Characteristics, Source and Risk Assessment of Soil Polycyclic Aromatic Hydrocarbons around Oil Wells in the Yellow River Delta, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Laboratory Analysis
2.3.1. Determination of PAHs
2.3.2. Quality Control
2.4. PAH Source Apportionment Method
2.4.1. Positive Definite Matrix Factorization Model (PMF)
2.4.2. Diagnostic Ratios
2.5. Ecological Risk Assessment Method of PAHs
2.5.1. Toxic Equivalent Factor Method (TEQ)
2.5.2. Effect Interval Low Median Method (ERL/ERM)
2.6. Health Risk Assessment Methods of PAHs
Incremental Lifetime Cancer Risk Models (ILCRs)
3. Results and Discussion
3.1. PAH Concentration Characteristics
3.2. PAH Component Characteristics
3.3. PAH Source Apportionment
3.4. Ecological Risk Assessment of PAHs
3.4.1. Toxic Equivalent Factor Method (TEQ)
3.4.2. Effect Interval Low Median Method (ERL/ERM)
3.5. Health Risk Assessment of PAHs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Du, J.; Gao, X.; Duan, Y.; Sheng, Y.J. Chemical characterization of naturally weathered oil residues in the sediment from Yellow River Delta, China. Mar. Pollut. Bull. 2011, 62, 2469–2475. [Google Scholar] [CrossRef]
- Li, X.; Hou, X.; Song, Y.; Shan, K.; Zhu, S.; Yu, X.; Mo, X. Assessing changes of habitat quality for shorebirds in stopover sites: A case study in Yellow River Delta, China. Wetlands 2018, 39, 66–77. [Google Scholar] [CrossRef]
- Feng, W.; Wang, T.; Zhu, Y.; Sun, F.; Giesy, J.P.; Wu, F. Chemical composition, sources, and ecological effect of organic phosphorus in water ecosystems: A review. Carbon Res. 2023, 2, 12. [Google Scholar] [CrossRef]
- Kuenzer, C.; Ottinger, M.; Liu, G.; Sun, B.; Baumhauer, R.; Dech, S. Earth Observation-based Coastal Zone Monitoring of the Yellow River Delta: Dynamics in China’s Second Largest Oil Producing Region observed over four Decades. Appl. Geogr. 2014, 55, 92–107. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Liu, Q.J.C. PAHs behavior in surface water and groundwater of the Yellow River estuary: Evidence from isotopes and hydrochemistry. Chemosphere 2017, 178, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Menzie, C.A.; Potocki, B.B.; Santodonato, J.J. Exposure to carcinogenic PAHs in the environment. Environ. Sci. Technol. 1992, 26, 1278–1284. [Google Scholar] [CrossRef]
- Deng, W.; Li, X.G.; Li, S.Y.; Ma, Y.Y.; Zhang, D.H. Source apportionment of polycyclic aromatic hydrocarbons in surface sediment of mud areas in the East China Sea using diagnostic ratios and factor analysis. Mar. Pollut. Bull. 2013, 70, 266–273. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Z.; Wen, Y. Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments from Zhanjiang Bay and Leizhou Bay, South China. Mar. Pollut. Bull. 2012, 64, 1962–1969. [Google Scholar] [CrossRef]
- Gu, Y.G.; Lin, Q.; Lu, T.T.; Ke, C.L.; Sun, R.X.; Du, F.Y. Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in surface sediments from Nan’ao Island, a representative mariculture base in South China. Mar. Pollut. Bull. 2013, 75, 310–316. [Google Scholar] [CrossRef]
- Zheng, B.; Wang, L.; Lei, K.; Nan, B.J.C. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River estuary and the adjacent area, China. Chemosphere 2016, 149, 91–100. [Google Scholar] [CrossRef]
