Source Discrimination of Mine Water by Applying the Multilayer Perceptron Neural Network (MLP) Method—A Case Study in the Pingdingshan Coalfield
Abstract
:1. Introduction
2. Study Area
2.1. Outline of the Coalfield
2.2. Hydrogeological Background
3. Multilayer Perceptron Neural Network and Data
3.1. Artificial Neural Network (ANN)
3.2. The Architecture of a Multilayer Perceptron Neural Network (MLP)
3.3. Data
3.4. Hydrochemical Analysis
4. Results and Discussion
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, C.; An, Y.; Zheng, L.; Huang, W. Water source discrimination in a multiaquifer mine using a comprehensive stepwise discriminant method. Mine Water Environ. 2021, 40, 442–455. [Google Scholar] [CrossRef]
- Zuo, R.; Xiong, Y.; Wang, J.; Carranza, E.J.M. Deep learning and its application in geochemical mapping. Earth-Sci. Rev. 2019, 192, 1–14. [Google Scholar] [CrossRef]
- Shah, S.A.; Jehanzaib, M.; Lee, J.-H.; Kim, T.-W. Exploring the factors affecting streamflow conditions in the Han River Basin from a regional perspective. KSCE J. Civ. Eng. 2021, 25, 4931–4941. [Google Scholar] [CrossRef]
- Shah, S.A.; Lakho, G.M.; Keerio, H.A.; Sattar, M.N.; Hussain, G.; Mehdi, M.; Vistro, R.B.; Mahmoud, E.A.; Elansary, H.O. Application of drone surveillance for advance agriculture monitoring by Android application using convolution neural network. Agronomy 2023, 13, 1764. [Google Scholar] [CrossRef]
- Wu, Q.; Mu, W.; Xing, Y.; Qian, C.; Shen, J.; Wang, Y.; Zhao, D. Source discrimination of mine water inrush using multiple methods: A case study from the Beiyangzhuang Mine, Northern China. Bull. Eng. Geol. Environ. 2017, 78, 469–482. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y. Hinton Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.Q.; Li, S.C.; Li, L.P.; Shi, S.S.; Xu, Z.H. An optimal classification method for risk assessment of water inrush in karst tunnels based on gray system theory. Geomech. Eng. 2015, 8, 631–647. [Google Scholar] [CrossRef]
- Barral, N.; Husillos, R.; Castillo, E.; Cánovas, M.; Lam, E. Hydrochemical evolution of the Reocín Mine filling water (Spain). Environ. Geochem. Health 2021, 43, 5119–5134. [Google Scholar] [CrossRef]
- Barral, N.; Husillos, R.; Castillo, E.; Cánovas, M.; Lam, E.J.; Calvo, L. Volumetric quantification and quality of water stored in a mining lake: A case study at Reocín mine (Spain). Minerals 2021, 11, 212. [Google Scholar] [CrossRef]
- Barral, N.; Maleki, M.; Madani, N.; Cánovas, M.; Husillos, R.; Castillo, E. Spatio-temporal geostatistical modelling of sulphate concentration in the area of the Reocín Mine (Spain) as an indicator of water quality. Environ. Sci. Pollut. Res. 2021, 29, 86077–86091. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Xu, Y.S.; Shen, S.L. Mining-induced geo-hazards with environmental protection measures in Yunnan, China: An overview. Bull. Eng. Geol. Environ. 2015, 74, 141–150. [Google Scholar] [CrossRef]
- Yin, S.; Zhang, J.; Liu, D. A study of mine water inrushes by measurements of in situ stress and rock failures. Nat. Hazards 2016, 79, 1961–1979. [Google Scholar] [CrossRef]
- Juncosa, R.; Delgado, J.; Cereijo, J.L.; Muñoz, A. Analysis of the reduction processes at the bottom of Lake Meirama: A singular case of lake formation. Environ. Monit. Assess. 2023, 195, 1004. [Google Scholar] [CrossRef] [PubMed]
