis of drought with identified characteristics in space and time: A case study in Huai River basin, China. Theor. Appl. Climatol. 2019, 137, 2865–2875. [Google Scholar] [CrossRef]
- Huang, K.; Fan, Y.R. Parameter Uncertainty and Sensitivity Evaluation of Copula-Based Multivariate Hydroclimatic Risk Assessment. J. Environ. Inform. 2021, 38, 131–144. [Google Scholar] [CrossRef]
- Fan, Y.R.; Yu, L.; Shi, X.; Duan, Q.Y. Tracing uncertainty contributors in the multi-hazard risk analysis for compound extremes. Earth’s Future 2021, 9, e2021EF002280. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, G.; Wang, X.; Fan, Y.; Cheng, G. A coupled dynamical-copula downscaling approach for temperature projections over the Canadian Prairies. Clim. Dyn. 2018, 51, 2413–2431. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C. On the Use of Copulas in Hydrology: Theory and Practice. J. Hydrol. Eng. 2007, 12, 369–380. [Google Scholar] [CrossRef]
- Song, S.; Singh, V.P. Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. Stoch. Environ. Res. Risk Assess. 2010, 24, 425–444. [Google Scholar] [CrossRef]
- Kolev, N.; dos Anjos, U.; de M. Mendes, B.V. Copulas: A Review and Recent Developments. Stoch. Models 2006, 22, 617–660. [Google Scholar] [CrossRef]
- Latif, S.; Simonovic, S.P. Nonparametric Approach to Copula Estimation in Compounding the Joint Impact of Storm Surge and Rainfall Events in Coastal Flood Analysis. Water Resour. Manag. 2022, 36, 5599–5632. [Google Scholar] [CrossRef]
- Latif, S.; Simonovic, S.P. Trivariate Joint Distribution Modelling of Compound Events Using the Nonparametric D-Vine Copula Developed Based on a Bernstein and Beta Kernel Copula Density Framework. Hydrology 2022, 9, 221. [Google Scholar] [CrossRef]
- Zhang, L.; Singh, V.P. Copulas and Their Applications in Water Resources Engineering; Cambridge University Press: New York, NY, USA, 2019. [Google Scholar]
- Fan, Y.R.; Huang, W.W.; Li, Y.P.; Huang, G.H.; Huang, K. A coupled ensemble filtering and probabilistic collocation approach for uncertainty quantification of hydrological models. J. Hydrol. 2015, 530, 255–272. [Google Scholar] [CrossRef]
- Fan, Y.R. Bivariate hydrologic risk analysis for the Xiangxi River in Three Gorges Reservoir Area, China. Environ. Syst. Res. 2022, 11, 18. [Google Scholar] [CrossRef]
- Nagler, T. kdecopula: An R Package for the Kernel Estimation of Bivariate Copula Densities. J. Stat. Softw. 2018, 84, 1–22. [Google Scholar] [CrossRef]
- Aitken, C.G.G.; Lucy, D. Evaluation of Trace Evidence in the Form of Multivariate Data. J. R. Stat. Soc. C 2004, 53, 109–122. [Google Scholar] [CrossRef]
- Gijbels, I.; Mielniczuk, J. Estimating the Density of a Copula Function. Commun. Stat.-Theory Methods 1990, 19, 445–464. [Google Scholar] [CrossRef]
- Charpentier, A.; Fermanian, J.D.; Scaillet, O. The Estimation of Copulas: Theory and Practice. In Copulas: From Theory to Application in Finance; Rank, J., Ed.; Risk Books: London, UK, 2007. [Google Scholar]