- Cetin, B.; Yurdakul, S.; Gungormus, E.; Ozturk, F.; Sofuoglu, S.C. Source apportionment and carcinogenic risk assessment of passive air sampler-derived PAHs and PCBs in a heavily industrialized region. Sci. Total Environ. 2018, 633, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Wang, W.; Liu, Y.; Dong, L.; Jiao, L.; Hu, L.; Fan, D.J. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments from the Bering Sea and western Arctic Ocean. Mar. Pollut. Bull. 2016, 104, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Qu, C.; Zhang, J.; Talpur, S.A.; Ding, Y.; Xing, X.; Qi, S. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soils from Ningde, China: Levels, sources, and human health risk assessment. Environ. Geochem. Health 2019, 41, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Liu, Y.; Qiu, H.; Zhang, M.; Wang, W.; Yang, X.; Du, Z.; Zhang, R. Distribution characteristics and risk assessment of polycyclic aromatic hydrocarbons in farmland soil-corn system from oil mining area of Yellow River Delta. Environ. Geochem. Health 2021, 44, 987–997. [Google Scholar]
- Fu, X.W.; Li, T.Y.; Ji, L.; Wang, L.L.; Zheng, L.W.; Wang, J.N.; Zhang, Q. Occurrence, sources and health risk of polycyclic aromatic hydrocarbons in soils around oil wells in the border regions between oil fields and suburbs. Ecotoxicol. Environ. Saf. 2018, 157, 276–284. [Google Scholar] [CrossRef]
- Qi, Y.; Li, J.; Ma, Y.; He, J.; Fu, G.; Shen, Q.; Zhao, C.; Cao, M. Distribution and Risk Assessment of Heavy Metals of Surface Sediments in Intertidal Flats of the Yellow River Delta, China. Res. Environ. Sci. 2020, 33, 1488–1496. [Google Scholar]
- Zhang, K.; Liu, Z.; Wang, Y.; Wang, J.; Cui, D.; Liu, X. Risk assessment and spatial characteristics of PAHs in soils in the Yellow River Delta Nature Reserve. Ecol. Environ. Sci. 2022, 31, 2198–2205. [Google Scholar]
- Qi, Y.; Zhao, Y.; Fu, G.; Li, J.; Zhao, C.; Guan, X.; Zhu, S. The Nutrient and Heavy Metal Contents in Water of Tidal Creek of the Yellow River Delta, China: Spatial Variations, Pollution Statuses, and Ecological Risks. Water 2022, 14, 713. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Qi, Y.; Guan, X.; Zhao, C.; Wang, H.; Zhu, S.; Fu, G.; Zhu, J.; He, J. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the tidal creek water of coastal tidal flats in the Yellow River Delta, China. Mar. Pollut. Bull. 2021, 173, 113110. [Google Scholar] [CrossRef]
- Zheng, M. The Environmental Effects of Oil Pollution in Yellow River Delta. Master’s thesis, Jinan University, Guangzhou, China, 2013; p. 56. [Google Scholar]
- Soclo, H.H.; Garrigues, P.H.; Ewald, M. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: Case studies in Cotonou (Benin) and Aquitaine (France) areas. Mar. Pollut. Bull 2000, 40, 387–396. [Google Scholar] [CrossRef]
- Che, L.N.; Liu, S.; Yu, Y.; Wan, L.H. Ecological risk assessment of polycyclic aromatic hydrocarbons pollution in snowmelt runoff in Harbin. Acta Sci. Circumst. 2019, 39, 3508–3515. [Google Scholar]
- Nyarko, E.; Botwe, B.O.; Klubi, E.J. Polycyclic Aromatic Hydrocarbons (PAHs) Levels in Two Commercially Important Fish Species from the Coastal Waters of Ghana and their Carcinogenic Health Risks. West Afr. J. Appl. Ecol. 2011, 19, 53–66. [Google Scholar]
