Relationship Identification between Water-Energy Resource Utilization Efficiency and Ecological Risk in the Context of Assessment-Decoupling Two-Stage Framework—A Case Study of Henan Province, China
Abstract
:1. Introduction
2. Methodology
2.1. WEUE Measurement Method
2.1.1. Super-SBM Model
2.1.2. Tobit Regression Model
2.2. ER Measurement Method
2.2.1. Land-Use Change Model
2.2.2. Calculation of the ER
2.3. Tapio Decoupling Model
3. Case Study
3.1. Overview of the Study Area
3.2. Data Source
4. Results and Discussion
4.1. Analysis of Measured WEUE
4.1.1. Temporal Change of WEUE
4.1.2. Spatial Variation of WEUE
4.1.3. Analysis of Influencing Factors in WEUE
4.2. Analysis of Changes in ERI
4.2.1. Analysis of Land-Use Change
4.2.2. Characterization of Spatial Variation in the ERI
4.2.3. Temporal Change of ERI
4.3. Relationship between WEUE and ERI
4.3.1. Decoupling Analysis of the WEUE and ERI
4.3.2. Policy Implication
5. Conclusions
- The WEUE of the study area showed a fluctuating trend, with a decreasing trend during 2000–2015 and a significant increase during 2015–2020, which was more pronounced in the central, western, and northern districts of Henan. However, the WEUE of Puyang, Nanyang, and Sanmenxia decreased as a whole, with Kaifeng experiencing the largest decrease at 0.262, followed by Anyang at 0.252;
- The spatial differences in ER in Henan Province are quite obvious, with high-risk areas mainly concentrated in central, eastern, and southern Henan and low-risk areas mainly in western Henan. Between 2000 and 2020, the ERI generally showed a decreasing trend. By 2020, most of the cities were at higher risk levels, with Hebei having the largest change in ERI at 0.124, followed by Jiaozuo, and Jiyuan having the smallest change of 0.08;
- There is significant spatial variation in the decoupling states of WEUE and ERI of the 18 districts in Henan Province, and the differences became more pronounced over the study period. The spatial distribution of districts with SNDS was inconsistent in each time window, while overall, the number of districts with SNDS increased continuously. A total of 14 districts reached SDNS in 2020.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gozini, H.; Zahraie, B.; Ravar, Z. System Dynamics Modeling of Water-Energy Nexus for Resource-Saving Policy Assessment. Int. J. Environ. Res. 2021, 15, 349–367. [Google Scholar] [CrossRef]
- Shaad, K.; Souter, N.J.; Vollmer, D.; Regan, H.M.; Bezerra, M.O. Integrating Ecosystem Services Into Water Resource Management: An Indicator-Based Approach. Environ. Manag. 2022, 69, 752–767. [Google Scholar] [CrossRef]
- Speich, M.; Ulli-Beer, S. Applying an ecosystem lens to low-carbon energy transitions: A conceptual framework. J. Clean. Prod. 2023, 398, 136429. [Google Scholar] [CrossRef]
- Stewart, S.; Green, G. The Importance of Legislative Reform to Enable Adaptive Management of Water Resources in a Drying Climate. Water 2022, 14, 1404. [Google Scholar] [CrossRef]
- Kahouli, B.; Miled, K.; Aloui, Z. Do energy consumption, urbanization, and industrialization play a role in environmental degradation in the case of Saudi Arabia? Energy Strategy Rev. 2022, 40, 100814. [Google Scholar] [CrossRef]
- Algaba, M.H.P.; Huyghe, W.; Van Leeuwen, K.; Koop, S.; Eisenreich, S. Assessment and Actions to Support Integrated Water Resources Management of Seville (Spain). Environ. Dev. Sustain. 2023, 1–29. [Google Scholar] [CrossRef]