- Graler, B.; van den Berg, M.J.; Vandenberghe, S.; Petroselli, A.; Grimaldi, S.; De Baets, B.; Verhoest, N.E.C. Multivariate return periods in hydrology: A critical and practical review focusing on synthetic design hydrograph estimation. Hydrol. Earth Syst. Sci. 2013, 17, 1281–1296. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C.; Kottegoda, N.T.; Rosso, R. Extremes in Nature: An Approach Using Copula; Springer: Dordrencht, The Netherlands, 2007; p. 292. [Google Scholar]
- Sraj, M.; Bezak, N.; Brilly, M. Bivariate flood frequency analysis using the copula function: A case study of the Litija station on the Sava River. Hydrol. Process. 2015, 29, 225–238. [Google Scholar] [CrossRef]
- Zou, L.; Xia, J.; She, D. Analysis of Impacts of Climate Change and Human Activities on Hydrological Drought: A Case Study in the Wei River Basin, China. Water Resour. Manag. 2018, 32, 1421–1438. [Google Scholar] [CrossRef]
- Chang, J.; Li, Y.; Wang, Y.; Yuan, M. Copula-based drought risk assessment combined with an integrated index in the Wei River Basin, China. J. Hydrol. 2016, 540, 824–834. [Google Scholar] [CrossRef]
- Wen, Y.; Yang, A.; Fan, Y.; Wang, B.; Scott, D. Stepwise cluster ensemble downscaling for drought projection under climate change. Int. J. Climatol. 2023, 43, 2318–2338. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, R.; Qi, J.; Zeng, J.; Wu, J.; Shui, W.; Wu, X.; Li, J. An improved daily standardized precipitation index dataset for mainland China from 1961 to 2018. Sci. Data 2022, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zeng, J.; Qi, J.; Zhang, X.; Zeng, Y.; Shui, W.; Xu, Z.; Zhang, R.; Wu, X.; Cong, J. A multi-scale daily SPEI dataset for drought characterization at observation stations over mainland China from 1961 to 2018. Earth Syst. Sci. Data 2021, 13, 331–341. [Google Scholar] [CrossRef]
- Droogers, P.; Allen, R.G. Estimating Reference Evapotranspiration Under Inaccurate Data Conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Şen, Z.; Almazroui, M. Actual Precipitation Index (API) for Drought classification. Earth Syst. Environ. 2021, 5, 59–70. [Google Scholar] [CrossRef]
Copula Name | Function [C(u1, u2)] | Parameter Range | |
---|---|---|---|
Gaussian | |||
Joe | |||
Gumbel | |||
Frank |
ID | Lat (°C) | Lon (°C) | Elevation (m) |
---|---|---|---|
52986 | 35.36667 | 103.8667 | 1886.6 |
52996 | 35.38333 | 105 | 2450.6 |
53738 | 36.83333 | 108.1833 | 1272.6 |
53817 | 35.96667 | 106.75 | 1753.2 |
53821 | 36.58333 | 107.3 | 1255.6 |
53845 | 36.6 | 109.5 | 957.6 |
53903 | 35.93333 | 105.9667 | 1901.3 |
53915 | 35.55 | 106.6667 | 1346.6 |
53923 | 35.73333 | 107.6333 | 1421.9 |
53929 | 35.2 | 107.8 | 1206.3 |
53942 | 35.81667 | 109.5 | 1158.3 |
56093 | 34.43333 | 104.0167 | 2314.6 |
57034 | 34.3 | 108.0667 | 505.4 |
57037 | 34.93333 | 108.9833 | 719 |
57046 | 34.48333 | 110.0833 | 2064.9 |
