Socio-Hydrological Approach for Water Resource Management and Human Well-Being in Pinglin District, Taiwan
Abstract
:1. Introduction
2. Case Study Area
3. Methodology
3.1. Key Informant Interview
3.2. Hydrological Model
3.2.1. Model Set-Up
- BODinit: the initial concentration of BOD (Biochemical Oxygen Demand) at the uppermost part of the watercourse, measured in milligrams per liter (mg/L).
- BODfinal: the BOD concentration at the downstream end of the watercourse, also expressed in milligrams per liter (mg/L).
- t: the water temperature, measured in degrees Celsius.
- H: the water depth in meters (m).
- L: the length of the watercourse in meters (m).
- U: the water velocity within the watercourse.
- Vs: the settling velocity in meters per second (m/s).
- kr, kd, and ka: the rate constants for total removal, decomposition, and aeration, respectively, measured in reciprocal time units (1/time).
- kd20: the decomposition rate at a reference temperature of 20 degrees Celsius (°C).
3.2.2. Data Requirement for Model Set-Up
4. Results
4.1. Identification of Gaps in and Challenges for Water Resource Management
4.2. Forecasting Future Hydrological Simulation Variables
4.3. Evaluating and Simulating Model Performance
4.4. Scenario with WWTP under PES Scheme
5. Conclusions and the Direction for Future Studies
6. Potential Areas of Future Research
- (1)
- Simulating the Development of Urban-Rural Disparity.
- (2)
- Sustainable Water Resources Allocation Framework
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poff, N.L.; Allan, J.D.; Palmer, M.A.; Hart, D.D.; Richter, B.D.; Arthington, A.H.; Rogers, K.H.; Meyer, J.L.; Stanford, J.A. River flows and water wars: Emerging science for environmental decision making. Front. Ecol. Environ. 2003, 1, 298–306. [Google Scholar] [CrossRef]
- United Nations. The UN-Water Status Report on the Application of Integrated Approaches to Water Resources Management for Rio+20; United Nations: Geneva, Switzerland, 2012. [Google Scholar]
- Kumar, P. Numerical quantification of current status quo and future prediction of water quality in eight Asian megacities: Challenges and opportunities for sustainable water management. Environ. Monit. Assess. 2019, 191, 319. [Google Scholar] [CrossRef] [PubMed]
- Azhoni, A.; Holman, I.; Jude, S. Adapting water management to climate change: Institutional involvement, inter-institutional networks and barriers in India. Glob. Environ. Change 2017, 44, 144–157. [Google Scholar] [CrossRef]
- United Nations World Water Assessment Programme. Wastewater: The Untapped Resource, the United Nations World Water Development Report; United Nations World Water Assessment Programme: Gigiri Nairobi, Kenya, 2017. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Jenkins, A.; Gao, S.J.; Lu, Y.; Li, H.; Li, Y.; Jobson, A. Ensuring water resource security in China; the need for advances in evidence-based policy to support sustainable management. Environ. Sci. Policy 2017, 75, 65–69. [Google Scholar] [CrossRef]
- Salmoral, G.; Zegarra, E.; Vázquez-Rowe, I.; González, F.; Del Castillo, L.; Saravia, G.R.; Knox, J.W. Water-related challenges in nexus governance for sustainable development: Insights from the city of Arequipa, Peru. Sci. Total. Environ. 2020, 747, 141114. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Crossman, N.D.; Nolan, M.; Ghirmay, H. Bringing ecosystem services into integrated water resources management. J. Environ. Manag. 2013, 129, 92–102. [Google Scholar] [CrossRef]
- Cook, B.R.; Spray, C.J. Ecosystem services and integrated water resource management: Different paths to the same end? J. Environ. Manag. 2012, 109, 93–100. [Google Scholar] [CrossRef]
- Dextre, R.M.; Eschenhagen, M.L.; Hernández, M.C.; Rangecroft, S.; Clason, C.; Couldrick, L.; Morera, S. Payment for ecosystem services in Peru: Assessing the socio-ecological dimension of water services in the upper Santa River basin. Ecosyst. Serv. 2022, 56, 101454. [Google Scholar] [CrossRef]
