Wastewater-Based Epidemiology of SARS-CoV-2 and Other Respiratory Viruses: Bibliometric Tracking of the Last Decade and Emerging Research Directions
Abstract
:1. Introduction
- (1)
- How has the research on WBE in the context of SARS-CoV-2 and respiratory viruses evolved over time in terms of scale?
- (2)
- What are the primary research themes emerging from scientific publications related to WBE and respiratory viruses?
- (3)
- What research gaps exist, and what are the potential future research directions for WBE in the post-COVID-19 pandemic era?
2. Methodology
2.1. Data Acquisition and Search Strategies
2.2. Study Design and Data Analysis
3. Results and Discussion
3.1. Type and Distribution of Articles
3.2. Bibliometric Tracking of the Research Trends by Keywords
3.3. Global Contributions to WBE Research on Respiratory Viruses
3.4. Document Co-Citation Analysis
3.5. Institutional and Author-Level Contributions
3.6. Impact of Articles and Journals
4. Research Gaps and Future Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wade, M.J.; Lo Jacomo, A.; Armenise, E.; Brown, M.R.; Bunce, J.T.; Cameron, G.J.; Fang, Z.; Farkas, K.; Gilpin, D.F.; Graham, D.W.; et al. Understanding and managing uncertainty and variability for wastewater monitoring beyond the pandemic: Lessons learned from the United Kingdom national COVID-19 surveillance programmes. J. Hazard. Mater. 2022, 424, 127456. [Google Scholar] [CrossRef]
- Polo, D.; Quintela-Baluja, M.; Corbishley, A.; Jones, D.L.; Singer, A.C.; Graham, D.W.; Romalde, J.L. Making waves: Wastewater-based epidemiology for COVID-19–approaches and challenges for surveillance and prediction. Water Res. 2020, 186, 116404. [Google Scholar] [CrossRef] [PubMed]
- Ling-Hu, T.; Rios-Guzman, E.; Lorenzo-Redondo, R.; Ozer, E.A.; Hultquist, J.F. Challenges and Opportunities for Global Genomic Surveillance Strategies in the COVID-19 Era. Viruses 2022, 14, 2532. [Google Scholar] [CrossRef] [PubMed]
- Langone, M.; Petta, L.; Cellamare, C.M.; Ferraris, M.; Guzzinati, R.; Mattioli, D.; Sabia, G. SARS-CoV-2 in water services: Presence and impacts. Environ. Pollut. 2021, 268, 115806. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Oishi, W.; Maruo, C.; Saito, M.; Chen, R.; Kitajima, M.; Sano, D. Early warning of COVID-19 via wastewater-based epidemiology: Potential and bottlenecks. Sci. Total Environ. 2021, 767, 145124. [Google Scholar] [CrossRef] [PubMed]
- Sims, N.; Kasprzyk-Hordern, B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ. Int. 2020, 139, 105689. [Google Scholar] [CrossRef]
- Waseem, H.; Williams, M.R.; Stedtfeld, T.; Chai, B.; Stedtfeld, R.D.; Cole, J.R.; Tiedje, J.M.; Hashsham, S.A. Virulence factor activity relationships (VFARs): A bioinformatics perspective. Environ. Sci. Process. Impacts 2017, 19, 247–260. [Google Scholar] [CrossRef]
- Jakariya, M.; Ahmed, F.; Islam, M.A.; Al Marzan, A.; Hasan, M.N.; Hossain, M.; Ahmed, T.; Hossain, A.; Reza, H.M.; Hossen, F.; et al. Wastewater-based epidemiological surveillance to monitor the prevalence of SARS-CoV-2 in developing countries with onsite sanitation facilities. Environ. Pollut. 2022, 311, 119679. [Google Scholar] [CrossRef]
- Taneja, N.; Sharma, M. Antimicrobial resistance in the environment: The Indian scenario. Indian J. Med. Res. 2019, 149, 119–128. [Google Scholar] [CrossRef]
- Rector, A.; Bloemen, M.; Thijssen, M.; Delang, L.; Raymenants, J.; Thibaut, J.; Pussig, B.; Fondu, L.; Aertgeerts, B.; Van Ranst, M.; et al. Monitoring of SARS-CoV-2 concentration and circulation of variants of concern in wastewater of Leuven, Belgium. J. Med. Virol. 2023, 95, e28587. [Google Scholar] [CrossRef]
- Mousazadeh, M.; Ashoori, R.; Paital, B.; Kabdaslı, I.; Frontistis, Z.; Hashemi, M.; Sandoval, M.A.; Sherchan, S.; Das, K.; Emamjomeh, M.M. Wastewater based epidemiology perspective as a faster protocol for detecting coronavirus rna in human populations: A review with specific reference to SARS-CoV-2 virus. Pathogens 2021, 10, 1008. [Google Scholar] [CrossRef] [PubMed]
- Bloemen, M.; Delang, L.; Rector, A.; Raymenants, J.; Thibaut, J.; Pussig, B.; Fondu, L.; Aertgeerts, B.; Ranst, M.V.; Van Geet, C.; et al. Detection of SARS-COV-2 Variants of Concern in Wastewater of Leuven, Belgium. medRxiv 2022, 2022.05.12.22274823. Available online: https://www.medrxiv.org/content/10.1101/2022.05.12.22274823v1 (accessed on 19 July 2023).