57134 | 33.53333 | 107.9833 | 1179.2 |
57144 | 33.43333 | 109.15 | 1098.6 |
57143 | 33.86667 | 109.9667 | 742.2 |
Station ID | SPI | SPEI | Kendall between SPI and SPEI | ||
---|---|---|---|---|---|
Mean | Sd | Mean | Sd | ||
52986 | −1.419 | 0.624 | −1.592 | 0.505 | 0.386 |
52996 | −1.490 | 0.505 | −1.584 | 0.455 | 0.472 |
53738 | −1.384 | 0.818 | −1.657 | 0.527 | 0.317 |
53817 | −1.412 | 0.568 | −1.677 | 0.489 | 0.291 |
53821 | −1.355 | 0.660 | −1.603 | 0.563 | 0.535 |
53845 | −1.377 | 0.595 | −1.590 | 0.554 | 0.403 |
53903 | −1.371 | 0.643 | −1.620 | 0.524 | 0.369 |
53915 | −1.402 | 0.524 | −1.611 | 0.507 | 0.432 |
53923 | −1.445 | 0.422 | −1.551 | 0.512 | 0.555 |
53929 | −1.411 | 0.532 | −1.548 | 0.496 | 0.435 |
53942 | −1.538 | 0.505 | −1.622 | 0.583 | 0.584 |
56093 | −1.309 | 0.756 | −1.592 | 0.589 | 0.527 |
57034 | −1.475 | 0.465 | −1.577 | 0.467 | 0.483 |
57037 | −1.568 | 0.449 | −1.574 | 0.495 | 0.370 |
57046 | −1.486 | 0.454 | −1.546 | 0.462 | 0.698 |
57134 | −1.427 | 0.485 | −1.629 | 0.384 | 0.391 |
57144 | −1.446 | 0.539 | −1.546 | 0.537 | 0.418 |
57143 | −1.500 | 0.468 | −1.601 | 0.514 | 0.515 |
Station ID | SPI | SPEI | ||||
---|---|---|---|---|---|---|
Distribution | p-Value (KS) | AIC | Distribution | p-Value (KS) | AIC | |
52986 | GEV | 0.9948 | −278.27 | Gamma | 1.0000 | −336.81 |
52996 | GEV | 0.9942 | −310.82 | Weibull | 0.9944 | −305.30 |
53738 | GEV | 0.9933 | −278.37 | Weibull | 0.9936 | −291.65 |
53817 | GEV | 0.9959 | −288.31 | Gumbel | 1.0000 | −363.26 |
53821 | GEV | 0.9942 | −319.34 | GEV | 1.0000 | −327.56 |
53845 | GEV | 0.9950 | −304.78 | GEV | 1.0000 | −327.82 |
53903 | GEV | 0.9942 | −301.65 | Weibull | 0.9944 | −293.43 |
53915 | Weibull | 1.0000 | −348.92 | GEV | 1.0000 | −342.69 |
53923 | Weibull | 1.0000 | −305.77 | GEV | 0.9952 | −309.03 |
53929 | GEV | 0.9479 | −293.35 | GEV | 0.9952 | −319.24 |
53942 | GEV | 0.9950 | −311.08 | GEV | 1.0000 | −357.52 |
56093 | GEV | 0.9933 | −268.81 | GEV | 0.9377 | −267.38 |
57034 | GEV | 1.0000 | −345.67 | GEV | 0.9959 | −306.45 |
57037 | GEV | 0.9493 | −282.44 | GEV | 0.9523 | −301.61 |
57046 | Weibull | 0.9513 | −299.15 | GEV | 1.0000 | −339.08 |
57134 | GEV | 1.0000 | −331.43 | GEV | 0.9959 | −324.45 |
57144 | GEV | 0.9468 | −270.23 | GEV | 1.0000 | −337.80 |
57143 | GEV | 1.0000 | −333.67 | GEV | 1.0000 | −347.42 |
Station ID | Parametric Copula | Nonparametric Copula | |||||
---|---|---|---|---|---|---|---|
Option | p-Value (KS) | RMSE | AIC | p-Value (KS) | RMSE | AIC | |
52986 | Gumbel | 0.9357 | 0.0316 | −309.03 | 0.9395 | 0.0322 | −290.72 |
52996 | Gumbel | 0.8041 | 0.0281 | −312.21 | 0.9999 | 0.0255 | −292.88 |
53738 | Gaussian | 0.9903 | 0.0333 | −290.58 | 0.9901 | 0.0341 | −271.71 |
53817 | Gaussian | 0.9942 | 0.0348 | −306.83 | 0.9945 | 0.0282 | −310.41 |
53821 | Frank | 0.9925 | 0.0268 | −316.37 | 0.9920 | 0.0263 | −302.81 |
53845 | Gaussian | 0.9373 | 0.0296 | −314.85 | 0.9389 | 0.0284 | −303.40 |
