Upper-Layer Bacterioplankton Potentially Impact the Annual Variation and Carbon Cycling of the Bathypelagic Communities in the South China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seawater Sampling
2.2. DNA Extraction and High-Throughput Sequencing
2.3. High-Throughput Sequencing Analysis
2.4. Statistical Analysis
3. Results
3.1. Temporospatial Variations in Deep-Sea Bacterioplankton Diversity and Community Structures
3.2. The Connection between Epipelagic-Layer and Deep-Sea Bacterioplankton ASVs
3.3. Taxonomic and Functional Annotation of Epipelagic–Bathypelagic Connective ASVs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arístegui, J.; Gasol, J.M.; Duarte, C.M.; Herndld, G.J. Microbial oceanography of the dark ocean’s pelagic realm. Limnol. Oceanogr. 2009, 54, 1501–1529. [Google Scholar] [CrossRef]
- Herndl, G.J.; Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 2013, 6, 718–724. [Google Scholar] [CrossRef]
- Zehr, J.P.; Ward, B.B. Nitrogen cycling in the ocean: New perspectives on processes and paradigms. Appl. Environ. Microbiol. 2002, 68, 1015–1024. [Google Scholar] [CrossRef]
- Canfield, D.E.; Stewart, F.J.; Thamdrup, B.; De Brabandere, L.; Dalsgaard, T.; Delong, E.F.; Revsbech, N.P.; Ulloa, O. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science 2010, 330, 1375–1378. [Google Scholar] [CrossRef]
- Luo, E.; Leu, A.O.; Eppley, J.M.; Karl, D.M.; DeLong, E.F. Diversity and origins of bacterial and archaeal viruses on sinking particles reaching the abyssal ocean. ISME J. 2022, 16, 1627–1635. [Google Scholar] [CrossRef]
- Azam, F.; Fenchel, T.; Field, J.G.; Gray, J.S.; Meyer-Reil, L.A.; Thingstad, F. The ecological role of water-column microbes in the sea. In Marine Ecology Progress Series; Thomas, E.M., Joseph, T., Eds.; University of Chicago Press: Chicago, IL, USA, 1983; pp. 257–263. [Google Scholar]
- Nagata, T.; Fukuda, H.; Fukuda, R.; Koike, I. Bacterioplankton distribution and production in deep Pacific waters: Large-scale geographic variations and possible coupling with sinking particle fluxes. Limnol. Oceanogr. 2000, 45, 426–435. [Google Scholar] [CrossRef]
- Alcolombri, U.; Peaudecerf, F.J.; Fernandez, V.I.; Behrendt, L.; Lee, K.S.; Stocker, R. Sinking enhances the degradation of organic particles by marine bacteria. Nat. Geosci. 2021, 14, 775–780. [Google Scholar] [CrossRef]
- Jiao, N.; Herndl, G.J.; Hansell, D.A.; Benner, R.; Kattner, G.; Wilhelm, S.W.; Kirchman, D.L.; Weinbauer, M.G.; Luo, T.; Chen, F.; et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 2010, 8, 593–599. [Google Scholar] [CrossRef]
- Jiao, N.; Zheng, Q. The microbial carbon pump: From genes to ecosystems. Appl. Environ. Microbiol. 2011, 77, 7439–7444. [Google Scholar] [CrossRef]
- Salazar, G.; Cornejo-Castillo, F.M.; Benitez-Barrios, V.; Fraile-Nuez, E.; Alvarez-Salgado, X.A.; Duarte, C.M.; Gasol, J.M.; Acinas, S.G. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J. 2016, 10, 596–608. [Google Scholar] [CrossRef]
- Agogue, H.; Lamy, D.; Neal, P.R.; Sogin, M.L.; Herndl, G.J. Water mass-specificity of bacterial communities in the north Atlantic revealed by massively parallel sequencing. Mol. Ecol. 2011, 20, 258–274. [Google Scholar] [CrossRef]
- Wilkins, D.; van Sebille, E.; Rintoul, S.R.; Lauro, F.M.; Cavicchioli, R. Advection shapes southern ocean microbial assemblages independent of distance and environment effects. Nat. Commun. 2013, 4, 2457. [Google Scholar] [CrossRef]
- Cram, J.A.; Chow, C.-E.T.; Sachdeva, R.; Needham, D.M.; Parada, A.E.; Steele, J.A.; Fuhrman, J.A. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2014, 9, 563–580. [Google Scholar] [CrossRef]
- Wenley, J.; Currie, K.; Lockwood, S.; Thomson, B.; Baltar, F.; Morales, S.E. Seasonal prokaryotic community linkages between surface and deep ocean water. Front. Mar. Sci. 2021, 8, 659641. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Dai, M.; Jiao, N.; Herndl, G.J. Drivers shaping the diversity and biogeography of total and active bacterial communities in the south China sea. Mol. Ecol. 2014, 23, 2260–2274. [Google Scholar] [CrossRef]
- Mestre, M.; Ruiz-Gonzalez, C.; Logares, R.; Duarte, C.M.; Gasol, J.M.; Sala, M.M. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl. Acad. Sci. USA 2018, 115, E6799–E6807. [Google Scholar] [CrossRef]
- Ruiz-Gonzalez, C.; Mestre, M.; Estrada, M.; Sebastian, M.; Salazar, G.; Agusti, S.; Moreno-Ostos, E.; Reche, I.; Alvarez-Salgado, X.A.; Moran, X.A.G.; et al. Major imprint of surface plankton on deep ocean prokaryotic structure and activity. Mol. Ecol. 2020, 29, 1820–1838. [Google Scholar] [CrossRef]