- Nisbet, I.C.; Lagoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Long, E.R.; Macdonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Liu, G.; Niu, J.; Guo, W.; An, X.; Zhao, C. Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China. Chemosphere 2016, 163, 461–470. [Google Scholar] [CrossRef]
- Zhang, J.; Li, B.; Bi, E.; Hao, Z.; Huang, J. Pollutant characteristics and risk assessment of polycyclic aromatic hydrocarbons in the sediment of the North Canal Basin (Beijing section). Res. Environ. Sci. 2019, 32, 9. [Google Scholar]
- Yu, X.; Ding, Y. Research progress of environmental distribution and bioremediation of polycyclic aromatic hydrocarbons. J. Dalian Marit. Univ. 2004, 30, 55–59. [Google Scholar]
- Yuan, H.; Li, T.; Ding, X.; Zhao, G.; Ye, S. Distribution, sources and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in surface soils of the Yellow River Delta, China. Mater. Proc. 2014, 83, 258–264. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, G.; Da, C.; Wang, J.; Liu, H. Occurrence, Sources, and Potential Toxicity of Polycyclic Aromatic Hydrocarbons in Surface Soils from the Yellow River Delta Natural Reserve, China. Arch. Environ. Contam. Toxicol. 2015, 68, 330–341. [Google Scholar] [CrossRef]
- Maliszewska-Kordybach, B.J. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. Appl. Geochem. 1996, 11, 121–127. [Google Scholar] [CrossRef]
- Cao, J.; Liu, Y.; Yu, S. The concentrations and sources of PAHs and PCBs in soil from an oil field and estuary in the Yellow River Delta, China. Toxicol. Pollut. Environ. 2022, 10, 1028299. [Google Scholar]
- Xie, W.; Chen, A.; Li, J.; Liu, Q.; Lu, Z. County-scale distribution of polycyclic aromatic hydrocarbons in topsoil of the Yellow River Delta Region. Environ. Lett. 2012, 47, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Mu, N.; Wang, Y.; Liu, G.; Zhao, Z. Quantitative Analysis of the Adsorded Nitrogen Pollution of the Yellow River Delta in the Past Three Decades. Chin. J. Ecol. 2022, 41, 1324–1333. [Google Scholar]
- Gao, Z. Experimental Stduy on Remediation of Groundwater/Soil Polluted by Petroleum Hydrocarbon in Dongying City. China Univ. Geosci. 2012, 8, 147. [Google Scholar]
- Gao, Y.F.; Zhang, D.; Zhao, B.; Yin, B.; Zhang, J.; Li, J.; Cao, X. Dynnamic Changes of Soil and Water Loss in the Yellow River Basin from 1990 to 2019. Soil Water Conserv. China 2020, 10, 64–67. [Google Scholar]
- Wang, Y. Analysis on the Water and Sediment Variation in the Yellow River and its Influence on the Change of the Yellow River Delta. Master’s Thesis, University of Chinese Academy of Sciences (Research Center for Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences), Beijing, China, 2018; p. 67. [Google Scholar]
- Xu, X.; Liu, W.; Wang, W.; Tian, S.; Jiang, P.; Qi, Q.; Li, F.; Li, H.; Wang, Q.; Li, H. Potential biodegradation of phenanthrene by isolated halotolerant bacterial strains from petroleum oil polluted soil in Yellow River Delta. Sci. Total Environ. 2019, 664, 1030–1038. [Google Scholar] [CrossRef]
- Agarwal, T.; Khillare, P.S.; Shridhar, V.; Ray, S. Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. J. Hazard. Mater. 2009, 163, 1033–1039. [Google Scholar] [CrossRef]