- Le, N.T.; Thinh, N.A.; Ha, N.T.V.; Tien, N.D.; Lam, N.D.; Hong, N.V.; Tuan, N.T.; Hanh, T.V.; Khanh, N.N.; Thanh, N.N.; et al. Measuring water resource use efficiency of the Dong Nai River Basin (Vietnam): An application of the two-stage data envelopment analysis (DEA). Environ. Dev. Sustain. 2022, 24, 12427–12445. [Google Scholar] [CrossRef]
- Mostafa, S.M.; Wahed, O.; El-Nashar, W.Y.; El-Marsafawy, S.M.; Zelenakova, M.; Abd-Elhamid, H.F. Potential Climate Change Impacts on Water Resources in Egypt. Water 2021, 13, 1715. [Google Scholar] [CrossRef]
- Fukuyama, H.; Hashimoto, A.; Weber, W.L. Environmental efficiency, energy efficiency and aggregate well-being of Japanese prefectures. J. Clean. Prod. 2020, 271, 122810. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Y.; Karuppiah, M.; Kumar, P.M. Artificial intelligence on economic evaluation of energy efficiency and renewable energy technologies. Sustain. Energy Technol. Assess. 2021, 47, 101358. [Google Scholar] [CrossRef]
- Zhang, Q.; Suresh, L.; Liang, Q.; Zhang, Y.; Yang, L.; Paul, N.; Tan, S. Emerging Technologies for Green Energy Conversion and Storage. Adv. Sustain. Syst. 2021, 5, 2000152. [Google Scholar] [CrossRef]
- Okadera, T.; Chontanawat, J.; Gheewala, S.H. Water footprint for energy production and supply in Thailand. Energy 2014, 77, 49–56. [Google Scholar] [CrossRef]
- Venkatesh, G.; Brattebo, H. Energy consumption, costs and environmental impacts for urban water cycle services: Case study of Oslo (Norway). Energy 2011, 36, 792–800. [Google Scholar] [CrossRef]
- Shi, C.; Li, L.; Chiu, Y.; Pang, Q.; Zeng, X. Spatial differentiation of agricultural water resource utilization efficiency in the Yangtze River Economic Belt under changing environment. J. Clean. Prod. 2022, 346, 131200. [Google Scholar] [CrossRef]
- Kadir, M.O.; Deka, A.; Ozdeser, H.; Seraj, M.; Turuc, F. The impact of energy efficiency and renewable energy on GDP growth: New evidence from RALS-EG cointegration test and QARDL technique. Energy Effic. 2023, 16, 46. [Google Scholar] [CrossRef]
- Hunsaker, C.T.; Graham, R.L.; Suter, G.W.; Oneill, R.V.; Barnthouse, L.W.; Gardner, R.H. Assessing ecological risk on a regional scale. Environ. Manag. 1990, 14, 325–332. [Google Scholar] [CrossRef]
- Tannenbaum, L.V. Absent ecology in the terrestrial ecological risk assessment process and an absent need for assessment. Hum. Ecol. Risk Assess. 2022, 28, 1083–1104. [Google Scholar] [CrossRef]
- Chen, S.; Chen, B.; Fath, B.D. Ecological risk assessment on the system scale: A review of state-of-the-art models and future perspectives. Ecol. Model. 2013, 250, 25–33. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Malakootian, M.; Nasiri, A.; Conti, G.O.; Ferrante, M.; Faraji, M. Ecological and Probabilistic Health Risk Assessment of Heavy Metals in Topsoils, Southeast of Iran. Bull. Environ. Contam. Toxicol. 2022, 108, 737–744. [Google Scholar] [CrossRef]
- Hasan, M.R.; Anisuzzaman, M.; Choudhury, T.R.; Arai, T.; Yu, J.; Albeshr, M.F.; Hossain, M.B. Vertical distribution, contamination status and ecological risk assessment of heavy metals in core sediments from a mangrove-dominated tropical river. Mar. Pollut. Bull. 2023, 189, 114804. [Google Scholar] [CrossRef]
- Adikaram, M.; Pitawala, A.; Ishiga, H.; Jayawardana, D.; Eichler, C.M. An Ecological Risk Assessment of Sediments in a Developing Environment-Batticaloa Lagoon, Sri Lanka. J. Mar. Sci. Eng. 2021, 9, 73. [Google Scholar] [CrossRef]
- Varol, M.; Ustaoglu, F.; Tokatli, C. Ecological Risk Assessment of Metals in Sediments from Three Stagnant Water Bodies in Northern Turkey. Curr. Pollut. Rep. 2022, 8, 409–421. [Google Scholar] [CrossRef]
