Recording Rainfall Intensity: Has an Optimum Method Been Found?
Abstract
:1. Introduction
Outline of the Remainder of the Paper
- Historical sketches and obsolete approaches
- tipping-bucket gauges
- drop-forming and counting.
- disdrometers
- weighing gauges.
- acoustic gauges.
- optical, camera, and video-based methods
- thermal gauges.
- lysimeters
- other electro-mechanical methods
- nuclear methods.
- 12.
- radar-based methods
- 13.
- rain measurements using microwave attenuation
- 14.
- seismic methods.
- 15.
- miscellaneous (moving vehicles, windscreen wiper speeds, etc.)
2. Methods Suitable for Point-Based Observations of Intensity
2.1. Brief Commentary on Historical Developments
- (a)
- tipping-bucket gauges (considered further below);
- (b)
- timed-entry gauges: in which a collector is exposed to rainfall for a fixed duration, e.g., employing multiple separate containers that are rotated at fixed time intervals to bring the next empty container under the rainfall collecting funnel. An example of this form of gauge, employing several chambers rotated by clockwork and each collecting rain for 1 min, was described by Sil [45]. Sequential rainfall samplers remain in use for studies of the changing composition of rainwater (e.g., Poissant & Béron [46]) but are no longer used for the measurement of rainfall amounts or intensity.
- (c)
- calibrated orifice type, involving interpretation of the rate of water flow through or over tubes, orifices, or weirs. Some of these gauges were drop-forming and counting devices. A gauge having no moving parts in which rain of increasing intensity progressively overtopped one of five small weirs, thereby diverting the amount of rainfall concerned into one of five separate collecting containers, was described by Scott [47]. Perhaps best-known among the calibrated orifice gauges is the Jardí gauge, produced in the 1920s. The Jardí gauge had a very large rainfall collecting funnel, ~1 m in diameter (e.g., see photo included as Figure 1 in Rossman & Wardle [48]), which led via a pipe to a chamber having a calibrated orifice and a carefully designed, hollow tapered float. According to Srivastava [49], the upper, larger float chamber (refer to Figure 1) was 40 mm in diameter, while the lower chamber was 20 mm in diameter. In increasingly intense rain, the float rose sufficiently high that the enlarged orifice between the upper and lower chambers that resulted from the float movement could allow the incident rain to drain, and a mechanism drove a pen to create a chart recording. Though notionally tracking intensity continuously and in a stepless way, testing has established that the response time of this instrument (i.e., the time required to adjust fully to a new rainfall intensity) was about 15 s (Cheng [50]). Nevertheless, its response to changing intensity was remarkably rapid. In a Jardí gauge with a very large collecting surface, significant evaporation of arriving droplets during breaks in rainfall would be a possibility. Chen [51] noted problems of solid debris entering the float chamber of the Jardí gauge and of the need for regular cleaning and lubrication of the mechanical linkages to reduce frictional drag. Difficulties with accurately reading the chart recordings have constrained the analysis of Jardí data, according to Llasat & Puigcerver [52], though they were able to digitise historical charts and resolve intensities from them. Gauges of this kind appear no longer to be in common use. Nevertheless, the Jardí gauge is an example of an instrument designed specifically to enable rainfall intensity to be recorded.
2.2. Tipping Bucket Gauges and Related Devices
2.3. Drop Forming and Counting Gauges
2.4. Disdrometers—Optical and Electro-Mechanical Drop Sizing, Counting, and Fall Speed Measurement
2.5. Weighing Rain Gauges
2.6. Acoustic Intensity Gauges
2.7. Optical Rain Sensing Methods
2.8. Thermal Rainfall Detection
2.9. Weighing Lysimeters
2.10. Other Electro-Mechanical Gauges
2.11. Radiation-Based Methods
3. Methods Suitable for Wide-Area Rainfall Rate Measurement
3.1. Radar-Based Approaches
3.2. Microwave Attenuation (Cellular Phone Links, Satellite Links, etc.)
3.3. Seismic Methods for Recording Rainfall
4. Miscellaneous Approaches to Rainfall Recording
5. Discussion and Conclusions
5.1. Point Rainfall Intensity vs. Areal Rainfall Intensity Data
5.2. What Can We Say about Likely Future Developments in the Measurement of Intensity?
- (1)
- the challenge of measuring at a point with high temporal resolution and of finding a method prone to as few drawbacks or sources of bias as possible;
- (2)
- the related challenge of measuring spatially-distributed rainfall characteristics, for instance across an experimental catchment or an urban area prone to flash flooding.
Funding
Data Availability Statement
Conflicts of Interest
References
- Rodda, J.C.; Dixon, H. Rainfall measurement revisited. Weather 2012, 67, 131–136. [Google Scholar] [CrossRef]
- Fiener, P.; Auerswald, K. Spatial variability of rainfall on a sub-kilometre scale. Earth Surf. Process. Landf. 2009, 34, 848–859. [Google Scholar] [CrossRef]
- Sharon, D. The distribution of hydrologically effective rainfall incident on sloping ground. J. Hydrol. 1980, 46, 165–188. [Google Scholar] [CrossRef]
- Hirose, M.; Okada, K. A 0.01° Resolving TRMM PR Precipitation Climatology. J. Appl. Meteorol. Climatol. 2018, 57, 1645–1661. [Google Scholar] [CrossRef]
- Blumen, W. Atmospheric Processes over Complex Terrain; Springer: New York, NY, USA, 1990. [Google Scholar]
- Constantinescu, G.S.; Krajewski, W.F.; Ozdemir, C.E.; Tokyay, T. Simulation of airflow around rain gauges: Comparison of LES with RANS models. Adv. Water Resour. 2007, 30, 43–58. [Google Scholar] [CrossRef]
- Pollock, M.D.; O’Donnell, G.; Quinn, P.; Dutton, M.; Black, A.; Wilkinson, M.E.; Colli, M.; Stagnaro, M.; Lanza, L.G.; Lewis, E.; et al. Quantifying and Mitigating Wind-Induced Undercatch in Rainfall Measurements. Water Resour. Res. 2018, 54, 3863–3875. [Google Scholar] [CrossRef]
- Muchan, K.; Dixon, H. Insights into rainfall undercatch for differing raingauge rim heights. Hydrol. Res. 2019, 50, 1564–1576. [Google Scholar] [CrossRef]