- Oyo-Ita, O.E.; Oyo-Ita, I.O. PAH depositional history sources in recent sediment core from Ukwa Ibom Lake, S.E. Nigeria. Environ. Geochem. Health 2013, 35, 185–199. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Wang, X.T.; Wang, F.; Jia, Y.; Wu, M.H.; Sheng, G.Y.; Fu, J.M. Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in urban soil of Shanghai, China. Chemosphere 2009, 75, 1112–1118. [Google Scholar] [CrossRef]
- Liu, S.; Xia, X.; Yang, L.; Shen, M.; Liu, R. Polycyclic aromatic hydrocarbons in urban soils of different land uses in Beijing, China: Distribution, sources and their correlation with the city’s urbanization history. Environ. Res. 2010, 177, 1085–1092. [Google Scholar] [CrossRef]
- Wang, X.C.; Sun, S.; Ma, H.Q.; Liu, Y. Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Jiaozhou Bay, Qingdao, China. Mar. Pollut. Bull. 2006, 52, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Khairy, M.A.; Lohmann, R.J.C. Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria, Egypt. Atmos. Environ. 2013, 91, 895–903. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Zhao, J.; Huang, Q.; Zhu, Z.; Gao, H. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of rivers and an estuary in Shanghai, China. Environ. Pollut. 2008, 154, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.T.; Miao, Y.; Zhang, Y.; Li, Y.C.; Wu, M.H.; Yu, G. Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: Occurrence, source apportionment and potential human health risk. Sci. Total Environ. 2013, 447, 80–89. [Google Scholar] [CrossRef]
- Ping, L.F.; Luo, Y.M.; Zhang, H.B.; Li, Q.B.; Wu, L. Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, east China. Environ. Pollut. 2007, 147, 358–365. [Google Scholar] [CrossRef]
- Bi, X.; Luo, W.; Gao, J.; Xu, L.; Guo, J.; Zhang, Q.; Romesh, K.Y.; Giesy, J.P.; Kang, S.; de Boer, J. Polycyclic aromatic hydrocarbons in soils from the Central-Himalaya region: Distribution, sources, and risks to humans and wildlife. Sci. Total Environ. 2016, 556, 12–22. [Google Scholar] [CrossRef]
- Hamid, N.; Syed, J.H.; Junaid, M.; Mahmood, A.; Li, J.; Zhang, G.; Malik, R.N. Elucidating the urban levels, sources and health risks of polycyclic aromatic hydrocarbons (PAHs) in Pakistan: Implications for changing energy demand. Sci. Total Environ. 2017, 619, 165–175. [Google Scholar] [CrossRef]
- Yu, G.G.; Wang, T.G.; Wu, D.P. Study on fingerprints of PAHs from the combustion of bavin and coal. Ecol. Environ. 2007, 16, 285–289. [Google Scholar]
- Khalili, N.R.; Scheff, P.A.; Holsen, T.M. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmos. Environ. 1995, 29, 533–542. [Google Scholar] [CrossRef]
- Simcik, M.F.; Eisenreich, S.J.; Lioy, P.J. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos. Environ. 1999, 33, 5071–5079. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingazan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S.J.O.G. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Wang, C.; Wu, S.; Zhou, S.; Wang, H.; Li, B.; Chen, H.; Yu, Y.; Shi, Y. Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk. Sci. Total Environ. 2015, 527–528, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhou, L.; Xue, N.; Li, F.; Li, Y.; Vogt, R.D.; Cong, X.; Yan, Y.; Liu, B.J. Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: Comparison of three receptor models. Sci. Total Environ. 2013, 443, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Lang, Y.; Li, G.; Liu, W. Distribution and health risk assessment of polycyclic aromatic hydrocarbons in Jiaozhou Bay wetland soil. Environ. Chem. 2013, 32, 1989–1990. [Google Scholar]