- Juncosa, R.; Delgado, J.; Cereijo, J.L.; García, D.; Muñoz, A. Comparative hydrochemical analysis of the formation of the mining lakes of As Pontes and Meirama (Spain). Environ. Monit. Assess. 2018, 190, 526. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Wang, L.; Ma, L.; Lu, Y.; Zhao, W.; Zhang, Y. Multivariate statistical analysis of water chemistry in evaluating groundwater geochemical evolution and aquifer connectivity near a large coal mine, Anhui, China. Environ. Earth Sci. 2016, 75, 747. [Google Scholar] [CrossRef]
- Ma, D.; Miao, X.; Bai, H.; Huang, J.; Pu, H.; Wu, Y.; Zhang, G.; Li, J. Effect of mining on shear sidewall groundwater inrush hazard caused by seepage instability of the penetrated karst collapse pillar. Nat. Hazards 2016, 82, 73–93. [Google Scholar] [CrossRef]
- Gu, H.; Ma, F.; Guo, J.; Li, K.; Lu, R. Assessment of water sources and mixing of groundwater in a coastal mine:the Sanshandao gold mine, China. Mine Water Environ. 2017, 37, 351–365. [Google Scholar] [CrossRef]
- Richards, B.A.; Lillicrap, T.P.; Beaudoin, P.; Bengio, Y.; Bogacz, R.; Christensen, A.; Clopath, C.; Costa, R.P.; de Berker, A.; Ganguli, S.; et al. A deep learning framework for neuroscience. Nat. Neurosci. 2019, 22, 1761–1770. [Google Scholar] [CrossRef]
- Dauphin, Y.N.; Pascanu, R.; Gulcehre, C.; Cho, K.; Ganguli, S.; Bengio, Y. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. Adv. Neural Inf. Process. Syst. 2014, 2, 2933–2941. [Google Scholar]
- Tompson, J.; Goroshin, R.; Jain, A.; LeCun, Y.; Bregler, C. Efficient Object Localization Using Convolutional Networks. In Proceedings of the 2015 Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 648–656. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 1990, 5, 99–115. [Google Scholar] [CrossRef]
- Huang, P.; Wang, X. Piper-PCA-Fisher recognition model of water inrush source:A case study of the Jiaozuo mining area. Geofluids 2018, 2018, 9205025. [Google Scholar] [CrossRef]
- Miah, M.I.; Zendehboudi, S.; Ahmed, S. Log data-driven model and feature ranking for water saturation prediction using machine learning approach. J. Pet. Sci. Eng. 2020, 194, 107291. [Google Scholar] [CrossRef]
- Jiang, C.; Zhu, S.; Hu, H.; An, S.; Su, W.; Chen, X.; Li, C.; Zheng, L. Deep learning model based on big data for water source discrimination in an underground multiaquifer coal mine. Bull. Eng. Geol. Environ. 2021, 81, 26. [Google Scholar] [CrossRef]
- Ji, Y.; Dong, D.L.; Gao, J.; Wei, Z.L.; Ding, J.; Hu, Z.Q. Source discrimination of mine water inrush based on spectral data and EGA–PNN model: A case study of Huangyuchuan mine. Mine Water Environ. 2022, 41, 583–593. [Google Scholar] [CrossRef]
- Zendehboudi, S.; Rezaei, N.; Lohi, A. Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review. Appl. Energy 2018, 228, 2539–2566. [Google Scholar] [CrossRef]
- Yang, Y.; Yue, J.; Li, J.; Yang, Z. Mine water inrush sources online discrimination model using fluorescence spectrum and CNN. IEEE Access 2018, 6, 47828–47835. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, L.; Wang, M.; Liu, T. Hydrochemical analysis and discrimination of mine water source of the Jiaojia gold mine area, China. Environ. Earth Sci. 2020, 79, 123. [Google Scholar] [CrossRef]