- Cauteruccio, A.; Lanza, L.G. Parameterization of the Collection Efficiency of a Cylindrical Catching-Type Rain Gauge Based on Rainfall Intensity. Water 2020, 12, 3431. [Google Scholar] [CrossRef]
- Crockford, R.H.; Richardson, D.P.; Fleming, P.M.; Kalma, J.D. A comparison of methods for measuring the angle and direction of rainfall. Agric. For. Meteorol. 1991, 55, 213–231. [Google Scholar] [CrossRef]
- Yu, L.; Ma, L.; Li, H.; Zhang, Y.; Kong, F.; Yang, Y. Assessment of high-resolution satellite rainfall products over a gradually elevating mountainous terrain based on a high-density rain gauge network. Int. J. Remote Sens. 2020, 41, 5620–5644. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Y.; Yang, Y. Using High-Density Rain Gauges to Validate the Accuracy of Satellite Precipitation Products over Complex Terrains. Atmosphere 2020, 11, 633. [Google Scholar] [CrossRef]
- Wu, X.; Wei, Y.; Wang, J.; Xia, J.; Cai, C.; Wei, Z. Effects of soil type and rainfall intensity on sheet erosion processes and sediment characteristics along the climatic gradient in central-south China. Sci. Total Environ. 2018, 621, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The rainfall intensity–duration control of shallow landslides and debris flows: An update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- Yang, L.; Smith, J.; Baeck, M.L.; Smith, B.; Tian, F.; Niyogi, D. Structure and evolution of flash flood producing storms in a small urban watershed. J. Geophys. Res. Atmos. 2016, 121, 3139–3152. [Google Scholar] [CrossRef]
- Sarhadi, A.; Soulis, E.D. Time-varying extreme rainfall intensity-duration-frequency curves in a changing climate. Geophys. Res. Lett. 2017, 44, 2454–2463. [Google Scholar] [CrossRef]
- Berne, A.; Delrieu, G.; Creutin, J.-D.; Obled, C. Temporal and spatial resolution of rainfall measurements required for urban hydrology. J. Hydrol. 2004, 299, 166–179. [Google Scholar] [CrossRef]
- Lyu, H.; Ni, G.; Cao, X.; Ma, Y.; Tian, F. Effect of Temporal Resolution of Rainfall on Simulation of Urban Flood Processes. Water 2018, 10, 880. [Google Scholar] [CrossRef]
- Johannsen, L.L.; Zambon, N.; Strauss, P.; Dostal, T.; Neumann, M.; Zumr, D.; Cochrane, T.A.; Klik, A. Impact of Disdrometer Types on Rainfall Erosivity Estimation. Water 2020, 12, 963. [Google Scholar] [CrossRef]
- Araujo, R.F.; Grubinger, S.; Celes, C.H.S.; Negrón-Juárez, R.I.; Garcia, M.; Dandois, J.P.; Muller-Landau, H.C. Strong temporal variation in treefall and branchfall rates in a tropical forest is related to extreme rainfall: Results from 5 years of monthly drone data for a 50 ha plot. Biogeosciences 2021, 18, 6517–6531. [Google Scholar] [CrossRef]
- Dezhban, A.; Attarod, P.; Zahedi Amiri, G.; Pypker, T.G.; Nanko, K. The variability of stemflow generation in a natural beech stand (Fagus orientalis Lipsky) in relation to rainfall and tree traits. Ecohydrology 2020, 13, e2198. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Pan, Y.; Hu, R. How do rainfall intensity and raindrop size determine stemflow production? Quantitative evaluation from field rainfall simulation experiments. Hydrol. Sci. J. 2021, 66, 1979–1985. [Google Scholar] [CrossRef]
- Ban, N.; Schmidli, J.; Schär, C. Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys. Res. Lett. 2015, 42, 1165–1172. [Google Scholar] [CrossRef]
- Kendon, E.J.; Blenkinsop, S.; Fowler, H.J. When Will We Detect Changes in Short-Duration Precipitation Extremes? J. Clim. 2018, 31, 2945–2964. [Google Scholar] [CrossRef]
- Li, C.; Zwiers, F.; Zhang, X.; Chen, G.; Lu, J.; Li, G.; Norris, J.; Tan, Y.; Sun, Y.; Liu, M. Larger Increases in More Extreme Local Precipitation Events as Climate Warms. Geophys. Res. Lett. 2019, 46, 6885–6891. [Google Scholar] [CrossRef]
- Armon, M.; Marra, F.; Enzel, Y.; Rostkier-Edelstein, D.; Garfinkel, C.I.; Adam, O.; Dayan, U.; Morin, E. Reduced Rainfall in Future Heavy Precipitation Events Related to Contracted Rain Area Despite Increased Rain Rate. Earths Future 2022, 10, e2021EF002397. [Google Scholar] [CrossRef]
- Westra, S.; Fowler, H.J.; Evans, J.P.; Alexander, L.V.; Berg, P.; Johnson, F.; Kendon, E.J.; Lenderink, G.; Roberts, N.M. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 2014, 52, 522–555. [Google Scholar] [CrossRef]
- Hay, J.E.; Williams, P.D. Chapter 5—How are atmospheric extremes likely to change into the future? In Science of Weather, Climate and Ocean Extremes; Hay, J.E., Williams, P.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 145–179. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J.; Cadence, J.; Dellwik, E.; Hasager, C.B.; Kral, S.T.; Reuder, J.; Rodgers, M.; Veraart, M. Atmospheric Drivers of Wind Turbine Blade Leading Edge Erosion: Review and Recommendations for Future Research. Energies 2022, 15, 8553. [Google Scholar] [CrossRef]
- Christofilakis, V.; Tatsis, G.; Chronopoulos, S.K.; Sakkas, A.; Skrivanos, A.G.; Peppas, K.P.; Nistazakis, H.E.; Baldoumas, G.; Kostarakis, P. Earth-to-Earth Microwave Rain Attenuation Measurements: A Survey on the Recent Literature. Symmetry 2020, 12, 1440. [Google Scholar] [CrossRef]
- North, G.R.; Valdés, J.B.; Ha, E.; Shen, S.S.P. The Ground-Truth Problem for Satellite Estimates of Rain Rate. J. Atmos. Ocean. Technol. 1994, 11, 1035–1041. [Google Scholar] [CrossRef]
- Lebel, T.; Amani, A. Rainfall Estimation in the Sahel: What Is the Ground Truth? J. Appl. Meteorol. 1999, 38, 555–568. [Google Scholar] [CrossRef]
- Yoo, C.; Ha, E. Multi-dimensional precipitation models and their application to the ground-truth problem: Multiple raingauge case. KSCE J. Civ. Eng. 2001, 5, 51–58. [Google Scholar] [CrossRef]
- Yoo, C.; Ha, E.; Shin, S.-C. Model vs. design sensitivity to the ground-truth problem of rainfall observation. Adv. Water Resour. 2002, 25, 651–661. [Google Scholar] [CrossRef]
- Daly, C.; Slater, M.E.; Roberti, J.A.; Laseter, S.H.; Swift, L.W., Jr. High-resolution precipitation mapping in a mountainous watershed: Ground truth for evaluating uncertainty in a national precipitation dataset. Int. J. Climatol. 2017, 37, 124–137. [Google Scholar] [CrossRef]
- Ouyang, L.; Lu, H.; Yang, K.; Leung, L.R.; Wang, Y.; Zhao, L.; Zhou, X.; Lazhu; Chen, Y.; Jiang, Y.; et al. Characterizing Uncertainties in Ground “Truth” of Precipitation Over Complex Terrain Through High-Resolution Numerical Modeling. Geophys. Res. Lett. 2021, 48, e2020GL091950. [Google Scholar] [CrossRef]