- Hernández-Mora, N.; Del Moral, L. Developing markets for water reallocation: Revisiting the experience of Spanish water mercantilización. Geoforum 2015, 62, 143–155. [Google Scholar] [CrossRef]
- Parkes, M.W.; Morrison, K.E.; Bunch, M.J.; Hallström, L.K.; Neudoerffer, R.C.; Venema, H.D.; Waltner-Toews, D. Towards integrated governance for water, health and social–ecological systems: The watershed governance prism. Glob. Environ. Change 2010, 20, 693–704. [Google Scholar] [CrossRef]
- Amblard, L.; Mann, C. Understanding collective action for the achievement of EU water policy objectives in agricultural landscapes: Insights from the Institutional Design Principles and Integrated Landscape Management approaches. Environ. Sci. Policy 2021, 125, 76–86. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Liu, H.; Lam, P.K. Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China. Sci. Total Environ. 2017, 583, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.; Sarma, A.K. Hydrological modeling as a tool for water resources management of the data-scarce Brahmaputra basin. J. Water Clim. 2021, 12, 152–165. [Google Scholar] [CrossRef]
- Komi, K.; Neal, J.; Trigg, M.A.; Diekkrüger, B. Modelling of flood hazard extent in data sparse areas: A case study of the Oti River basin, West Africa. J. Hydrol. Reg. Stud. 2017, 10, 122–132. [Google Scholar] [CrossRef]
- Daly, H.E.; Farley, J. Ecological Economics: Principles and Applications; Island Press: Washington, DC, USA, 2011. [Google Scholar]
- Costanza, R.; D’arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J.; et al. The value of ecosystem services: Putting the issues in perspective. Ecol. Econ. 1998, 25, 67–72. [Google Scholar] [CrossRef]
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef]
- Zolin, C.A.; Folegatti, M.V.; Mingoti, R.; Sánchez-Román, R.M.; Paulino, J.; Gonzáles, A.M.G.O. Minimização da erosão em função do tamanho e localização das áreas de floresta no contexto do programa “conservador das águas”. Rev. Bras. Ciênc. Solo 2011, 35, 2157–2166. [Google Scholar] [CrossRef]
- Chang, S.E.; Kuo, M.Y. A Place-Based Pedagogical Action Study to Enrich Rural Sustainability: Knowledge Ties of National Taiwan University’s 10-Year Partnership with Pinglin. Sustainability 2021, 13, 2916. [Google Scholar] [CrossRef]
- Chang, S.P.; Wen, C.G. Changes in Water Quality in the Newly Impounded Subtropical Feitsui Reservoir, Taiwan 1. JAWRA J. Am. Water Resour. Assoc. 1997, 33, 343–357. [Google Scholar] [CrossRef]
- Putri, M.S.A.; Lin, J.-L.; Hsieh, L.-H.C.; Zafirah, Y.; Andhikaputra, G.; Wang, Y.-C. Influencing factors analysis of Taiwan eutrophicated reservoirs. Water 2020, 12, 1325. [Google Scholar] [CrossRef]
- Wang, C.W.; Chen, C.F.; Lin, E.Y. Effects of buffer strips on reducing nonpoint source pollution and improving water quality in Feitsui Reservoir. J. Soil. Water Conserv. 2014, 45, 207–215. [Google Scholar]
- Zhang, K.H. How does foreign direct investment affect economic growth in China? Econ. Transit. 2001, 9, 679–693. [Google Scholar] [CrossRef]
- Kelly-Reif, K.; Wing, S. Urban-rural exploitation: An underappreciated dimension of environmental injustice. J. Rural Stud. 2016, 47, 350–358. [Google Scholar] [CrossRef]
- Bakker, K. Water security: Research challenges and opportunities. Science 2012, 337, 914–915. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.; Iqbal, J.; Asghar, A.; Ribbe, L. Analysis of current and future water demands in the Upper Indus Basin under IPCC climate and socio-economic scenarios using a hydro-economic WEAP model. Water 2018, 10, 537. [Google Scholar] [CrossRef]
- Granek, E.F.; Polasky, S.; Kappel, C.V.; Reed, D.J.; Stoms, D.M.; Koch, E.W.; Kennedy, C.J.; Cramer, L.A.; Hacker, S.D.; Barbier, E.B.; et al. Ecosystem services as a common language for coastal ecosystem-based management. Biol. Conserv. 2010, 24, 207–216. [Google Scholar] [CrossRef]
- Berbel, J. Impacto para la Agricultura Española del Documento ‘Blueprint to Safeguard Europe’s Water Resources’; European Environmental Agency: Lisboa, Portugal, 2013. [Google Scholar]