- Kannan, K.; Johnson-Restrepo, B.; Yohn, S.S.; Giesy, J.P.; Long, D. Spatial and temporal distribution of polycyclic aromatic hydrocarbons in sediments from Michigan inland lakes. Environ. Sci. Technol. 2005, 39, 4700–4706. [Google Scholar] [CrossRef]
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation—ScienceDirect. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef]
- Larsen, R.K.; Baker, J.E. Source Apportionment of Polycyclic Aromatic Hydrocarbons in the Urban Atmosphere: A Comparison of Three Methods. Environ. Sci. Technol. 2003, 37, 1873–1881. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U.J.E. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Qi, H.X.; Chen, X.L.; Du, Y.E.; Niu, X.; Guo, F.; Li, W. Cancer risk assessment of soils contaminated by polycyclic aromatic hydrocarbons in Shanxi, China. Ecotoxicol. Environ. Saf. 2019, 182, 109381. [Google Scholar] [CrossRef]
- Tarafdar, A.; Sinha, A. Health risk assessment and source study of PAHs from roadside soil dust of a heavy mining area in India. Arch. Environ. Occup. Health 2019, 74, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Rong, Q.Y.; Zhu, C.M.; Han, J.; Li, P. Distribution, sources, and risk assessment of polycyclic aromatic hydrocarbons in the estuary of Hongze Lake, China. Environments 2019, 6, 92. [Google Scholar] [CrossRef]
- Liang, X.X.; Junaid, M.; Wang, Z.F.; Li, T.; Xu, N. Spatiotemporal distribution, source apportionment and ecological risk assessment of PBDEs and PAHs in the Guanlan River from rapidly urbanizing areas of Shenzhen, China. Environ. Pollut. 2019, 250, 695–707. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yu, Y.; Wang, P.; Guo, W.; Dai, S.; Sun, H. Polycyclic aromatic hydrocarbons in the surface sediments from Yellow River, China. Chemosphere 2007, 67, 1408–1414. [Google Scholar] [CrossRef] [PubMed]
- Halfadji, A.; Naous, M.; Bettiche, F.; Touabet, A. Human Health Assessment of Sixteen Priority Polycyclic Aromatic Hydrocarbons in Contaminated Soils of Northwestern Algeria. J. Health Pollut. 2021, 11, 210914. [Google Scholar] [CrossRef]
- Zheng, H.; Xing, X.; Hu, T.; Zhang, Y.; Zhang, J.; Zhu, G.; Li, Y.; Qi, S. Biomass burning contributed most to the human cancer risk exposed to the soil-bound PAHs from Chengdu Economic Region, western China. Ecotoxicol. Environ. Saf. 2018, 159, 63–70. [Google Scholar] [CrossRef]
- Abhrajyoti, T.; Alok, S. Public health risk assessment with bioaccessibility considerations for soil PAHs at oil refinery vicinity areas in India. Sci. Total Environ. 2018, 616–617, 1477–1484. [Google Scholar]
- Cai, C.Y.; Li, J.Y.; Wu, D.; Wang, X.; Tsang, D.; Li, X.D.; Sun, J.T.; Zhu, L.Z.; Shen, H.Z.; Shu, T. Spatial distribution, emission source and health risk of parent PAHs and derivatives in surface soils from the Yangtze River Delta, eastern China. Chemosphere 2017, 178, 301. [Google Scholar] [CrossRef]