- Shmilovitz, Y.; Morin, E.; Rinat, Y.; Haviv, I.; Carmi, G.; Mushkin, A.; Enzel, Y. Linking frequency of rainstorms, runoff generation and sediment transport across hyperarid talus-pediment slopes. Earth Surf. Process. Landf. 2020, 45, 1644–1659. [Google Scholar] [CrossRef]
- Dunkerley, D. Rain event properties in nature and in rainfall simulation experiments: A comparative review with recommendations for increasingly systematic study and reporting. Hydrol. Process. 2008, 22, 4415–4435. [Google Scholar] [CrossRef]
- Dunkerley, D. Intermittency of rainfall at sub-daily timescales: New quantitative indices based on the number, duration, and sequencing of interruptions to rainfall. Atmos. Res. 2021, 253, 105475. [Google Scholar] [CrossRef]
- Strangeways, I. A history of rain gauges. Weather 2010, 65, 133–138. [Google Scholar] [CrossRef]
- Middleton, W.E.K.; Spilhaus, A.F. Meteorological Instruments; University of Toronto Press: Toronto, ON, Canada, 1941. [Google Scholar] [CrossRef]
- Habib, E.; Lee, G.; Kim, D.; Ciach, G.J. Ground-based direct measurement. In Rainfall: State of the Science; Testik, F.Y., Gebremichael, M., Eds.; Geophysical Monographs; American Geophysical Union: Washington, DC, USA, 2010; Volume 191. [Google Scholar]
- Tapiador, F.J.; Villalba-Pradas, A.; Navarro, A.; García-Ortega, E.; Lim, K.-S.S.; Kim, K.; Ahn, K.D.; Lee, G. Future Directions in Precipitation Science. Remote Sens. 2021, 13, 1074. [Google Scholar] [CrossRef]
- Kurtyka, J.C.; Madow, L. Precipitation Measurements Study; Illinois University at Urbana-Chamapaign: Urbana, IL, USA, 1952. [Google Scholar]
- Sil, J.M. An Intensity Rain Gauge. J. Sci. Instrum. 1945, 22, 92. [Google Scholar] [CrossRef]
- Poissant, L.; Béron, P. Design and operation of an automatic sequential rainfall sampler. Water Res. 1992, 26, 547–551. [Google Scholar] [CrossRef]
- Scott, E.F. A rainfall intensity gauge. N. Z. Eng. 1961, 16, 103. [Google Scholar]
- Rossman, C.G.; Wardle, J.M. The Hudson Design-Jardi Type Recording Rain Intensity Gauge and Rainfall Totalizer. Bull. Am. Meteorol. Soc. 1949, 30, 97–103. [Google Scholar] [CrossRef]
- Srivastava, G.P. Surface Meteorological Instruments and Measurement Practices; Antlantic: New Delhi, India, 2009; p. 464. [Google Scholar]
- Cheng, T.T. Response of a Jardi rate-of-rainfall recorder. Tech. Note R. Obs. Hong Kong 1971, 13, 8. [Google Scholar]
- Chen, T.Y. Comparison of Jardi and Workman rate-of-rainfall gauges. Tech. Note R. Obs. Hong Kong 1974, 18, 8. [Google Scholar]
- Llasat, M.C.; Puigcerver, M. Total rainfall and convective rainfall in Catalonia, Spain. Int. J. Climatol. 1997, 17, 1683–1695. [Google Scholar] [CrossRef]
- Segovia-Cardozo, D.A.; Rodríguez-Sinobas, L.; Díez-Herrero, A.; Zubelzu, S.; Canales-Ide, F. Understanding the Mechanical Biases of Tipping-Bucket Rain Gauges: A Semi-Analytical Calibration Approach. Water 2021, 13, 2285. [Google Scholar] [CrossRef]
- Duchon, C.E.; Biddle, C.J. Undercatch of tipping-bucket gauges in high rain rate events. Adv. Geosci. 2010, 25, 11. [Google Scholar] [CrossRef]
- Shedekar, V.S.; King, K.W.; Fausey, N.R.; Soboyejo, A.B.O.; Harmel, R.D.; Brown, L.C. Assessment of measurement errors and dynamic calibration methods for three different tipping bucket rain gauges. Atmos. Res. 2016, 178–179, 445–458. [Google Scholar] [CrossRef]
- Sypka, P. Dynamic real-time volumetric correction for tipping-bucket rain gauges. Agric. For. Meteorol. 2019, 271, 158–167. [Google Scholar] [CrossRef]
- Liao, M.; Liao, A.; Liu, J.; Cai, Z.; Liu, H.; Ma, T. A novel method and system for the fast calibration of tipping bucket rain gauges. J. Hydrol. 2021, 597, 125782. [Google Scholar] [CrossRef]
- Choi, J.H.; Chang, K.-H.; Kim, K.-E.; Bang, K.S. Improvement of Rainfall Measurements by Using a Dual Tipping Bucket Rain Gauge. Asia-Pac. J. Atmos. Sci. 2022, 59, 271–280. [Google Scholar] [CrossRef]
- Lee, B.-Y. A study on the development of raingauge with 0.01 mm resolution. J. Environ. Sci. 2004, 13, 637–643. [Google Scholar]
- Kim, H.-C.; Lee, B.-Y. Measurement of rainfall intensity using a weighing tipping bucket raingauge. Korean J. Agric. For. Meteorol. 2004, 6, 211–217. [Google Scholar]
- Hu, Y.; Zhou, J.; Li, J.; Ma, J.; Hu, Y.; Lu, F.; He, X.; Wen, J.; Cheng, T. Tipping-bucket self-powered rain gauge based on triboelectric nanogenerators for rainfall measurement. Nano Energy 2022, 98, 107234. [Google Scholar] [CrossRef]
- Mink, J.W.; Forrest, E.P. A sensitive tipping-bucket rain gauge. Rev. Sci. Instrum. 2003, 45, 1268–1270. [Google Scholar] [CrossRef]
- Drabbe, J. The measurement and recording of rainfall intensities. Weather 1975, 30, 242–247. [Google Scholar] [CrossRef]
- Onacak, T.; Yurur, M.T. A New High Precision Pluviometer System. Instrum. Sci. Technol. 2007, 35, 551–561. [Google Scholar] [CrossRef]
- Tabada, M.T., Jr.; Loretero, M.E. Application of a low-cost water level circuit for an accurate pulse detection of a tipping-bucket rain gauge as an alternative method for reed switch sensors. Environ. Monit. Assess. 2019, 191, 294. [Google Scholar] [CrossRef]
- Williams, R.G.; Erdman, M.D. Low-cost computer interfaced rain gauge. Comput. Electron. Agric. 1987, 2, 67–73. [Google Scholar] [CrossRef]
- Costello, T.A.; Williams, H.J. Short duration rainfall intensity measured using calibrated time-of-tip data from a tipping bucket raingage. Agric. For. Meteorol. 1991, 57, 147–155. [Google Scholar] [CrossRef]
- Stagnaro, M.; Colli, M.; Lanza, L.G.; Chan, P.W. Performance of post-processing algorithms for rainfall intensity using measurements from tipping-bucket rain gauges. Atmos. Meas. Tech. 2016, 9, 5699–5706. [Google Scholar] [CrossRef]
- Wang, J.; Fisher, B.L.; Wolff, D.B. Estimating Rain Rates from Tipping-Bucket Rain Gauge Measurements. J. Atmos. Ocean. Technol. 2008, 25, 43–56. [Google Scholar] [CrossRef]
- Strangeways, I. William Henry Dines—A blue plaque commemoration. Weather 2018, 73, 394–396. [Google Scholar] [CrossRef]
- Serra, Y.L.; A’Hearn, P.; Freitag, H.P.; McPhaden, M.J. ATLAS Self-Siphoning Rain Gauge Error Estimates. J. Atmos. Ocean. Technol. 2001, 18, 1989–2002. [Google Scholar] [CrossRef]