53903 | Gaussian | 0.9999 | 0.0244 | −324.92 | 0.9928 | 0.0261 | −302.56 |
53915 | Frank | 0.9921 | 0.0227 | −338.76 | 0.9414 | 0.0210 | −326.53 |
53923 | Gaussian | 0.9401 | 0.0275 | −321.57 | 0.9401 | 0.0276 | −305.10 |
53929 | Gaussian | 0.9999 | 0.0338 | −302.91 | 0.9389 | 0.0316 | −292.81 |
53942 | Gumbel | 0.9935 | 0.0219 | −341.91 | 0.9939 | 0.0318 | −304.00 |
56093 | Gumbel | 0.9295 | 0.0415 | −271.63 | 0.9910 | 0.0491 | −253.37 |
57034 | Joe | 1.0000 | 0.0227 | −346.27 | 1.0000 | 0.0255 | −321.08 |
57037 | Joe | 0.8196 | 0.0271 | −330.07 | 0.6459 | 0.0356 | −302.80 |
57046 | Joe | 0.9947 | 0.0247 | −338.62 | 0.9424 | 0.0257 | −317.68 |
57134 | Frank | 0.8116 | 0.0274 | −329.08 | 0.9441 | 0.0241 | −326.43 |
57144 | Joe | 0.9936 | 0.0315 | −309.24 | 0.9933 | 0.0442 | −275.99 |
57143 | Gumbel | 1.0000 | 0.0292 | −323.20 | 1.0000 | 0.0259 | −318.21 |
Station ID | SPI | SPEI | TOR (Year) | TAND (Year) | TKendall (Year) |
---|---|---|---|---|---|
52986 | −2.30 | −2.86 | 33.18 | 101.43 | 78.62 |
52996 | −2.35 | −2.48 | 34.30 | 92.21 | 76.22 |
53738 | −2.64 | −2.68 | 28.54 | 201.35 | 120.48 |
53817 | −2.25 | −3.00 | 26.88 | 357.73 | 170.65 |
53821 | −2.15 | −2.89 | 26.97 | 341.57 | 187.97 |
53845 | −2.35 | −2.77 | 28.50 | 203.35 | 121.07 |
53903 | −2.40 | −2.70 | 27.63 | 262.44 | 173.61 |
53915 | −2.32 | −2.66 | 26.18 | 555.44 | 264.55 |
53923 | −2.14 | −2.60 | 30.46 | 139.40 | 97.28 |
53929 | −2.31 | −2.48 | 29.16 | 175.15 | 126.26 |
53942 | −2.31 | −2.78 | 37.33 | 75.67 | 67.84 |
56093 | −2.29 | −2.58 | 36.99 | 77.14 | 62.58 |
57034 | −2.61 | −2.69 | 25.68 | 948.29 | 458.72 |
57037 | −2.21 | −2.52 | 25.52 | 1233.03 | 574.71 |
57046 | −2.39 | −2.55 | 26.31 | 501.76 | 273.22 |
57134 | −2.35 | −2.56 | 25.99 | 656.36 | 362.32 |
57144 | −2.34 | −2.57 | 37.92 | 73.39 | 60.61 |
57143 | −2.45 | −2.53 | 27.92 | 238.92 | 147.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Wang, X.; Chang, Y.; Xu, Y.; Zheng, Y.; Sun, N.; Li, W. Multivariate Drought Risk Analysis for the Weihe River: Comparison between Parametric and Nonparametric Copula Methods. Water 2023, 15, 3283. https://doi.org/10.3390/w15183283
Liu F, Wang X, Chang Y, Xu Y, Zheng Y, Sun N, Li W. Multivariate Drought Risk Analysis for the Weihe River: Comparison between Parametric and Nonparametric Copula Methods. Water. 2023; 15(18):3283. https://doi.org/10.3390/w15183283
Chicago/Turabian StyleLiu, Fengping, Xu Wang, Yuhu Chang, Ye Xu, Yinan Zheng, Ning Sun, and Wei Li. 2023. "Multivariate Drought Risk Analysis for the Weihe River: Comparison between Parametric and Nonparametric Copula Methods" Water 15, no. 18: 3283. https://doi.org/10.3390/w15183283
APA StyleLiu, F., Wang, X., Chang, Y., Xu, Y., Zheng, Y., Sun, N., & Li, W. (2023). Multivariate Drought Risk Analysis for the Weihe River: Comparison between Parametric and Nonparametric Copula Methods. Water, 15(18), 3283. https://doi.org/10.3390/w15183283