- Huang, X.D.; Zeiler, L.F.; Dixon, D.G.; Greenberg, B.M. Photoinduced toxicity of PAHs to the foliar regions of Brassica napus (canola) and Cucumbis sativus (cucumber) in simulated solar radiation. Ecotoxicol. Environ. Saf. 1996, 35, 190–197. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, F. Researh progress on occupational hazards of polycyclic aromatic hydroarbons, China. Occup. Med. 2017, 44, 4. [Google Scholar]
- Sheng, S.; Cao, X.; Song, Y.; Liu, Y.; Sheng, Z.; Qin, L. Properties and hazards of polycyclic aromatic hydrocarbons. Guizhou Chem. Industy 2008, 33, 61–63. [Google Scholar]
- Toyooka, T.; Ibuki, Y. DNA damage induced by coexposure to PAHs and light. Environ. Toxicol. Pharmacol. 2007, 23, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, W.; He, S.; Du, J.; Sun, Z.J. Sources and distribution of aliphatic and polycyclic aromatic hydrocarbons in Yellow River Delta Nature Reserve, China. Appl. Geochem. 2011, 26, 1330–1336. [Google Scholar] [CrossRef]
Monomer PAHs | Ring Number | Toxic Equivalent Factor | Monomer PAHs | Ring Number | Toxic Equivalent Factor |
---|---|---|---|---|---|
Naphthalence (Nap) | 2 | 0.001 | Pyrene (Pyr) | 4 | 0.001 |
Anthracence (Ant) | 3 | 0.01 | Fluoranthene (Fla) | 4 | 0.001 |
Phenanthrene (Phe) | 3 | 0.001 | Dibenzo[a,h]anthracene (DahA) * | 5 | 1 |
Fluorene (Flu) | 3 | 0.001 | Benzo[a]pyrene (BaP) * | 5 | 1 |
Acenapthene (Ace) | 3 | 0.001 | Benzo[k]fluoranthene (BkF) * | 5 | 0.1 |
Acenaphthylene (Acpy) | 3 | 0.001 | Benzo[b]fluoranthene (BbF) * | 5 | 0.1 |
Chrysene (Chr) * | 4 | 0.01 | Benzo[g,h,i]perylene (BghiP) | 6 | 0.01 |
Benzo[a]anthracene (BaA) * | 4 | 0.1 | Indenol [1,2,3-cd]pyrene (IcdP) * | 6 | 0.1 |
Parameter | Unit | Adult | Child |
---|---|---|---|
BW | Kg | 61.5 | 15 |
IRsoil | mg·d−1 | 100 | 200 |
EF | d·a−1 | 350 | 350 |
ED | a | 24 | 6 |
AT | d | 25,550 | 25,550 |
IRair | m3·d−1 | 20 | 10 |
PEF | m3·kg−1 | 1.36 × 109 | 1.36 × 109 |
SA | cm2·d−1 | 5700 | 2800 |
AF | mg·cm−2 | 0.07 | 0.2 |
ABS | zero dimension | 0.13 | 0.13 |
Monomer PAH | Ring Number | Range | Mean Value | Standard Deviation | Coefficient of Variation | Detection Rate |
---|---|---|---|---|---|---|
Nap | 2 | ND~218.67 | 86.82 | 58.33 | 0.67 | 93 |
Ant | 3 | ND~188.81 | 25.22 | 46.65 | 1.85 | 73 |
Phe | 3 | ND~1002.96 | 117.00 | 243.43 | 2.08 | 93 |
Flu | 3 | 2.6~7651.99 | 1409.20 | 1794.76 | 1.27 | 100 |
Ace | 3 | ND | ND | ND | ND | ND |
Acpy | 3 | ND~2.16 | 0.14 | 0.54 | 3.74 | 7 |
Chr | 4 | ND~230.93 | 29.71 | 58.16 | 1.96 | 67 |
BaA | 4 | ND~227.56 | 19.40 | 56.38 | 2.91 | 47 |
Pyr | 4 | ND~137.97 | 24.59 | 44.82 | 1.82 | 80 |
Fla | 4 | ND~52.52 | 16.20 | 14.82 | 0.91 | 80 |
DahA | 5 | ND | ND | ND | ND | ND |
BaP | 5 | ND~22.71 | 2.51 | 5.94 | 2.36 | 40 |
BkF | 5 | ND~14.78 | 2.03 | 4.80 | 2.36 | 20 |
BbF | 5 | ND~19.93 | 4.44 | 6.67 | 1.50 | 60 |
BghiP | 6 | ND~86.77 | 5.82 | 21.64 | 3.72 | 20 |
IcdP | 6 | ND~10.77 | 1.32 | 3.37 | 2.56 | 13 |
ΣPAH7 | ND~481.35 | 59.42 | 118.88 | 2.00 | 73 | |
ΣPAH16 | 2.6~8275.46 | 1744.41 | 1941.10 | 1.11 | 100 |
Monomer PAH | Ring Number | Range | Mean Value | Standard Deviation | Coefficient of Variation | Detection Rate |
---|---|---|---|---|---|---|
Nap | 2 | 45~291.28 | 112.79 | 59.64 | 0.53 | 100 |
Ant | 3 | ND~10.2 | 1.30 | 3.32 | 2.55 | 13 |
Phe | 3 | ND~10.2 | 1.30 | 3.32 | 2.55 | 13 |