- Rallapalli, S.; Aggarwal, S.; Singh, A.P. Detecting SARS-CoV-2 RNA prone clusters in a municipal wastewater network using fuzzy-Bayesian optimization model to facilitate wastewater-based epidemiology. Sci. Total Environ. 2021, 778, 146294. [Google Scholar] [CrossRef]
- Maryam, S.; Ul Haq, I.; Yahya, G.; Ul Haq, M.; Algammal, A.M.; Saber, S.; Cavalu, S. COVID-19 surveillance in wastewater: An epidemiological tool for the monitoring of SARS-CoV-2. Front. Cell. Infect. Microbiol. 2023, 12, 978643. [Google Scholar] [CrossRef] [PubMed]
- Alafeef, M.; Dighe, K.; Moitra, P.; Pan, D. Monitoring the Viral Transmission of SARS-CoV-2 in Still Waterbodies Using a Lanthanide-Doped Carbon Nanoparticle-Based Sensor Array. ACS Sustain. Chem. Eng. 2022, 10, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Stehling-Ariza, T.; Wilkinson, A.L.; Diop, O.M.; Jorba, J.; Asghar, H.; Avagnan, T.; Grabovac, V.; Johnson, T.; Joshi, S.; Kfutwah, A.K.W.; et al. Surveillance To Track Progress Toward Poliomyelitis Eradication—Worldwide, 2021–2022. Morb. Mortal. Wkly. Rep. 2023, 72, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Corpuz, M.V.A.; Buonerba, A.; Vigliotta, G.; Zarra, T.; Ballesteros, F.; Campiglia, P.; Belgiorno, V.; Korshin, G.; Naddeo, V. Viruses in wastewater: Occurrence, abundance and detection methods. Sci. Total Environ. 2020, 745, 140910. [Google Scholar] [CrossRef]
- Fontenele, R.S.; Kraberger, S.; Hadfield, J.; Driver, E.M.; Bowes, D.; Holland, L.A.; Faleye, T.O.C.; Adhikari, S.; Kumar, R.; Inchausti, R.; et al. High-throughput sequencing of SARS-CoV-2 in wastewater provides insights into circulating variants. Water Res. 2021, 205, 117710. [Google Scholar] [CrossRef]
- Pritchard, A. Statistical bibliography or bibliometrics? J. Doc. 1969, 25, 348–349. [Google Scholar]
- Ding, M.; Zeng, H. A bibliometric analysis of research progress in sulfate-rich wastewater pollution control technology. Ecotoxicol. Environ. Saf. 2022, 238, 113626. [Google Scholar] [CrossRef]
- Durán-Sánchez, A.; Álvarez-García, J.; González-Vázquez, E.; Del Río-Rama, M.D.L.C. Wastewater management: Bibliometric analysis of scientific literature. Water 2020, 12, 2963. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, M.; Zhuang, D. Wastewater treatment and emerging contaminants: Bibliometric analysis. Chemosphere 2022, 297, 133932. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, M.; Huang, Z.; Huang, Y.; Wu, C.; Pan, X. Mapping the intersection of nanotechnology and SARS-CoV-2/COVID-19: A bibliometric analysis. Infect. Med. 2022, 1, 103–112. [Google Scholar] [CrossRef]
- Ejaz, H.; Zeeshan, H.M.; Ahmad, F.; Bukhari, S.N.A.; Anwar, N.; Alanazi, A.; Sadiq, A.; Junaid, K.; Atif, M.; Abosalif, K.O.A.; et al. Bibliometric Analysis of Publications on the Omicron Variant from 2020 to 2022 in the Scopus Database Using R and VOSviewer. Int. J. Environ. Res. Public Health 2022, 19, 12407. [Google Scholar] [CrossRef]
- Bankar, R.S.; Lihitkar, S.R. Science Mapping and Visualization Tools Used for Bibliometric and Scientometric Studies: A Comparative Study. J. Adv. Libr. Sci. 2019, 6, 382–394. [Google Scholar]