- Yan, B.; Ren, F.; Cai, M.; Qiao, C. Bayesian model based on Markov chain Monte Carlo for identifying mine water sources in Submarine Gold Mining. J. Clean. Prod. 2020, 253, 120008. [Google Scholar] [CrossRef]
- Zheng, Q.S.; Wang, C.F.; Liu, W.T.; Pang, L.F. Evaluation on development height of water-conduted fractures on overburden roof based on nonlinear algorithm. Water 2022, 14, 3853. [Google Scholar] [CrossRef]
- Li, G.; Wang, Z.; Ma, F.; Guo, J.; Liu, J.; Song, Y. A case study on deformation failure characteristics of overlying strata and critical mining upper limit in submarine mining. Water 2022, 14, 2465. [Google Scholar] [CrossRef]
- Duan, X.L.; Ma, F.S.; Gu, H.Y.; Guo, J.; Zhao, H.J.; Liu, G.W.; Liu, S.Q. Identification of mine water sources based on the spatial and chemical characteristics of Bedrock Brines: A case study of the Xinli gold mine. Mine Water Environ. 2022, 41, 126–142. [Google Scholar] [CrossRef]
- Yang, Z.; Lv, H.; Wang, X.; Yan, H.; Xu, Z. Classification of Water Source in Coal Mine Based on PCA-GA-ET. Water 2023, 15, 1945. [Google Scholar] [CrossRef]
- Qiu, M.; Shi, L.; Teng, C.; Zhou, Y. Assessment of water inrush risk using the fuzzy delphi analytic hierarchy process and grey relational analysis in the Liangzhuang coal mine, China. Mine Water Environ. 2017, 36, 39–50. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, Y.J.; Xu, Z.M.; Xu, G. Application of the comprehensive identifcation model in analyzing the source of water inrush. Arab. J. Geosci. 2018, 11, 189. [Google Scholar] [CrossRef]
- Yang, W.F.; Shen, D.Y.; Ji, Y.B.; Wang, Y. Discrimination of Mine Water Bursting Source Based on Fuzzy System. Appl. Mech. Mater. 2012, 13, 873. [Google Scholar] [CrossRef]
- Yang, B.; Yuan, J.; Duan, L. Development of a system to assess vulnerability of flooding from water in karst aquifers induced by mining. Environ. Earth Sci. 2018, 77, 91. [Google Scholar] [CrossRef]
Number | Parameter | Value |
---|---|---|
1 | Type of model | Sequential model |
2 | The number of neurons in the input layer | 6 |
3 | The number of hidden layers and neurons | 3.5 |
4 | The number of neurons in the output layer | 5 |
5 | Activation function of the hidden layer | ReLU |
7 | Activation function of the output layer | Softmax |
8 | Epoch | 200 |
9 | Learning rate | 0.01 |
10 | Optimizer function | Adam |
11 | Batch size | 10 |
12 | Dropout rate | 0.5 |
13 | Error limitation | 1 × 10−4 |
14 | Momentum coefficient | η = 0.8 |
PH | TDS | Na+ + K+ | Ca2+ | Mg2+ | Cl− | |||
---|---|---|---|---|---|---|---|---|
Surface water | ||||||||
Average value | 7.60 | 257.47 | 46.36 | 79.94 | 15.41 | 30.67 | 112.98 | 242.98 |
Standard deviation | 0.23 | 121.44 | 44.15 | 35.22 | 7.48 | 26.31 | 92.67 | 91.05 |
Coefficient of variation | 0.03 | 0.47 | 0.95 | 0.44 | 0.49 | 0.86 | 0.82 | 0.37 |
Quaternary pore water | ||||||||
Average value | 7.44 | 477.54 | 28.61 | 154.22 | 22.54 | 53.77 | 172.58 | 339.98 |
Standard deviation | 0.28 | 246.22 | 26.64 | 75.19 | 16.86 | 41.17 | 145.09 | 128.02 |
Coefficient of variation | 0.04 | 0.52 | 0.93 | 0.49 | 0.75 | 0.77 | 0.84 | 0.38 |
Permian sandstone water | ||||||||
Average value | 7.98 | 208.04 | 365.73 | 48.87 | 21.69 | 51.22 | 177.54 | 718.75 |