- Durdu, B.; Gurbuz, F.; Kocyigit, H.; Gurbuz, M. Urbanization-driven soil degradation; ecological risks and human health implications. Environ. Monit. Assess. 2023, 195, 1002. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.; Ribeiro, J.; Marques, J.E.; Flores, D. Environmental and Health Risk Assessment of Soil Adjacent to a Self-Burning Waste Pile from an Abandoned Coal Mine in Northern Portugal. Environments 2023, 10, 53. [Google Scholar] [CrossRef]
- Ilic, P.; Ilic, S.; Neskovic Markic, D.; Stojanovic Bjelic, L.; Farooqi, Z.U.R.; Sole, B.; Adimalla, N. Source identification and ecological risk of polycyclic aromatic hydrocarbons in soils and groundwater. Ecol. Chem. Eng. 2021, 28, 355–363. [Google Scholar] [CrossRef]
- Rabieimesbah, A.; Sobhanardakani, S.; Cheraghi, M.; Lorestani, B. Concentrations, Source Identification and Potential Ecological and Human Health Risks Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Agricultural Soils of Hamedan County, West of Iran. Soil Sediment Contam. 2023, 1–25. [Google Scholar] [CrossRef]
- Ngo, H.T.T.; Tran, L.A.T.; Nguyen, D.Q.; Nguyen, T.T.H.; Le, T.T.; Gao, Y. Metal Pollution and Bioaccumulation in the Nhue-Day River Basin, Vietnam: Potential Ecological and Human Health Risks. Int. J. Environ. Res. Public Health 2021, 18, 13425. [Google Scholar] [CrossRef]
- Li, W.; Kang, J.; Wang, Y. Spatiotemporal changes and driving forces of ecological security in the Chengdu-Chongqing urban agglomeration, China: Quantification using health-services-risk framework. J. Clean. Prod. 2023, 389, 136135. [Google Scholar] [CrossRef]
- Bai, J.; Guo, K.; Liu, M.; Jiang, T. Spatial variability, evolution, and agglomeration of eco-environmental risks in the Yangtze River Economic Belt, China. Ecol. Indic. 2023, 152, 110375. [Google Scholar] [CrossRef]
- Mondal, B.; Sharma, P.; Kundu, D.; Bansal, S. Spatio-temporal Assessment of Landscape Ecological Risk and Associated Drivers: A Case Study of Delhi. Environ. Urban. Asia 2021, 12, S85–S106. [Google Scholar] [CrossRef]
- Omar, H.; Cabral, P. Ecological Risk Assessment Based on Land Cover Changes: A Case of Zanzibar (Tanzania). Remote Sens. 2020, 12, 3114. [Google Scholar] [CrossRef]
- Cansino-Loeza, B.; Munguia-Lopez, A.D.; Ponce-Ortega, J.M. A water-energy-food security nexus framework based on optimal resource allocation. Environ. Sci. Policy 2022, 133, 1–16. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Liu, X.; Shi, J.; Liu, N.; Ren, H.; Li, H.; Ulgiati, S. Multi-objective coordinated development paths for China’s steel industry chain based on “water-energy-economy” dependence. J. Clean. Prod. 2022, 370, 133421. [Google Scholar] [CrossRef]
- Akbar, H.; Nilsalab, P.; Silalertruksa, T.; Gheewala, S.H. An inclusive approach for integrated systems: Incorporation of climate in the water-food-energy-land nexus index. Sustain. Prod. Consum. 2023, 39, 42–52. [Google Scholar] [CrossRef]
- Roxani, A.; Zisos, A.; Sakki, G.K.; Efstratiadis, A. Multidimensional Role of Agrovoltaics in Era of EU Green Deal: Current Status and Analysis of Water-Energy-Food-Land Dependencies. Land 2023, 12, 1069. [Google Scholar] [CrossRef]
- Chamas, Z.; Abou Najm, M.; Al-Hindi, M.; Yassine, A.; Khattar, R. Sustainable resource optimization under water-energy-food-carbon nexus. J. Clean. Prod. 2021, 278, 123894. [Google Scholar] [CrossRef]
- Temel, P.; Kentel, E.; Alp, E. Development of a site selection methodology for run-of-river hydroelectric power plants within the water-energy-ecosystem nexus. Sci. Total Environ. 2023, 856, 159152. [Google Scholar] [CrossRef]