- Engel, S.; Pagiola, S.; Wunder, S. Designing payments for environmental services in theory and practice: An overview of the issues. Ecol. Econ. 2008, 65, 663–674. [Google Scholar] [CrossRef]
- Ferraro, P.J.; Simpson, R.D. The cost-effectiveness of conservation payments. Land Econ. 2002, 78, 339–353. [Google Scholar] [CrossRef]
- Anderies, J.M.; Janssen, M.A.; Schlager, E. Institutions and the performance of coupled infrastructure systems. Int. J. Commons 2016, 10, 495–516. [Google Scholar] [CrossRef]
- Frischmann, B.M. An economic theory of infrastructure and commons management. Minn. L. Rev. 2004, 89, 917. [Google Scholar]
- Sieber, J.; Purkey, D. Water Evaluation and Planning System User Guide for WEAP, 2015; Stockholm Environment Institute—US Center: Somerville, MA, USA, 2015. [Google Scholar]
- Mpelasoka, F.S.; Chiew, F.H. Influence of rainfall scenario construction methods on runoff projections. J. Hydrometeorol. 2009, 10, 1168–1183. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division (UN DESA). World Urbanization Prospects: The 2014 Revision; United Nations, Department of Economic and Social Affairs, Population Division, United Nations Publications: New York, NY, USA, 2015. [Google Scholar]
- R.O.C. Ministry of Economic Affairs (MOEA), Water Resources Agency (WRA), Taipei Water Management, Water Quality Monitoring Statistics Table. 2022. Available online: https://www.wratb.gov.tw/cp.aspx?n=16199 (accessed on 10 October 2022.).
- R.O.C. Ministry of Economic Affairs (MOEA), Water Resources Agency (WRA), Water Conservancy Statistics, Statistics Books and Periodicals. 2022. Available online: https://www.wra.gov.tw/News.aspx?n=2953&sms=9084 (accessed on 10 October 2022).
- R.O.C. Taiwan Climate Change Projection Information and Adaptation Knowledge Platform (TCCIP), Data Service. 2022. Available online: https://tccip.ncdr.nat.gov.tw/ds_01_eng.aspx (accessed on 10 October 2022).
- R.O.C. Ministry of Economic Affairs (MOEA), Open Government Information, Water Source Specific Area Map. Available online: https://data.gov.tw/dataset/25777 (accessed on 10 October 2022).
- Eastman, J.R. TerrSet Geospatial Monitoring and Modeling System; Clark University: Worcester, MA, USA, 2016; pp. 345–389. [Google Scholar]
- Mendizabal, M.; Heidrich, O.; Feliu, E.; García-Blanco, G.; Mendizabal, A. Stimulating urban transition and transformation to achieve sustainable and resilient cities. Renew. Sust. Energy. 2018, 94, 410–418. [Google Scholar] [CrossRef]
- Jønch-Clausen, T. Integrated Water Resources Management (IWRM) and Water Efficiency Plans by 2005: Why, What and How? Elanders Infologistics Väst AB, Sweden Global Water Partnership Publisher: Mölndal, Sweden, 2004; Available online: https://www.gwp.org/globalassets/global/toolbox/publications/background-papers/10-iwrm-and-water-efficiency-plans-by-2005.-why-what-and-how-2004.pdf (accessed on 17 August 2023).
- Savenije, H.H.; Van Der Zaag, P. Water as an economic good and demand management paradigms with pitfalls. Water Int. 2002, 27, 98–104. [Google Scholar] [CrossRef]
- National Development Council. 2018. Available online: https://www.ndc.gov.tw/en/News_Content.aspx?n=607ED34345641980&sms=B8A915763E3684AC-s (accessed on 17 August 2023).
- Muga, H.E.; Mihelcic, J.R. Sustainability of wastewater treatment technologies. J. Environ. Manag. 2008, 88, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Rowcroft, P.; Rogers, H.; Quick, T.; Eves, C.; White, C.; Everard, M.; Couldrick, L.; Reed, M. Payments for Ecosystem Services: A Best Practice Guide; CIFOR Publication; Defra: London, UK, 2013. [Google Scholar]
- Wunder, S. Revisiting the concept of payments for environmental services. Ecol. Econ. 2015, 117, 234–243. [Google Scholar] [CrossRef]
- Taiwan, Construction. “Planning Agency, Ministry of the Interior.” Building Site Greenery Design Technology Standard. Taiwan: Taipei. 2008. Available online: https://www.cpami.gov.tw/%E6%9C%80%E6%96%B0%E6%B6%88%E6%81%AF/%E6%A5%AD%E5%8B%99%E6%96%B0%E8%A8%8A/51-%E4%B8%8B%E6%B0%B4%E9%81%93%E5%B7%A5%E7%A8%8B%E8%99%95/13532-%E4%B8%8B%E6%B0%B4%E9%81%93%E8%AA%8C.html (accessed on 17 August 2023).