- Elshaboury, N.; Al-Sakkaf, A.; Abdelkader, E.M.; Alfalah, G. Construction and Demolition Waste Management Research: A Science Mapping Analysis. Int. J. Environ. Res. Public Health 2022, 19, 4496. [Google Scholar] [CrossRef] [PubMed]
- Hrudey, S.E.; Silva, D.S.; Shelley, J.; Pons, W.; Isaac-Renton, J.; Chik, A.H.S.; Conant, B. Ethics Guidance for Environmental Scientists Engaged in Surveillance of Wastewater for SARS-CoV-2. Environ. Sci. Technol. 2021, 55, 8484–8491. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Lara, R.W.; Heijnen, L.; Munnink, B.B.O.; Schapendonk, C.M.E.; Elsinga, G.; Langeveld, J.; Post, J.; Prasad, D.K.; Carrizosa, C.; Been, F.; et al. Rise and fall of SARS-CoV-2 variants in Rotterdam: Comparison of wastewater and clinical surveillance. Sci. Total Environ. 2023, 873, 162209. [Google Scholar] [CrossRef]
- Cervantes-Avilés, P.; Moreno-Andrade, I.; Carrillo-Reyes, J. Approaches applied to detect SARS-CoV-2 in wastewater and perspectives post-COVID-19. J. Water Process Eng. 2021, 40, 101947. [Google Scholar] [CrossRef] [PubMed]
- Daughton, C.G. Wastewater surveillance for population-wide COVID-19: The present and future. Sci. Total Environ. 2020, 736, 139631. [Google Scholar] [CrossRef] [PubMed]
- Foladori, P.; Cutrupi, F.; Segata, N.; Manara, S.; Pinto, F.; Malpei, F.; Bruni, L.; La Rosa, G. SARS-CoV-2 from faeces to wastewater treatment: What do we know? A review. Sci. Total Environ. 2020, 743, 140444. [Google Scholar] [CrossRef] [PubMed]
- Kevill, J.L.; Pellett, C.; Farkas, K.; Brown, M.R.; Bassano, I.; Denise, H.; McDonald, J.E.; Malham, S.K.; Porter, J.; Warren, J.; et al. A comparison of precipitation and filtration-based SARS-CoV-2 recovery methods and the influence of temperature, turbidity, and surfactant load in urban wastewater. Sci. Total Environ. 2022, 808, 151916. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Shi, J.; Luby, S.P.; Jiang, G. Uncertainties in estimating SARS-CoV-2 prevalence by wastewater-based epidemiology. Chem. Eng. J. 2021, 415, 129039. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of science (Wos) and scopus: The titans of bibliographic information in today’s academic world. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Bonanno Ferraro, G.; Mancini, P.; Veneri, C.; Iaconelli, M.; Suffredini, E.; Brandtner, D.; La Rosa, G. Evidence of Saffold virus circulation in Italy provided through environmental surveillance. Lett. Appl. Microbiol. 2020, 70, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Boogaerts, T.; Jacobs, L.; De Roeck, N.; Van den Bogaert, S.; Aertgeerts, B.; Lahousse, L.; van Nuijs, A.L.N.; Delputte, P. An alternative approach for bioanalytical assay optimization for wastewater-based epidemiology of SARS-CoV-2. Sci. Total Environ. 2021, 789, 148043. [Google Scholar] [CrossRef] [PubMed]
- Hinkle, A.; Greenwald, H.D.; Metzger, M.; Thornton, M.; Kennedy, L.C.; Loomis, K.; Herrera, M.; Abayan, R.-J.; Nelson, K.L.; Kantor, R.S. Comparison of RT-qPCR and Digital PCR Methods for Wastewater-Based Testing of SARS-CoV-2. medRxiv 2022, medRxiv:2022.06.15.22276459. Available online: https://www.medrxiv.org/content/10.1101/2022.06.15.22276459v1 (accessed on 19 July 2023).