- Nothmann, E. A New Recording Rain Gauge. Bull. Am. Meteorol. Soc. 1958, 39, 273–275. [Google Scholar] [CrossRef]
- Bibby, J.R. An instrument for recording the rate of rainfall or the wind velocity. Q. J. R. Meteorol. Soc. 1944, 70, 277–281. [Google Scholar] [CrossRef]
- Adkins, C.J. A rate-of-rainfall recorder. Q. J. R. Meteorol. Soc. 1959, 85, 419–420. [Google Scholar] [CrossRef]
- Norbury, J.R.; White, W.J. A rapid-response rain gauge. J. Phys. E Sci. Instrum. 1971, 4, 601. [Google Scholar] [CrossRef]
- Sharma, S.; Barbara, A.K.; Devi, M. High resolution fast response rain gauge. Indian J. Radio Space Phys. 1997, 26, 301–305. [Google Scholar]
- Hosking, J.G.; Stow, C.D.; Bradley, S.G.; Gray, W.R. An Improved High-Resolution Raingage. J. Atmos. Ocean. Technol. 1986, 3, 536–541. [Google Scholar] [CrossRef]
- Stow, C.D.; Dirks, K.N. High-resolution studies of rainfall on Norfolk Island: Part 1: The spatial variability of rainfall. J. Hydrol. 1998, 208, 163–186. [Google Scholar] [CrossRef]
- Stow, C.D.; Bradley, S.G.; Farrington, K.E.; Dirks, K.N.; Gray, W.R. A Rain Gauge for the Measurement of Finescale Temporal Variations. J. Atmos. Ocean. Technol. 1998, 15, 127–135. [Google Scholar] [CrossRef]
- Sansom, J.; Gray, W.R. The Optimization and Calibration of a Rain Intensity Gauge. J. Atmos. Ocean. Technol. 2002, 19, 3–20. [Google Scholar] [CrossRef]
- Stagnaro, M.; Cauteruccio, A.; Lanza, L.G.; Pak-Wai, C. On the Use of Dynamic Calibration to Correct Drop Counter Rain Gauge Measurements. Sensors 2021, 21, 6321. [Google Scholar] [CrossRef]
- Pickering, B.S.; Neely, R.R.; Jeffery, J.; Dufton, D.; Lukach, M. Evaluation of Multiple Precipitation Sensor Designs for Precipitation Rate and Depth, Drop Size and Velocity Distribution, and Precipitation Type. J. Hydrometeorol. 2021, 22, 703–720. [Google Scholar] [CrossRef]
- Sichoix, L.; Benoit, L. Remporary densification of a rain gauge network to gain knowledge about orographic rain enhancement on the Island of Tahitit-French Polynesia. In Proceedings of the AGU Fall Meeting 2021, New Orleans, LA, USA, 13–17 December 2021. [Google Scholar]
- Sarkar, S.K.; Prasad, M.V.S.N.; Dutta, H.N.; Rao, D.N.; Reddy, B.M. Rain Rate Measurements with 10 Seconds Integration Time for Microwave Attenuation Studies. IETE Tech. Rev. 1992, 9, 344–348. [Google Scholar] [CrossRef]
- Sheppard, B.E.; Joe, P.I. Performance of the Precipitation Occurrence Sensor System as a Precipitation Gauge. J. Atmos. Ocean. Technol. 2008, 25, 196–212. [Google Scholar] [CrossRef]
- Lu, J.; Yang, Z.; Wang, J. A membrane disdrometer based on membrane vibration. Meas. Sci. Technol. 2015, 26, 115103. [Google Scholar] [CrossRef]
- Madden, L.V.; Wilson, L.L.; Ntahimpera, N. Calibration and evaluation of an electronic sensor for rainfall kinetic energy. Phytopathology 1998, 88, 950–959. [Google Scholar] [CrossRef]
- Antonini, A.; Melani, S.; Mazza, A.; Baldini, L.; Adirosi, E.; Ortolani, A. Development and Calibration of a Low-Cost, Piezoelectric Rainfall Sensor through Machine Learning. Sensors 2022, 22, 6638. [Google Scholar] [CrossRef] [PubMed]
- Gunn, R.; Kinzer, G.D. The terminal velocity of fall for water droplets in stagnant air. J. Meteorol. 1949, 6, 243–248. [Google Scholar] [CrossRef]
- Montero-Martínez, G.; Kostinski, A.B.; Shaw, R.A.; García-García, F. Do all raindrops fall at terminal speed? Geophys. Res. Lett. 2009, 36, L11818. [Google Scholar] [CrossRef]
- Niu, S.; Jia, X.; Sang, J.; Liu, X.; Lu, C.; Liu, Y. Distributions of Raindrop Sizes and Fall Velocities in a Semiarid Plateau Climate: Convective versus Stratiform Rains. J. Appl. Meteorol. Climatol. 2010, 49, 632–645. [Google Scholar] [CrossRef]
- Bringi, V.; Thurai, M.; Baumgardner, D. Raindrop fall velocities from an optical array probe and 2-D video disdrometer. Atmos. Meas. Tech. 2018, 11, 1377–1384. [Google Scholar] [CrossRef]
- Chatterjee, C.; Porcù, F.; Das, S.; Bracci, A. An Investigation on Super- and Sub-Terminal Drops in Two Different Rain Categories and Climate Regimes. Remote Sens. 2022, 14, 2515. [Google Scholar] [CrossRef]
- Löffler-Mang, M.; Joss, J. An Optical Disdrometer for Measuring Size and Velocity of Hydrometeors. J. Atmos. Ocean. Technol. 2000, 17, 130–139. [Google Scholar] [CrossRef]
- Barthazy, E.; Göke, S.; Schefold, R.; Högl, D. An Optical Array Instrument for Shape and Fall Velocity Measurements of Hydrometeors. J. Atmos. Ocean. Technol. 2004, 21, 1400–1416. [Google Scholar] [CrossRef]
- Liu, X.C.; Gao, T.C.; Liu, L. A video precipitation sensor for imaging and velocimetry of hydrometeors. Atmos. Meas. Tech. 2014, 7, 2037. [Google Scholar] [CrossRef]
- Kaikkonen, V.A.; Mäkynen, A.J. A high sampling rate digital holographic imager instrument for the in situ measurements of hydrometeors. Opt. Rev. 2016, 23, 493–501. [Google Scholar] [CrossRef]
- Fehlmann, M.; Rohrer, M.; von Lerber, A.; Stoffel, M. Automated precipitation monitoring with the Thies disdrometer: Biases and ways for improvement. Atmos. Meas. Tech. 2020, 13, 4683–4698. [Google Scholar] [CrossRef]
- Salles, C.; Creutin, J.-D.; Sempere-Torres, D. The Optical Spectropluviometer Revisited. J. Atmos. Ocean. Technol. 1998, 15, 1215–1222. [Google Scholar] [CrossRef]
- Schuur, T.J.; Ryzhkov, A.V.; Zrnić, D.S.; Schönhuber, M. Drop Size Distributions Measured by a 2D Video Disdrometer: Comparison with Dual-Polarization Radar Data. J. Appl. Meteorol. 2001, 40, 1019–1034. [Google Scholar] [CrossRef]
- Dunkerley, D. Rainfall drop arrival rate at the ground: A potentially informative parameter in the experimental study of infiltration, soil erosion, and related land surface processes. CATENA 2021, 206, 105552. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Navarro, A.; Moreno, R.; Jiménez-Alcázar, A.; Marcos, C.; Tokay, A.; Durán, L.; Bodoque, J.M.; Martín, R.; Petersen, W.; et al. On the Optimal Measuring Area for Pointwise Rainfall Estimation: A Dedicated Experiment with 14 Laser Disdrometers. J. Hydrometeorol. 2017, 18, 753–760. [Google Scholar] [CrossRef]
- Feloni, E.; Kotsifakis, K.; Dervos, N.; Giavis, G.; Baltas, E. Analysis of Joss-Waldvogel disdrometer measurements in rainfall events. In Proceedings of the Fifth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2017), Paphos, Cyprus, 20–23 March 2017. [Google Scholar]