- Mikulcic, H.; Wang, X.; Duic, N.; Dewil, R. Environmental problems arising from the sustainable development of energy, water and environment system. J. Environ. Manag. 2020, 259, 109666. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Burhan, M.; Ang, L.; Ng, K.C. Energy-water-environment nexus underpinning future desalination sustainability. Desalination 2017, 413, 52–64. [Google Scholar] [CrossRef]
- Zuo, Q.; Wu, Q.; Yu, L.; Li, Y.; Fan, Y. Optimization of uncertain agricultural management considering the framework of water, energy and food. Agric. Water Manag. 2021, 253, 106907. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, Q.; Wu, Q.; Han, C.; Tao, J. An integrated diagnostic framework for water resource spatial equilibrium considering water-economy-ecology nexus. J. Clean. Prod. 2023, 414, 137592. [Google Scholar] [CrossRef]
- Luo, Z.; Zuo, Q. Evaluating the coordinated development of social economy, water, and ecology in a heavily disturbed basin based on the distributed hydrology model and the harmony theory. J. Hydrol. 2019, 574, 226–241. [Google Scholar] [CrossRef]
- TONE, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef]
- Khan, S.U.; Cui, Y.; Khan, A.A.; Ali, M.A.S.; Khan, A.; Xia, X.; Liu, G.; Zhao, M. Tracking sustainable development efficiency with human-environmental system relationship: An application of DPSIR and super efficiency SBM model. Sci. Total Environ. 2021, 783, 146959. [Google Scholar] [CrossRef]
- Wang, J.; Su, D.; Wu, Q.; Li, G.; Cao, Y. Study on eco-efficiency of cultivated land utilization based on the improvement of ecosystem services and emergy analysis. Sci. Total Environ. 2023, 882, 163489. [Google Scholar] [CrossRef]
- Zheng, H.; Wu, Y.; He, H.; Delang, C.O.; Qian, J.; Lu, J.; Yao, Z.; Li, G. Urban land use eco-efficiency and improvement in the western region of China. J. Clean. Prod. 2023, 412, 137385. [Google Scholar] [CrossRef]
- Ning, L.; Zheng, W.; Zeng, L.E. Research on China’s Carbon Dioxide Emissions Efficiency from 2007 to 2016: Based on Two Stage Super Efficiency SBM Model and Tobit Model. Acta Sci. Nat. Univ. Pekin. 2021, 57, 181–188. [Google Scholar]
- Zhou, C.; Shi, C.; Wang, S.; Zhang, G. Estimation of eco-efficiency and its influencing factors in Guangdong province based on Super-SBM and panel regression models. Ecol. Indic. 2018, 86, 67–80. [Google Scholar] [CrossRef]
- Dalei, N.N.; Joshi, J.M. Estimating technical efficiency of petroleum refineries using DEA and tobit model: An India perspective. Comput. Chem. Eng. 2020, 142, 107047. [Google Scholar] [CrossRef]
- Liang, X.; Li, J.; Guo, G.; Li, S.; Gong, Q. Evaluation for water resource system efficiency and influencing factors in western China: A two-stage network DEA-Tobit model. J. Clean. Prod. 2021, 328, 129674. [Google Scholar] [CrossRef]
- Gaber, R.; El-Din, M.N. Enhancement of Water Security by Decoupling Water use from Economic Development in Egypt. J. Al-Azhar Univ. Eng. Sect. 2021, 16, 565–578. [Google Scholar] [CrossRef]
- Hassan, M.; Afridi, M.K.; Khan, M.I. Energy policies and environmental security: A multi-criteria analysis of energy policies of Pakistan. Int. J. Green. Energy 2019, 16, 510–519. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, Y.; Kharrazi, A.; Ren, H.T.; Ma, T. Quantifying the synergy and trade-offs among economy-energy-environment-social targets: A perspective of industrial restructuring. J. Environ. Manag. 2022, 316, 115285. [Google Scholar] [CrossRef]