- Keenum, I.; Liguori, K.; Calarco, J.; Davis, B.C.; Milligan, E.; Harwood, V.J.; Pruden, A. A framework for standardized qPCR-targets and protocols for quantifying antibiotic resistance in surface water, recycled water and wastewater. Crit. Rev. Environ. Sci. Technol. 2022, 52, 4395–4419. [Google Scholar] [CrossRef]
- Van Poelvoorde, L.A.E.; Picalausa, C.; Gobbo, A.; Verhaegen, B.; Lesenfants, M.; Herman, P.; Van Hoorde, K.; Roosens, N.H.C. Development of a Droplet Digital PCR to Monitor SARS-CoV-2 Omicron Variant BA. 2 in Wastewater Samples. Microorganisms 2023, 11, 729. [Google Scholar] [CrossRef]
- La Rosa, G.; Mancini, P.; Bonanno Ferraro, G.; Veneri, C.; Iaconelli, M.; Lucentini, L.; Bonadonna, L.; Brusaferro, S.; Brandtner, D.; Fasanella, A.; et al. Rapid screening for SARS-CoV-2 variants of concern in clinical and environmental samples using nested RT-PCR assays targeting key mutations of the spike protein. Water Res. 2021, 197, 117104. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.; Sharma, J.R.; Ramharack, P.; Mangwana, N.; Kinnear, C.; Viraragavan, A.; Glanzmann, B.; Louw, J.; Abdelatif, N.; Reddy, T.; et al. Tracking the circulating SARS-CoV-2 variant of concern in South Africa using wastewater-based epidemiology. Sci. Rep. 2022, 12, 1182. [Google Scholar] [CrossRef] [PubMed]
- Barbé, L.; Schaeffer, J.; Besnard, A.; Jousse, S.; Wurtzer, S.; Moulin, L.; Le Guyader, F.S.; Desdouits, M. SARS-CoV-2 Whole-Genome Sequencing Using Oxford Nanopore Technology for Variant Monitoring in Wastewaters. Front. Microbiol. 2022, 13, 889811. [Google Scholar] [CrossRef]
- Otero, M.C.B.; Murao, L.A.E.; Limen, M.A.G.; Gaite, P.L.A.; Bacus, M.G.; Acaso, J.T.; Corazo, K.; Knot, I.E.; Sajonia, H.; de los Reyes, F.L.; et al. Wastewater-Based Epidemiology and Whole-Genome Sequencing for Community-Level Surveillance of SARS-CoV-2 in Selected Urban Communities of Davao City, Philippines: A Pilot Study. medRxiv 2021, 2021.08.27.21262450. Available online: https://www.medrxiv.org/content/10.1101/2021.08.27.21262450v1 (accessed on 20 July 2023).
- Goncalves Cabecinhas, A.R.; Roloff, T.; Stange, M.; Bertelli, C.; Huber, M.; Ramette, A.; Chen, C.; Nadeau, S.; Gerth, Y.; Yerly, S.; et al. SARS-CoV-2 n501y introductions and transmissions in switzerland from beginning of october 2020 to february 2021—Implementation of swiss-wide diagnostic screening and whole genome sequencing. Microorganisms 2021, 9, 677. [Google Scholar] [CrossRef]
- Ali, J.; Elahi, S.N.; Ali, A.; Waseem, H.; Abid, R.; Mohamed, M.M. Unveiling the potential role of nanozymes in combating the COVID-19 outbreak. Nanomaterials 2021, 11, 1328. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.; Adhikari, S.; Zhang, S.; Solomon, T.B.; Lipponen, A.; Islam, M.A.; Thakali, O.; Sangkham, S.; Shaheen, M.N.F.; Jiang, G.; et al. Tracing COVID-19 Trails in Wastewater: A Systematic Review of SARS-CoV-2 Surveillance with Viral Variants. Water 2023, 15, 1018. [Google Scholar] [CrossRef]
- Jiang, W.; Ji, W.; Zhang, Y.; Xie, Y.; Chen, S.; Jin, Y.; Duan, G. An Update on Detection Technologies for SARS-CoV-2 Variants of Concern. Viruses 2022, 14, 2324. [Google Scholar] [CrossRef]
- Xu, X.; Deng, Y.; Ding, J.; Zheng, X.; Li, S.; Liu, L.; Chui, H.K.; Poon, L.L.M.; Zhang, T. Real-time allelic assays of SARS-CoV-2 variants to enhance sewage surveillance. Water Res. 2022, 220, 118686. [Google Scholar] [CrossRef]
- Rasmussen, L.D.; Richter, S.R.; Midgley, S.E.; Franck, K.T. Detecting SARS-CoV-2 Omicron B.1.1.529 Variant in Wastewater Samples by Using Nanopore Sequencing. Emerg. Infect. Dis. 2022, 28, 1296–1298. [Google Scholar] [CrossRef]