- Jaffrain, J.; Berne, A. Experimental Quantification of the Sampling Uncertainty Associated with Measurements from PARSIVEL Disdrometers. J. Hydrometeorol. 2011, 12, 352–370. [Google Scholar] [CrossRef]
- Friedrich, K.; Higgins, S.; Masters, F.J.; Lopez, C.R. Articulating and Stationary PARSIVEL Disdrometer Measurements in Conditions with Strong Winds and Heavy Rainfall. J. Atmos. Ocean. Technol. 2013, 30, 2063–2080. [Google Scholar] [CrossRef]
- Thurai, M.; Bringi, V.; Gatlin, P.N.; Petersen, W.A.; Wingo, M.T. Measurements and Modeling of the Full Rain Drop Size Distribution. Atmosphere 2019, 10, 39. [Google Scholar] [CrossRef]
- Lin, L.; Bao, X.; Zhang, S.; Zhao, B.; Xia, W. Correction to raindrop size distributions measured by PARSIVEL disdrometers in strong winds. Atmos. Res. 2021, 260, 105728. [Google Scholar] [CrossRef]
- Tokay, A.; Wolff, D.B.; Petersen, W.A. Evaluation of the New Version of the Laser-Optical Disdrometer, OTT Parsivel2. J. Atmos. Ocean. Technol. 2014, 31, 1276–1288. [Google Scholar] [CrossRef]
- Pang, S.; Graßl, H. High-Frequency Single-Board Doppler Minisodar for Precipitation Measurements. Part I: Rainfall and Hail. J. Atmos. Ocean. Technol. 2005, 22, 421–432. [Google Scholar] [CrossRef]
- Bezak, N.; Petan, S.; Mikoš, M. Spatial and Temporal Variability in Rainfall Erosivity Under Alpine Climate: A Slovenian Case Study Using Optical Disdrometer Data. Front. Environ. Sci. 2021, 9, 735492. [Google Scholar] [CrossRef]
- Capozzi, V.; Annella, C.; Montopoli, M.; Adirosi, E.; Fusco, G.; Budillon, G. Influence of Wind-Induced Effects on Laser Disdrometer Measurements: Analysis and Compensation Strategies. Remote Sens. 2021, 13, 3028. [Google Scholar] [CrossRef]
- Chinchella, E.; Cauteruccio, A.; Stagnaro, M.; Lanza, L.G. Investigation of the Wind-Induced Airflow Pattern Near the Thies LPM Precipitation Gauge. Sensors 2021, 21, 4880. [Google Scholar] [CrossRef]
- Islam, T.; Rico-Ramirez, M.A.; Han, D.; Srivastava, P.K. A Joss–Waldvogel disdrometer derived rainfall estimation study by collocated tipping bucket and rapid response rain gauges. Atmos. Sci. Lett. 2012, 13, 139–150. [Google Scholar] [CrossRef]
- Tokay, A.; Bashor, P.G.; Wolff, K.R. Error Characteristics of Rainfall Measurements by Collocated Joss–Waldvogel Disdrometers. J. Atmos. Ocean. Technol. 2005, 22, 513–527. [Google Scholar] [CrossRef]
- Chang, W.-Y.; Lee, G.; Jou, B.J.; Lee, W.-C.; Lin, P.-L.; Yu, C.-K. Uncertainty in Measured Raindrop Size Distributions from Four Types of Collocated Instruments. Remote Sens. 2020, 12, 1167. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Zhang, G.; Liu, S.; Chen, G. Impacts of Instrument Limitations on Estimated Raindrop Size Distribution, Radar Parameters, and Model Microphysics during Mei-Yu Season in East China. J. Atmos. Ocean. Technol. 2017, 34, 1021–1037. [Google Scholar] [CrossRef]
- Park, S.-G.; Kim, H.-L.; Ham, Y.-W.; Jung, S.-H. Comparative Evaluation of the OTT PARSIVEL2 Using a Collocated Two-Dimensional Video Disdrometer. J. Atmos. Ocean. Technol. 2017, 34, 2059–2082. [Google Scholar] [CrossRef]
- Annella, C.; Capozzi, V.; Fusco, G.; Budillon, G.; Montopoli, M. Error investigation of rain retrievals from disdrometer data using triple colocation. Atmos. Sci. Lett. 2022, 23, e1127. [Google Scholar] [CrossRef]
- Hanson Clayton, L.; Burgess Michael, D.; Windom James, D.; Hartzmann Ronald, J. New Weighing Mechanism for Precipitation Gauges. J. Hydrol. Eng. 2001, 6, 75–77. [Google Scholar] [CrossRef]
- Saha, R.; Testik, F.Y.; Testik, M.C. Assessment of OTT Pluvio2 Rain Intensity Measurements. J. Atmos. Ocean. Technol. 2021, 38, 897–908. [Google Scholar] [CrossRef]
- Bodtmann, W.F.; Ruthroff, C.L. The Measurement of 1 min Rain Rates from Weighing Raingage Recordings. J. Appl. Meteorol. 1976, 15, 1160–1166. [Google Scholar] [CrossRef]
- Knecht, V.; Caseri, M.; Lumpert, F.; Hotz, C.; Sigg, C. Detecting temperature induced spurious precipitation in a weighing rain gauge. Meteorol. Z. 2019, 28, 215–224. [Google Scholar] [CrossRef]
- Devine, K.A.; Mekis, É. Field accuracy of Canadian rain measurements. Atmos. Ocean 2008, 46, 213–227. [Google Scholar] [CrossRef]
- Nayak, A.; Chandler, D.G.; Marks, D.; McNamara, J.P.; Seyfried, M. Correction of electronic record for weighing bucket precipitation gauge measurements. Water Resour. Res. 2008, 44, W00D11. [Google Scholar] [CrossRef]
- Ross, A.; Smith, C.D.; Barr, A. An improved post-processing technique for automatic precipitation gauge time series. Atmos. Meas. Tech. 2020, 13, 2979–2994. [Google Scholar] [CrossRef]
- Schmid, G.; Kingan, M.J.; Panton, L.; Willmott, G.R.; Yang, Y.; Decraene, C.; Reynders, E.; Hall, A. On the measurement and prediction of rainfall noise. Appl. Acoust. 2021, 171, 107636. [Google Scholar] [CrossRef]
- Dubout, P. The sound of rain on a steel roof. J. Sound Vib. 1969, 10, 144–150. [Google Scholar] [CrossRef]
- Black, P.G.; Proni, J.R.; Wilkerson, J.C.; Samsury, C.E. Oceanic Rainfall Detection and Classification in Tropical and Subtropical Mesoscale Convective Systems Using Underwater Acoustic Methods. Mon. Weather Rev. 1997, 125, 2014–2042. [Google Scholar] [CrossRef]
- Ma, B.B.; Nystuen, J.A. Passive Acoustic Detection and Measurement of Rainfall at Sea. J. Atmos. Ocean. Technol. 2005, 22, 1225–1248. [Google Scholar] [CrossRef]
- Ma, B.B.; Nystuen, J.A. Detection of Rainfall Events Using Underwater Passive Aquatic Sensors and Air–Sea Temperature Changes in the Tropical Pacific Ocean. Mon. Weather Rev. 2007, 135, 3599–3612. [Google Scholar] [CrossRef]
- Nystuen, J.A. Acoustical Rainfall Analysis: Rainfall Drop Size Distribution Using the Underwater Sound Field. J. Atmos. Ocean. Technol. 1996, 13, 74–84. [Google Scholar] [CrossRef]
- Prokhorov, V.E.; Chashechkin, Y.D. Sound generation as a drop falls on a water surface. Acoust. Phys. 2011, 57, 807–818. [Google Scholar] [CrossRef]
- Trono, E.M.; Guico, M.L.; Libatique, N.J.C.; Tangonan, G.L.; Baluyot, D.N.B.; Cordero, T.K.R.; Geronimo, F.A.P.; Parrenas, A.P.F. Rainfall monitoring using acoustic sensors. In Proceedings of the TENCON 2012 IEEE Region 10 Conference, Cebu City, Philippines, 19–22 November 2012; pp. 1–6. [Google Scholar]