- Muhirwa, F.; Shen, L.; Elshkaki, A.; Zhong, S.; Hu, S.H.; Hirwa, H.; Chiaka, J.C.; Umarishavu, F.; Mulinga, N. Ecological balance emerges in implementing the water-energy-food security nexus in well-developed countries in Africa. Sci. Total Environ. 2022, 833, 154999. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liang, D.; Wang, J.; Zhang, Y.; Chen, F.; Ma, X. An analysis of regional carbon stock response under land use structure change and multi-scenario prediction, a case study of Hefei, China. Ecol. Indic. 2023, 151, 110293. [Google Scholar] [CrossRef]
- Schirpke, U.; Tasser, E.; Borsky, S.; Braun, M.; Eitzinger, J.; Gaube, V.; Getzner, M.; Glatzel, S.; Gschwantner, T.; Kirchner, M.; et al. Past and future impacts of land-use changes on ecosystem services in Austria. J. Environ. Manag. 2023, 345, 118728. [Google Scholar] [CrossRef]
- He, N.; Zhou, Y.; Wang, L.; Li, Q.; Zuo, Q.; Liu, J. Spatiotemporal differentiation and the coupling analysis of ecosystem service value with land use change in Hubei Province, China. Ecol. Indic. 2022, 145, 109693. [Google Scholar] [CrossRef]
- Qian, Y.; Dong, Z.; Yan, Y.; Tang, L. Ecological risk assessment models for simulating impacts of land use and landscape pattern on ecosystem services. Sci. Total Environ. 2022, 833, 155218. [Google Scholar] [CrossRef]
- Gan, L.; Halik, Ü.; Shi, L.; Welp, M. Multi-scenario dynamic prediction of ecological risk assessment in an arid area of northwest China. Ecol. Indic. 2023, 154, 110727. [Google Scholar] [CrossRef]
- Anagonou, S.P.G.; Ewemoje, T.A.; Toyi, S.S.M.; Olubode, O.S. Landscape ecological risk assessment and transformation processes in the Guinean-Congolese climate zone in Benin Republic. Remote Sens. Appl. Soc. Environ. 2023, 31, 100985. [Google Scholar] [CrossRef]
- Ran, P.; Hu, S.; Frazier, A.E.; Qu, S.; Yu, D.; Tong, L. Exploring changes in landscape ecological risk in the Yangtze River Economic Belt from a spatiotemporal perspective. Ecol. Indic. 2022, 137, 108744. [Google Scholar] [CrossRef]
- Du, L.; Dong, C.; Kang, X.; Qian, X.; Gu, L. Spatiotemporal evolution of land cover changes and landscape ecological risk assessment in the Yellow River Basin, 2015–2020. J. Environ. Manag. 2023, 332, 117149. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhang, J.; Sun, C.; Wang, X.; Zheng, D. Landscapeecological risk assessment of Xi river Basin based on land-use change. Acta Ecol. Sin. 2018, 38, 5952–5960. [Google Scholar] [CrossRef]
- Tapio, P.; Banister, D.; Luukkanen, J.; Vehmas, J.; Willamo, R. Energy and transport in comparison: Immaterialisation, dematerialisation and decarbonisation in the EU15 between 1970 and 2000. Energy Policy 2007, 35, 433–451. [Google Scholar] [CrossRef]
- Tasbasi, A. A threefold empirical analysis of the relationship between regional income inequality and water equity using Tapio decoupling model, WPAT equation, and the local dissimilarity index: Evidence from Bulgaria. Environ. Sci. Pollut. Res. 2021, 28, 4352–4365. [Google Scholar] [CrossRef]
- Ozturk, I.; Majeed, M.T.; Khan, S. Decoupling and decomposition analysis of environmental impact from economic growth: A comparative analysis of Pakistan, India, and China. Environ. Ecol. Stat. 2021, 28, 793–820. [Google Scholar] [CrossRef]
- Duan, R.; Huang, G.; Zhou, X.; Lu, C.; Tian, C. Record-Breaking Heavy Rainfall Around Henan Province in 2021 and Future Projection of Extreme Conditions under Climate Change. J. Hydrol. 2023, 625, 130102. [Google Scholar] [CrossRef]
- Wu, P.; Clark, R.; Furtado, K.; Xiao, C.; Wang, Q.; Sun, R. A case study of the July 2021 Henan extreme rainfall event: From weather forecast to climate risks. Weather Clim. Extrem. 2023, 40, 100571. [Google Scholar] [CrossRef]