- He, H.; Fu, L.; Liu, Q.; Fu, L.; Bi, N.; Yang, Z.; Zhen, Y. Community structure, abundance and potential functions of bacteria and archaea in the sansha yongle blue hole, xisha, south China sea. Front. Microbiol. 2019, 10, 2404. [Google Scholar] [CrossRef]
- Ren, L.; Song, X.; Wu, C.; Li, G.; Zhang, X.; Xia, X.; Xiang, C.; Han, B.P.; Jeppesen, E.; Wu, Q.L. Biogeographical and biodiversity patterns of marine planktonic bacteria spanning from the south China sea across the gulf of bengal to the northern arabian sea. Microbiol. Spectr. 2023, 11, e0039823. [Google Scholar] [CrossRef]
- Liu, R.; Wang, L.; Liu, Q.; Wang, Z.; Li, Z.; Fang, J.; Zhang, L.; Luo, M. Depth-resolved distribution of particle-attached and free-living bacterial communities in the water column of the new britain trench. Front. Microbiol. 2018, 9, 625. [Google Scholar] [CrossRef]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef]
- Knights, D.; Kuczynski, J.; Charlson, E.S.; Zaneveld, J.; Mozer, M.C.; Collman, R.G.; Bushman, F.D.; Knight, R.; Kelley, S.T. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods 2011, 8, 761–763. [Google Scholar] [CrossRef]
- Milici, M.; Vital, M.; Tomasch, J.; Badewien, T.H.; Giebel, H.-A.; Plumeier, I.; Wang, H.; Pieper, D.H.; Wagner-Döbler, I.; Simon, M. Diversity and community composition of particle-associated and free-living bacteria in mesopelagic and bathypelagic southern ocean water masses: Evidence of dispersal limitation in the bransfield strait. Limnol. Oceanogr. 2017, 62, 1080–1095. [Google Scholar] [CrossRef]
- Eloe, E.A.; Shulse, C.N.; Fadrosh, D.W.; Williamson, S.J.; Allen, E.E.; Bartlett, D.H. Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environ. Microbiol. Rep. 2011, 3, 449–458. [Google Scholar] [CrossRef]
- Trano, A.C.; Piredda, R.; Balestra, C.; Bastianini, M.; Gasol, J.M.; Casotti, R. Diversity of free-living and particle-attached prokaryotes in a river-Influenced coastal area of the northern adriatic sea. Front. Mar. Sci. 2022, 9, 912528. [Google Scholar] [CrossRef]
- Rieck, A.; Herlemann, D.P.; Jurgens, K.; Grossart, H.P. Particle-associated differ from free-living bacteria in surface waters of the baltic sea. Front. Microbiol. 2015, 6, 1297. [Google Scholar] [CrossRef]
- Chen, Y.L.L.; Chen, H.Y. Seasonal dynamics of primary and new production in the northern South China Sea: The significance of river discharge and nutrient advection. Deep Sea Res. Part I 2006, 53, 971–986. [Google Scholar] [CrossRef]
- Xing, P.; Hahnke, R.L.; Unfried, F.; Markert, S.; Huang, S.; Barbeyron, T.; Harder, J.; Becher, D.; Schweder, T.; Glockner, F.O.; et al. Niches of two polysaccharide-degrading polaribacter isolates from the north sea during a spring diatom bloom. ISME J. 2015, 9, 1410–1422. [Google Scholar] [CrossRef]
- Balmonte, J.P.; Teske, A.; Arnosti, C. Structure and function of high arctic pelagic, particle-associated and benthic bacterial communities. Environ. Microbiol. 2018, 20, 2941–2954. [Google Scholar] [CrossRef]
- Gonnella, G.; Bohnke, S.; Indenbirken, D.; Garbe-Schonberg, D.; Seifert, R.; Mertens, C.; Kurtz, S.; Perner, M. Endemic hydrothermal vent species identified in the open ocean seed bank. Nat. Microbiol. 2016, 1, 16086. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Li, J.; Ding, X.; Sen, K.; He, Y.; Bai, M.; Wang, G. Upper-Layer Bacterioplankton Potentially Impact the Annual Variation and Carbon Cycling of the Bathypelagic Communities in the South China Sea. Water 2023, 15, 3359. https://doi.org/10.3390/w15193359
Liu X, Li J, Ding X, Sen K, He Y, Bai M, Wang G. Upper-Layer Bacterioplankton Potentially Impact the Annual Variation and Carbon Cycling of the Bathypelagic Communities in the South China Sea. Water. 2023; 15(19):3359. https://doi.org/10.3390/w15193359
Chicago/Turabian StyleLiu, Xiuping, Jiaqian Li, Xueyan Ding, Kalyani Sen, Yaodong He, Mohan Bai, and Guangyi Wang. 2023. "Upper-Layer Bacterioplankton Potentially Impact the Annual Variation and Carbon Cycling of the Bathypelagic Communities in the South China Sea" Water 15, no. 19: 3359. https://doi.org/10.3390/w15193359
APA StyleLiu, X., Li, J., Ding, X., Sen, K., He, Y., Bai, M., & Wang, G. (2023). Upper-Layer Bacterioplankton Potentially Impact the Annual Variation and Carbon Cycling of the Bathypelagic Communities in the South China Sea. Water, 15(19), 3359. https://doi.org/10.3390/w15193359