- Guico, M.L.; Abrajano, G.; Domer, P.A.; Talusan, J.P. Design and development of a novel acoustic rain sensor with automated telemetry. MATEC Web Conf. 2018, 201, 03003. [Google Scholar] [CrossRef]
- Avanzato, R.; Beritelli, F. An Innovative Acoustic Rain Gauge Based on Convolutional Neural Networks. Information 2020, 11, 183. [Google Scholar] [CrossRef]
- Dunkerley, D. Acquiring unbiased rainfall duration and intensity data from tipping-bucket rain gauges: A new approach using synchronised acoustic recordings. Atmos. Res. 2020, 244, 105055. [Google Scholar] [CrossRef]
- Winder, P.N.; Paulson, K.S. Direct and indirect measurement of rain drop size distributions using an acoustic water tank disdrometer. Meas. Sci. Technol. 2013, 24, 065801. [Google Scholar] [CrossRef]
- Gray, J.; Hage, K.D.; Mary, H.W. An automatic sequential rainfall sampler. Rev. Sci. Instrum. 1974, 45, 1517–1519. [Google Scholar] [CrossRef]
- Dunkerley, D. Rainfall intensity and intermittency over timescales of minutes: Measurement using low sampling-rate acoustic recording. Atmos. Res. 2023, 290, 106814. [Google Scholar] [CrossRef]
- Bradley, S.; Webb, T. Use of an Ultrasonic Sodar to Sense Raindrop Size Distributions. J. Atmos. Ocean. Technol. 2002, 19, 1203–1207. [Google Scholar] [CrossRef]
- Leeper, R.D.; Kochendorfer, J. Evaporation from weighing precipitation gauges: Impacts on automated gauge measurements and quality assurance methods. Atmos. Meas. Tech. 2015, 8, 2291. [Google Scholar] [CrossRef]
- Stow, C.D.; Bradley, S.G.; Paulson, K.; Couper, L. The Simultaneous Measurement of Rainfall Intensity, Drop-Size Distribution, and the Scattering of Visible Light. J. Appl. Meteorol. 1991, 30, 1422–1435. [Google Scholar] [CrossRef]
- Bradley, S.G.; Stow, C.D.; Lynch-Blosse, C.A. Measurements of Rainfall Properties Using Long Optical Path Imaging. J. Atmos. Ocean. Technol. 2000, 17, 761–772. [Google Scholar] [CrossRef]
- Allamano, P.; Croci, A.; Laio, F. Toward the camera rain gauge. Water Resour. Res. 2015, 51, 1744–1757. [Google Scholar] [CrossRef]
- Jiang, S.; Babovic, V.; Zheng, Y.; Xiong, J. Advancing Opportunistic Sensing in Hydrology: A Novel Approach to Measuring Rainfall With Ordinary Surveillance Cameras. Water Resour. Res. 2019, 55, 3004–3027. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Liu, X.; Zhu, L.; Glade, T.; Chen, M.; Zhao, W.; Xie, Y. A novel quality control model of rainfall estimation with videos—A survey based on multi-surveillance cameras. J. Hydrol. 2022, 605, 127312. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Liu, X.; Zhu, L.; Shi, S.; Glade, T.; Chen, M.; Xie, Y.; Wu, Y.; He, Y. Near-infrared surveillance video-based rain gauge. J. Hydrol. 2023, 618, 129173. [Google Scholar] [CrossRef]
- Dong, R.; Liao, J.; Li, B.; Zhou, H.; Crookes, D. Measurements of rainfall rates from videos. In Proceedings of the 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 14–16 October 2017; pp. 1–9. [Google Scholar]
- Battalino, T.E.; Vonnegut, B. Electric Rainfall Intensity Sensor. J. Appl. Meteorol. 1978, 17, 1225–1231. [Google Scholar] [CrossRef]
- Rasmussen, R.M.; Hallett, J.; Purcell, R.; Landolt, S.D.; Cole, J. The Hotplate Precipitation Gauge. J. Atmos. Ocean. Technol. 2011, 28, 148–164. [Google Scholar] [CrossRef]
- Cauteruccio, A.; Chinchella, E.; Stagnaro, M.; Lanza, L.G. Snow Particle Collection Efficiency and Adjustment Curves for the Hotplate Precipitation Gauge. J. Hydrometeorol. 2021, 22, 941–954. [Google Scholar] [CrossRef]
- Zelasko, N.; Wettlaufer, A.; Borkhuu, B.; Burkhart, M.; Campbell, L.S.; Steenburgh, W.J.; Snider, J.R. Hotplate precipitation gauge calibrations and field measurements. Atmos. Meas. Tech. 2018, 11, 441–458. [Google Scholar] [CrossRef]
- Raynor, G.S. The rotary rain indicator, an electrical precipitation time recorder. Bull. Am. Meteorol. Soc. 1955, 36, 27–30. [Google Scholar] [CrossRef]
- Kohfahl, C.; Saaltink, M.W. Comparing precision lysimeter rainfall measurements against rain gauges in a coastal dune belt, Spain. J. Hydrol. 2020, 591, 125580. [Google Scholar] [CrossRef]
- Haselow, L.; Meissner, R.; Rupp, H.; Miegel, K. Evaluation of precipitation measurements methods under field conditions during a summer season: A comparison of the standard rain gauge with a weighable lysimeter and a piezoelectric precipitation sensor. J. Hydrol. 2019, 575, 537–543. [Google Scholar] [CrossRef]
- Gebler, S.; Franssen, H.J.H.; Pütz, T.; Post, H.; Schmidt, M.; Vereecken, H. Actual evapotranspiration and precipitation measured by lysimeters: A comparison with eddy covariance and tipping bucket. Hydrol. Earth Syst. Sci. 2015, 19, 2145. [Google Scholar] [CrossRef]
- Sudmeyer, R.A.; Nulsen, R.A.; Scott, W.D. Measured dewfall and potential condensation on grazed pasture in the Collie River basin, southwestern Australia. J. Hydrol. 1994, 154, 255–269. [Google Scholar] [CrossRef]
- Morgan, D.L.; Lourence, F.J. Comparison Between Rain Gage and Lysimeter Measurements. Water Resour. Res. 1969, 5, 724–728. [Google Scholar] [CrossRef]
- Herbrich, M.; Gerke, H.H. Autocorrelation analysis of high resolution weighing lysimeter time series as a basis for determination of precipitation. J. Plant Nutr. Soil Sci. 2016, 179, 784–798. [Google Scholar] [CrossRef]
- Förster, J.; Gust, G.; Stolte, S. A Piezoelectrical Rain Gauge for Application on Buoys. J. Atmos. Ocean. Technol. 2004, 21, 179–193. [Google Scholar] [CrossRef]
- Henson, W.; Austin, G.; Oudenhoven, H. Development of an Inexpensive Raindrop Size Spectrometer. J. Atmos. Ocean. Technol. 2004, 21, 1710–1717. [Google Scholar] [CrossRef]
- Erbakanov, L.; Staneva, L.; Vardeva, I. Using a Long Time Constant Integrator in Rainfall Intensity Measuring via Acoustic Method. In Proceedings of the 2018 20th International Symposium on Electrical Apparatus and Technologies (SIELA), Bourgas, Bulgaria, 3–6 June 2018; pp. 1–4. [Google Scholar]
- Xu, Z.W.; Zheng, G.L. Implementation of a High-Precision Ultrasonic Rain Gauge. Appl. Mech. Mater. 2013, 300–301, 382–388. [Google Scholar] [CrossRef]
- Lan, R.-M.; Cao, Y.-Q. Design and realization of high precision FBG rain gauge based on triangle cantilever beam and its performance research. Optoelectron. Lett. 2015, 11, 229–232. [Google Scholar] [CrossRef]