Flu | 3 | ND~8.48 | 1.63 | 3.26 | 2.00 | 20 |
Ace | 3 | ND | ND | ND | ND | ND |
Acpy | 3 | ND | ND | ND | ND | ND |
Chr | 4 | ND~21.58 | 1.44 | 5.38 | 3.74 | 7 |
BaA | 4 | ND~32.36 | 2.89 | 8.34 | 2.88 | 13 |
Pyr | 4 | ND~11.25 | 1.37 | 3.51 | 2.56 | 13 |
Fla | 4 | ND~12.63 | 2.94 | 4.91 | 1.67 | 27 |
DahA | 5 | ND | ND | ND | ND | ND |
BaP | 5 | ND~107.88 | 13.19 | 26.18 | 1.98 | 53 |
BkF | 5 | ND | ND | ND | ND | ND |
BbF | 5 | ND~53.94 | 5.04 | 13.58 | 2.69 | 20 |
BghiP | 6 | ND | ND | ND | ND | ND |
IcdP | 6 | ND~75.52 | 5.74 | 18.83 | 3.28 | 13 |
ΣPAH7 | ND~291.28 | 28.30 | 71.04 | 2.51 | 53 | |
ΣPAH16 | 56.25~582.56 | 149.63 | 122.33 | 0.82 | 100 |
Sampling Points | Sampling Year | ∑PAHs, ng/g | Concentration Mean, ng/g | Reference |
---|---|---|---|---|
61 Stations within the YRD | 2006–2008 | 27–753 | 118 ± 132 | [29] |
The Experimental, Buffer and Core area of the YRDNR | 2013 | 79.2–311 | 119 | [30] |
Around Oil Wells with Different Extraction Histories in the YRD | 2015 | 278.7–733.5 | 382.5 ± 128.4 | [15] |
The Oil Field Soil and the Estuary Soil of the YRD | 2018 | 157.8–481.7 | 274 | [32] |
Around the wells in Xianhe Town, Gudao Town and Huanghekou Town of Dongying City | 2009 2021 | 2.6–8275.46 56.25–582.56 | 1744.41 149.63 | This study This study |
Exposure Pathways | 2009 | 2021 | ||
---|---|---|---|---|
Adult | Child | Adult | Child | |
ILCRingestion | 8.56 × 10−9 | 4.28 × 10−9 | 1.68 × 10−8 | 8.4 × 10−9 |
ILCRinhalation | 6.64 × 10−13 | 4.74 × 10−20 | 1.3 × 10−12 | 9.31 × 10−20 |
ILCRdermal | 1.52 × 10−8 | 5.34 × 10−9 | 2.99 × 10−8 | 1.05 × 10−8 |
ILCRs | 2.38 × 10−8 | 9.62 × 10−9 | 4.67 × 10−8 | 1.89 × 10−8 |
Study Area | Study Year | Mean of ILCRs (Adult) | Mean of ILCRs (Child) | Reference |
---|---|---|---|---|
Yellow River Delta Natural Reserve | 2017 | 1.14 × 10−6 | 1.23 × 10−6 | [17] |
Farmland soil in the YRD | 2020 | 9.00 × 10−6 | 3.60 × 10−5 | [14] |
Xianhe Town, Gudao Town and Huanghekou Town of Dongying City in the YRD | 2009 | 2.38 × 10−8 | 9.62 × 10−9 | This Study |
Farmland soil in the YRD | 2021 | 4.67 × 10−8 | 1.89 × 10−8 | This Study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhao, Y.; Qi, Y.; Li, J.; Hou, Y.; Hao, H.; Xiao, N.; Zhi, Q. Characteristics, Source and Risk Assessment of Soil Polycyclic Aromatic Hydrocarbons around Oil Wells in the Yellow River Delta, China. Water 2023, 15, 3324. https://doi.org/10.3390/w15183324
Wu Y, Zhao Y, Qi Y, Li J, Hou Y, Hao H, Xiao N, Zhi Q. Characteristics, Source and Risk Assessment of Soil Polycyclic Aromatic Hydrocarbons around Oil Wells in the Yellow River Delta, China. Water. 2023; 15(18):3324. https://doi.org/10.3390/w15183324
Chicago/Turabian StyleWu, Yuxuan, Yilei Zhao, Yue Qi, Junsheng Li, Yuchen Hou, Haojing Hao, Nengwen Xiao, and Qiuying Zhi. 2023. "Characteristics, Source and Risk Assessment of Soil Polycyclic Aromatic Hydrocarbons around Oil Wells in the Yellow River Delta, China" Water 15, no. 18: 3324. https://doi.org/10.3390/w15183324
APA StyleWu, Y., Zhao, Y., Qi, Y., Li, J., Hou, Y., Hao, H., Xiao, N., & Zhi, Q. (2023). Characteristics, Source and Risk Assessment of Soil Polycyclic Aromatic Hydrocarbons around Oil Wells in the Yellow River Delta, China. Water, 15(18), 3324. https://doi.org/10.3390/w15183324