Category | Primary Index | Secondary Index | Unit |
---|---|---|---|
Inputs | Resource inputs | Total water consumption | 100 million m3 |
Energy consumption | tons of standard coal | ||
Capital inputs | Investment in fixed assets | CNY 100 million | |
Labor inputs | End-of-year area practitioners | person | |
Outputs | Expected outputs | Gross Regional Product | CNY 100 million |
Undesirable outputs | Sewage discharge | 10,000 tons | |
CO2 emissions | ton |
Correlation Variable | Explanatory Variable | Index Abbreviation | Unit |
---|---|---|---|
Economic development | Gross domestic product | GDP | 100 million Yuan |
Energy consumption per GDP | ECG | tons of standard coal per 10,000 Yuan | |
Resource endowment | Per capita water resources | PWR | m3/person |
Per capita energy production | PCP | ton/person | |
Industrial structure | The proportion of secondary industry | PSI | % |
The proportion of agricultural water consumption | PAC | % | |
Ecological environment | Sewage treatment rate | STR | % |
Chemical oxygen demand emission | COD | ton |
Correlation Variable | Explanatory Variable | Regression Coefficient | Standard Error | p |
---|---|---|---|---|
Economic development | GDP | 1.5110 *** | 0.1983 | 0.002 |
ECG | −0.0358 *** | 0.0031 | 0.001 | |
Resource endowment | PWR | 0.0004 *** | 0.0001 | 0.001 |
PCP | 0.0396 *** | 0.0074 | 0.006 | |
Industrial structure | PSI | −3.3799 *** | 0.4027 | 0.001 |
PAC | 1.3998 *** | 0.2835 | 0.008 | |
Ecological environment | STR | 0.0107 *** | 0.0017 | 0.003 |
COD | −0.0003 ** | 0.0001 | 0.010 |
Land-Use Type | Area (km2) | Dynamic Index (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | |
Arable Land | 108,516 | 107,536 | 107,187 | 106,468 | 103,526 | −0.18% | −0.06% | −0.13% | −0.55% |
Forest Land | 27,061 | 27,010 | 27,073 | 27,053 | 27,076 | −0.04% | 0.05% | −0.01% | 0.02% |
Grass Land | 9447 | 9387 | 9374 | 9365 | 8952 | −0.13% | −0.03% | −0.02% | −0.88% |
Water Land | 3511 | 3978 | 4026 | 4047 | 4250 | 2.66% | 0.24% | 0.10% | 1.00% |
Built-up Land | 16,992 | 17,644 | 17,896 | 18,622 | 21,813 | 0.77% | 0.29% | 0.81% | 3.43% |
Unused Land | 88 | 80 | 75 | 73 | 72 | −1.82% | −1.25% | −0.53% | −0.27% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, T.; Zuo, Q.; Ma, J.; Wu, Q.; Zhang, Z. Relationship Identification between Water-Energy Resource Utilization Efficiency and Ecological Risk in the Context of Assessment-Decoupling Two-Stage Framework—A Case Study of Henan Province, China. Water 2023, 15, 3377. https://doi.org/10.3390/w15193377
Zhong T, Zuo Q, Ma J, Wu Q, Zhang Z. Relationship Identification between Water-Energy Resource Utilization Efficiency and Ecological Risk in the Context of Assessment-Decoupling Two-Stage Framework—A Case Study of Henan Province, China. Water. 2023; 15(19):3377. https://doi.org/10.3390/w15193377
Chicago/Turabian StyleZhong, Tao, Qiting Zuo, Junxia Ma, Qingsong Wu, and Zhizhuo Zhang. 2023. "Relationship Identification between Water-Energy Resource Utilization Efficiency and Ecological Risk in the Context of Assessment-Decoupling Two-Stage Framework—A Case Study of Henan Province, China" Water 15, no. 19: 3377. https://doi.org/10.3390/w15193377
APA StyleZhong, T., Zuo, Q., Ma, J., Wu, Q., & Zhang, Z. (2023). Relationship Identification between Water-Energy Resource Utilization Efficiency and Ecological Risk in the Context of Assessment-Decoupling Two-Stage Framework—A Case Study of Henan Province, China. Water, 15(19), 3377. https://doi.org/10.3390/w15193377