- Semplak, R.A. Gauge for Continuously Measuring Rate of Rainfall. Rev. Sci. Instrum. 1966, 37, 1554–1558. [Google Scholar] [CrossRef]
- Fullerton, C.; Raymond, D.J. Rainfall Intensity Instruments and Measurements; Cloud Physics Laboratory, University of Hawaii: Honolulu, HI, USA, 1973; p. 32. [Google Scholar]
- Seibel, R.R. A Capacitor-Type Rain Gauge with dc Output and Improved Flow Characteristics. Rev. Sci. Instrum. 1972, 43, 1081–1085. [Google Scholar] [CrossRef]
- Zelinskiy, A.S.; Yakovlev, G.A.; Filt’trov, D.E. Relation of gamma dose rate with the intensity of rain showers. Vestn. KRAUNC Fiz. Mat. Nauki. 2021, 36, 189–199. [Google Scholar] [CrossRef]
- Yakovleva, V.; Yakovlev, G.; Parovik, R.; Zelinskiy, A.; Kobzev, A. Rainfall Intensity and Quantity Estimation Method Based on Gamma-Dose Rate Monitoring. Sensors 2021, 21, 6411. [Google Scholar] [CrossRef]
- Bottardi, C.; Albéri, M.; Baldoncini, M.; Chiarelli, E.; Montuschi, M.; Raptis, K.G.C.; Serafini, A.; Strati, V.; Mantovani, F. Rain rate and radon daughters’ activity. Atmos. Environ. 2020, 238, 117728. [Google Scholar] [CrossRef]
- Kirsch, B.; Clemens, M.; Ament, F. Stratiform and Convective Radar Reflectivity–Rain Rate Relationships and Their Potential to Improve Radar Rainfall Estimates. J. Appl. Meteorol. Climatol. 2019, 58, 2259–2271. [Google Scholar] [CrossRef]
- Wilson, J.W.; Brandes, E.A. Radar Measurement of Rainfall—A Summary. Bull. Am. Meteorol. Soc. 1979, 60, 1048–1060. [Google Scholar] [CrossRef]
- Atlas, D.; Ulbrich, C.W. Early Foundations of the Measurement of Rainfall by Radar. In Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference; Atlas, D., Ed.; American Meteorological Society: Boston, MA, USA, 1990; pp. 86–97. [Google Scholar] [CrossRef]
- Sauvageot, H. Rainfall measurement by radar: A review. Atmos. Res. 1994, 35, 27–54. [Google Scholar] [CrossRef]
- Krajewski, W.F.; Smith, J.A. Radar hydrology: Rainfall estimation. Adv. Water Resour. 2002, 25, 1387–1394. [Google Scholar] [CrossRef]
- Nanding, N.; Rico-Ramirez, M.A. Precipitation Measurement with Weather Radars. In ICT for Smart Water Systems: Measurements and Data Science; Scozzari, A., Mounce, S., Han, D., Soldovieri, F., Solomatine, D., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 235–258. [Google Scholar] [CrossRef]
- Borga, M.; Marra, F.; Gabella, M. Chapter 5—Rainfall estimation by weather radar. In Rainfall; Morbidelli, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 109–134. [Google Scholar] [CrossRef]
- Levizzani, V.; Kidd, C.; Kirschbaum, D.B.; Kummerow, C.D.; Nakamura, K.; Turk, F.J. Satellite Precipitation Measurement; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Vokoun, M.; Moravec, V. Measuring annual precipitation with a radar rain gauge in severe mountain conditions. VTEI 2022, 64, 39–45. [Google Scholar] [CrossRef]
- Prodi, F.; Caracciolo, C.; D’Adderio, L.P.; Gnuffi, M.; Lanzinger, E. Comparative investigation of Pludix disdrometer capability as Present Weather Sensor (PWS) during the Wasserkuppe campaign. Atmos. Res. 2011, 99, 162–173. [Google Scholar] [CrossRef]
- Mansheim, T.J.; Kruger, A.; Niemeier, J.; Brysiewicz, A.J.B. A Robust Microwave Rain Gauge. IEEE Trans. Instrum. Meas. 2010, 59, 2204–2210. [Google Scholar] [CrossRef]
- Krajewski, W.F.; Villarini, G.; Smith, J.A. RADAR-Rainfall Uncertainties: Where are We after Thirty Years of Effort? Bull. Am. Meteorol. Soc. 2010, 91, 87–94. [Google Scholar] [CrossRef]
- Pastorek, J.; Fencl, M.; Bareš, V. Uncertainties in discharge predictions based on microwave link rainfall estimates in a small urban catchment. J. Hydrol. 2023, 617, 129051. [Google Scholar] [CrossRef]
- Roversi, G.; Alberoni, P.P.; Fornasiero, A.; Porcù, F. Commercial microwave links as a tool for operational rainfall monitoring in Northern Italy. Atmos. Meas. Tech. 2020, 13, 5779–5797. [Google Scholar] [CrossRef]
- Lian, B.; Wei, Z.; Sun, X.; Li, Z.; Zhao, J. A Review on Rainfall Measurement Based on Commercial Microwave Links in Wireless Cellular Networks. Sensors 2022, 22, 4395. [Google Scholar] [CrossRef]
- Nebuloni, R.; Cazzaniga, G.; D’Amico, M.; Deidda, C.; De Michele, C. Comparison of CML Rainfall Data against Rain Gauges and Disdrometers in a Mountainous Environment. Sensors 2022, 22, 3218. [Google Scholar] [CrossRef]
- Giannetti, F.; Reggiannini, R.; Moretti, M.; Adirosi, E.; Baldini, L.; Facheris, L.; Antonini, A.; Melani, S.; Bacci, G.; Petrolino, A.; et al. Real-Time Rain Rate Evaluation via Satellite Downlink Signal Attenuation Measurement. Sensors 2017, 17, 1864. [Google Scholar] [CrossRef]
- Giannetti, F.; Reggiannini, R. Opportunistic Rain Rate Estimation from Measurements of Satellite Downlink Attenuation: A Survey. Sensors 2021, 21, 5872. [Google Scholar] [CrossRef]
- Kumah, K.K.; Hoedjes, J.C.B.; Noam, D.; Maathuis, B.H.P.; Gao, H.O.; Su, B.Z. The MSG Technique: Improving Commercial Microwave Link Rainfall Intensity by Using Rain Area Detection from Meteosat Second Generation. Remote Sens. 2021, 13, 3274. [Google Scholar] [CrossRef]
- Pudashine, J.; Guyot, A.; Overeem, A.; Pauwels, V.R.N.; Seed, A.; Uijlenhoet, R.; Prakash, M.; Walker, J.P. Rainfall retrieval using commercial microwave links: Effect of sampling strategy on retrieval accuracy. J. Hydrol. 2021, 603, 126909. [Google Scholar] [CrossRef]
- Zheng, X.; Messer, H.; Wang, Q.; Xu, T.; Qin, Y.; Yang, T. On the potential of commercial microwave link networks for high spatial resolution rainfall monitoring in urban areas. Atmos. Res. 2022, 277, 106289. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, K.; Zou, M.; Pu, K.; Song, K. Rainfall Monitoring Using a Microwave Links Network: A Long-Term Experiment in East China. Adv. Atmos. Sci. 2023, 40, 1567–1583. [Google Scholar] [CrossRef]
- Dean, T. The seismic signature of rain. GEOPHYSICS 2017, 82, P53–P60. [Google Scholar] [CrossRef]
- Bakker, M.; Legout, C.; Gimbert, F.; Nord, G.; Boudevillain, B.; Freche, G. Seismic modelling and observations of rainfall. J. Hydrol. 2022, 610, 127812. [Google Scholar] [CrossRef]
- Diaz, J.; Ruiz, M.; Udina, M.; Polls, F.; Martí, D.; Bech, J. Monitoring storm evolution using a high-density seismic network. Sci. Rep. Nat. Publ. Group 2023, 13, 1853. [Google Scholar] [CrossRef]