Standard deviation | 0.58 | 338.16 | 315.92 | 79.17 | 38.58 | 32.79 | 297.86 | 593.50 |
Coefficient of variation | 0.07 | 1.63 | 0.86 | 1.62 | 1.78 | 0.64 | 1.68 | 0.83 |
Carboniferous limestone karst water | ||||||||
Average value | 7.49 | 275.33 | 120.58 | 78.44 | 23.09 | 49.87 | 117.17 | 414.10 |
Standard deviation | 0.39 | 153.40 | 147.22 | 45.18 | 15.35 | 32.28 | 111.63 | 217.18 |
Coefficient of variation | 0.05 | 0.56 | 1.22 | 0.58 | 0.66 | 0.65 | 0.95 | 0.52 |
Cambrian limestone karst water | ||||||||
Average value | 7.32 | 311.75 | 114.47 | 86.17 | 27.53 | 64.01 | 158.24 | 370.90 |
Standard deviation | 0.58 | 229.74 | 110.33 | 81.43 | 15.09 | 42.60 | 178.25 | 140.06 |
Coefficient of variation | 0.08 | 0.74 | 0.96 | 0.95 | 0.55 | 0.67 | 1.13 | 0.38 |
Natural Number | One-Hot Encoding |
---|---|
0 | 0,0,0,0,1 |
1 | 0,0,0,1,0 |
2 | 0,0,1,0,0 |
3 | 0,1,0,0,0 |
4 | 1,0,0,0,0 |
Sample | Probability of Surface Water (I) | Probability of Pore Water of Quaternary (II) | Probability of Sandstone Water of Permian (III) | Probability of Karst Water of Carboniferous Limestone (IV) | Probability of Karst Water of Cambrian Limestone (V) | Predicted by MLP | Predicted by BP | Real Source of Mine Water |
---|---|---|---|---|---|---|---|---|
NO.1 | 0% (0%) | 0% (0%) | 0% (0%) | 1% (99%) | 99% (1%) | V | IV | V |
NO.2 | 0% (0%) | 0.5% (0.05%) | 99% (99.8%) | 0.5% (0.05%) | 0% (0.1%) | III | III | III |
NO.3 | 0% (0%) | 0% (0%) | 0.5% (63%) | 99% (36%) | 0.5% (1%) | IV | III | IV |
NO.4 | 0% (0.6%) | 0% (1.09%) | 99% (57.7%) | 0.7% (0%) | 0.3% (40.61%) | III | III | III |
NO.5 | 0% (1.53%) | 0% (3.3%) | 99% (89.1%) | 0.7% (0.03%) | 0.3% (6.04%) | III | III | III |
NO.6 | 0% (0.185%) | 0.8% (4.45%) | 99% (46.12%) | 0.2% (0%) | 0% (49.245%) | III | V | III |
NO.7 | 0% (4.22%) | 0% (1.38%) | 0% (62.3%) | 95.8% (0.23%) | 4.2% (19.45%) | IV | III | IV |
NO.8 | 84.7% (0%) | 5.8% (0%) | 2.34% (44.76%) | 1.15% (54.68%) | 5.96% (0.56%) | I | IV | I |
NO.9 | 0% (0%) | 0.5% (0%) | 99% (34.12%) | 0% (65.81%) | 0.5% (0.07%) | III | IV | IV |
NO.10 | 0.03% (0.14%) | 52.43% (3.16%) | 41.39% (84.58%) | 5.89% (0%) | 0.26% (1.21%) | II | III | II |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhang, J.; Wang, X.; Zhang, B.; Yang, Z. Source Discrimination of Mine Water by Applying the Multilayer Perceptron Neural Network (MLP) Method—A Case Study in the Pingdingshan Coalfield. Water 2023, 15, 3398. https://doi.org/10.3390/w15193398
Wang M, Zhang J, Wang X, Zhang B, Yang Z. Source Discrimination of Mine Water by Applying the Multilayer Perceptron Neural Network (MLP) Method—A Case Study in the Pingdingshan Coalfield. Water. 2023; 15(19):3398. https://doi.org/10.3390/w15193398
Chicago/Turabian StyleWang, Man, Jianguo Zhang, Xinyi Wang, Bo Zhang, and Zhenwei Yang. 2023. "Source Discrimination of Mine Water by Applying the Multilayer Perceptron Neural Network (MLP) Method—A Case Study in the Pingdingshan Coalfield" Water 15, no. 19: 3398. https://doi.org/10.3390/w15193398
APA StyleWang, M., Zhang, J., Wang, X., Zhang, B., & Yang, Z. (2023). Source Discrimination of Mine Water by Applying the Multilayer Perceptron Neural Network (MLP) Method—A Case Study in the Pingdingshan Coalfield. Water, 15(19), 3398. https://doi.org/10.3390/w15193398