- Fu, Y.; Zhang, J.; Zhang, C.; Zang, W.; Guo, W.; Qian, Z.; Liu, L.; Zhao, J.; Feng, J. Payments for Ecosystem Services for watershed water resource allocations. J. Hydrol. 2018, 556, 689–700. [Google Scholar] [CrossRef]
- Wang, S.; Tan, S.; Yang, S.; Lin, Q.; Zhang, L. Urban-biased land development policy and the urban-rural income gap: Evidence from Hubei Province, China. Land. Use Policy 2019, 87, 104066. [Google Scholar] [CrossRef]
- Guo, H.; Yang, Y.; Pan, C.; Xu, S.; Yan, N.; Lei, Q. Study on the impact of income gap on health level of rural residents in China. Int. J. Environ. Res. Public. Health 2022, 19, 7590. [Google Scholar] [CrossRef]
- De Jong, M.; Yu, C.; Joss, S.; Wennersten, R.; Yu, L.; Zhang, X.; Ma, X. Eco city development in China: Addressing the policy implementation challenge. J. Clean. Prod. 2016, 134, 31–41. [Google Scholar] [CrossRef]
- Chen, C.; LeGates, R.; Fang, C. From coordinated to integrated urban and rural development in China’s megacity regions. J. Urban. Aff. 2019, 41, 150–169. [Google Scholar] [CrossRef]
- Hou, Q.; Li, S.M. Transport infrastructure development and changing spatial accessibility in the Greater Pearl River Delta, China, 1990–2020. J. Transp. Geogr. 2011, 19, 1350–1360. [Google Scholar] [CrossRef]
- Tsur, Y.; Dinar, A. On the Relative Efficiency of Alternative Methods for Pricing Irrigation Water and Their Implementation; No. 232800; Hebrew University of Jerusalem, Center for Agricultural Economic Research: Jerusalem, Israel, 1996. [Google Scholar]
- Qin, Y.H.; Kang, M.Y. A review of ecological compensation and its improvement measures. J. Nat. Resour. 2007, 22, 557–567. [Google Scholar]
S. No. | Parameters | Time Interval | Scale | Source |
---|---|---|---|---|
1 | Population | 2008 | Yearly | Census of Taiwan [38] |
2011–2050 | Yearly | UNDESA [39] | ||
2 | Water Quality (BOD, Tot. Coli) | 2010–2020 | Monthly | Taipei Water Management [40] |
3 | River Cross-Section, StreamFlow | 2010–2020 | Quarterly | WRA [40] |
4 | Rainfall, Temperature | 1984–2018 (Past data) average gave a value for current condition for year 2020 | Monthly | Taipei Water Management [39] |
2021–2070 (Future data) average gave a value for future condition for year 2050 | TCCIP [41] | |||
5 | Land Use Land Cover Map | 2010 and 2020 | Yearly | LANDSAT [42] |
2050 | Land change modeler [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, T.-J.; Kumar, P.; Chien, H.; Saito, O. Socio-Hydrological Approach for Water Resource Management and Human Well-Being in Pinglin District, Taiwan. Water 2023, 15, 3302. https://doi.org/10.3390/w15183302
Jiang T-J, Kumar P, Chien H, Saito O. Socio-Hydrological Approach for Water Resource Management and Human Well-Being in Pinglin District, Taiwan. Water. 2023; 15(18):3302. https://doi.org/10.3390/w15183302
Chicago/Turabian StyleJiang, Tasi-Jung, Pankaj Kumar, Herlin Chien, and Osamu Saito. 2023. "Socio-Hydrological Approach for Water Resource Management and Human Well-Being in Pinglin District, Taiwan" Water 15, no. 18: 3302. https://doi.org/10.3390/w15183302
APA StyleJiang, T. -J., Kumar, P., Chien, H., & Saito, O. (2023). Socio-Hydrological Approach for Water Resource Management and Human Well-Being in Pinglin District, Taiwan. Water, 15(18), 3302. https://doi.org/10.3390/w15183302