- Grimaldi, S.; Petroselli, A.; Baldini, L.; Gorgucci, E. Description and preliminary results of a 100 square meter rain gauge. J. Hydrol. 2018, 556, 827–834. [Google Scholar] [CrossRef]
- Haberlandt, U.; Sester, M. Areal rainfall estimation using moving cars as rain gauges—A modelling study. Hydrol. Earth Syst. Sci. 2010, 14, 1139. [Google Scholar] [CrossRef]
- Calafate, C.T.; Cicenia, K.; Alvear, O.; Cano, J.C.; Manzoni, P. Estimating rainfall intensity by using vehicles as sensors. In Proceedings of the 2017 Wireless Days, Porto, Portugal, 29–31 March 2017; pp. 21–26. [Google Scholar]
- Rabiei, E.; Haberlandt, U.; Sester, M.; Fitzner, D. Rainfall estimation using moving cars as rain gauges. Hydrol. Earth Syst. Sci. 2013, 17, 4701. [Google Scholar] [CrossRef]
- Kim, B.-S.; Kim, Y.-G.; Lee, S.-H. Development of Rainfall Information Production Technology Using the Optical Signal of Windshield Rain Sensors. Int. Inf. Inst. Tokyo Inf. 2017, 20, 4521–4533. [Google Scholar]
- Gaucherel, C.; Grimaldi, V. The Pluviophone: Measuring Rainfall by Its Sound. J. Vib. Acoust. 2015, 137, 034504. [Google Scholar] [CrossRef]
- Guo, H.; Huang, H.; Sun, Y.E.; Zhang, Y.; Chen, S.; Huang, L. Chaac: Real-Time and Fine-Grained Rain Detection and Measurement Using Smartphones. IEEE Internet Things J. 2019, 6, 997–1009. [Google Scholar] [CrossRef]
- Mapiam, P.P.; Monton, M.; Bogaard, T.; Schoups, G.; Marie-Claire, T.V. Citizen rain gauges improve hourly radar rainfall bias correction using a two-step Kalman filter. Hydrol. Earth Syst. Sci. 2022, 26, 775–794. [Google Scholar] [CrossRef]
- Chai, H.; Liu, S.; Yang, X.; Wan, X.; Chen, S.; Zhang, J.; Wu, Y.; Zheng, L.; Zhao, Q. Development of Capacitive Rain Gauge for Marine Environment. J. Sens. 2021, 2021, 6639668. [Google Scholar] [CrossRef]
- Lu, Z.; Sun, L.; Zhou, Y. A Method for Rainfall Detection and Rainfall Intensity Level Retrieval from X-Band Marine Radar Images. Appl. Sci. 2021, 11, 1565. [Google Scholar] [CrossRef]
- Camuffo, D.; Becherini, F.; della Valle, A. How the rain-gauge threshold affects the precipitation frequency and amount. Clim. Chang. 2022, 170, 7. [Google Scholar] [CrossRef]
- Woo, M.-K.; Steer, P. Measurement of Trace Rainfall at a High Arctic Site. Arctic 1979, 32, 80–84. [Google Scholar] [CrossRef]
- Stewart, R.D.; Hut, R.; Rupp, D.E.; Gupta, H.; Selker, J.S. A resonating rainfall and evaporation recorder. Water Resour. Res. 2012, 48, W08601. [Google Scholar] [CrossRef]
- Dunkerley, D. The importance of incorporating rain intensity profiles in rainfall simulation studies of infiltration, runoff production, soil erosion, and related landsurface processes. J. Hydrol. 2021, 603, 126834. [Google Scholar] [CrossRef]
- Camuffo, D.; della Valle, A.; Becherini, F. A critical analysis of one standard and five methods to monitor surface wetness and time-of-wetness. Theor. Appl. Climatol. 2018, 132, 1143–1151. [Google Scholar] [CrossRef]
- Kirchengast, G.; Kabas, T.; Leuprecht, A.; Bichler, C.; Truhetz, H. WegenerNet: A Pioneering High-Resolution Network for Monitoring Weather and Climate. Bull. Am. Meteorol. Soc. 2014, 95, 227–242. [Google Scholar] [CrossRef]
- Overeem, A.; Leijnse, H.; Uijlenhoet, R. Country-wide rainfall maps from cellular communication networks. Proc. Natl. Acad. Sci. USA 2013, 110, 2741. [Google Scholar] [CrossRef]
- Dai, Q.; Yang, Q.; Han, D.; Rico-Ramirez, M.A.; Zhang, S. Adjustment of Radar-Gauge Rainfall Discrepancy Due to Raindrop Drift and Evaporation Using the Weather Research and Forecasting Model and Dual-Polarization Radar. Water Resour. Res. 2019, 55, 9211–9233. [Google Scholar] [CrossRef]
- Freeny, A.E.; Gabbe, J.D. A statistical description of intense rainfall. Bell Syst. Tech. J. 1969, 48, 1789–1851. [Google Scholar] [CrossRef]
- Maier, R.; Krebs, G.; Pichler, M.; Muschalla, D.; Gruber, G. Spatial Rainfall Variability in Urban Environments—High-Density Precipitation Measurements on a City-Scale. Water 2020, 12, 1157. [Google Scholar] [CrossRef]
- Yoon, S.-S.; Lee, B. Effects of Using High-Density Rain Gauge Networks and Weather Radar Data on Urban Hydrological Analyses. Water 2017, 9, 931. [Google Scholar] [CrossRef]
- Villarini, G.; Mandapaka, P.V.; Krajewski, W.F.; Moore, R.J. Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res. Atmos. 2008, 113, 1–12. [Google Scholar] [CrossRef]
- Sucozhañay, A.; Célleri, R. Impact of Rain Gauges Distribution on the Runoff Simulation of a Small Mountain Catchment in Southern Ecuador. Water 2018, 10, 1169. [Google Scholar] [CrossRef]
- Sivapalan, M.; Blöschl, G. The Growth of Hydrological Understanding: Technologies, Ideas, and Societal Needs Shape the Field. Water Resour. Res. 2017, 53, 8137–8146. [Google Scholar] [CrossRef]
- Niu, G.; Yang, P.; Zheng, Y.; Cai, X.; Qin, H. Automatic Quality Control of Crowdsourced Rainfall Data with Multiple Noises: A Machine Learning Approach. Water Resour. Res. 2021, 57, e2020WR029121. [Google Scholar] [CrossRef]
- Graf, M.; El Hachem, A.; Eisele, M.; Seidel, J.; Chwala, C.; Kunstmann, H.; Bárdossy, A. Rainfall estimates from opportunistic sensors in Germany across spatio-temporal scales. J. Hydrol. Reg. Stud. 2021, 37, 100883. [Google Scholar] [CrossRef]
- Bartos, M.; Park, H.; Zhou, T.; Kerkez, B.; Vasudevan, R. Windshield wipers on connected vehicles produce high-accuracy rainfall maps. Sci. Rep. 2019, 9, 170. [Google Scholar] [CrossRef]
- Yin, H.; Zheng, F.; Duan, H.-F.; Savic, D.; Kapelan, Z. Estimating Rainfall Intensity Using an Image-Based Deep Learning Model. Engineering 2023, 21, 162–174. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dunkerley, D. Recording Rainfall Intensity: Has an Optimum Method Been Found? Water 2023, 15, 3383. https://doi.org/10.3390/w15193383
Dunkerley D. Recording Rainfall Intensity: Has an Optimum Method Been Found? Water. 2023; 15(19):3383. https://doi.org/10.3390/w15193383
Chicago/Turabian StyleDunkerley, David. 2023. "Recording Rainfall Intensity: Has an Optimum Method Been Found?" Water 15, no. 19: 3383. https://doi.org/10.3390/w15193383
APA StyleDunkerley, D. (2023). Recording Rainfall Intensity: Has an Optimum Method Been Found? Water, 15(19), 3383. https://doi.org/10.3390/w15193383