- Othman, I.; Helmi, A.; Slama, I.; Hamdi, R.; Mastouri, M.; Aouni, M. Evaluation of three viral concentration methods for detection and quantification of SARS-CoV-2 in wastewater. J. Water Health 2023, 21, 354–360. [Google Scholar] [CrossRef]
- Salvo, M.; Moller, A.; Alvareda, E.; Gamazo, P.; Colina, R.; Victoria, M. Evaluation of low-cost viral concentration methods in wastewaters: Implications for SARS-CoV-2 pandemic surveillances. J. Virol. Methods 2021, 297, 114249. [Google Scholar] [CrossRef]
- Barril, P.A.; Pianciola, L.A.; Mazzeo, M.; Ousset, M.J.; Jaureguiberry, M.V.; Alessandrello, M.; Sanchez, G.; Oteiza, J.M. Evaluation of viral concentration methods for SARS-CoV-2 recovery from wastewaters. Sci. Total Environ. 2021, 756, 144105. [Google Scholar] [CrossRef]
- Pellegrinelli, L.; Castiglioni, S.; Cocuzza, C.E.; Bertasi, B.; Primache, V.; Schiarea, S.; Salmoiraghi, G.; Franzetti, A.; Musumeci, R.; Tilola, M.; et al. Evaluation of Pre-Analytical and Analytical Methods for Detecting SARS-CoV-2 in Municipal Wastewater Samples in Northern Italy. Water 2022, 14, 833. [Google Scholar] [CrossRef]
- Rothman, J.A.; Loveless, T.B.; Kapcia, J.; Adams, E.D.; Steele, J.A.; Zimmer-Faust, A.G.; Langlois, K.; Wanless, D.; Griffith, M.; Mao, L.; et al. RNA viromics of Southern California wastewater and detection of SARS-CoV-2 single-nucleotide variants. Appl. Environ. Microbiol. 2021, 87, e01448-21. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.R.F.; Garcia, S.C.; Bruni, A.d.C.; Machado, F.S.; de Oliveira, R.X.; Dropa, M.; da Costa, A.C.; Leal, E.; Brandão, C.J.; da Silva, R.L.O.; et al. One-year surveillance of SARS-CoV-2 in wastewater from vulnerable urban communities in metropolitan São Paulo, Brazil. J. Water Health 2022, 20, 471–490. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zheng, X.; Xu, X.; Chui, H.K.; Lai, W.K.; Li, S.; Tun, H.M.; Poon, L.L.M.; Ding, J.; Peiris, M.; et al. Use of Sewage Surveillance for COVID-19: A Large-Scale Evidence-Based Program in Hong Kong. Environ. Health Perspect. 2022, 130, 57008. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Bayati, M.; Hsu, S.-Y.; Hsieh, H.-Y.; Lindsi, W.; Belenchia, A.; Zemmer, S.A.; Klutts, J.; Samuelson, M.; Reynolds, M.; et al. Population Normalization in SARS-CoV-2 Wastewater-Based Epidemiology: Implications from Statewide Wastewater Monitoring in Missouri. medRxiv 2022, 2022.09.08.22279459. Available online: https://www.medrxiv.org/content/10.1101/2022.09.08.22279459v1.full (accessed on 19 July 2023).
- Hsu, S.Y.; Bayati, M.; Li, C.; Hsieh, H.Y.; Belenchia, A.; Klutts, J.; Zemmer, S.A.; Reynolds, M.; Semkiw, E.; Johnson, H.Y.; et al. Biomarkers selection for population normalization in SARS-CoV-2 wastewater-based epidemiology. Water Res. 2022, 223, 118985. [Google Scholar] [CrossRef] [PubMed]
- Maal-Bared, R.; Qiu, Y.; Li, Q.; Gao, T.; Hrudey, S.E.; Bhavanam, S.; Ruecker, N.J.; Ellehoj, E.; Lee, B.E.; Pang, X. Does normalization of SARS-CoV-2 concentrations by Pepper Mild Mottle Virus improve correlations and lead time between wastewater surveillance and clinical data in Alberta (Canada): Comparing twelve SARS-CoV-2 normalization approaches. Sci. Total Environ. 2023, 856, 158964. [Google Scholar] [CrossRef]
- Isaksson, F.; Lundy, L.; Hedström, A.; Székely, A.J.; Mohamed, N. Evaluating the Use of Alternative Normalization Approaches on SARS-CoV-2 Concentrations in Wastewater: Experiences from Two Catchments in Northern Sweden. Environments 2022, 9, 39. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Wastewater Surveillance Data Reporting and Analytics. Available online: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/wastewater-surveillance/data-reporting-analytics.html (accessed on 15 July 2023).
- Hayes, E.K.; Gouthro, M.T.; LeBlanc, J.J.; Gagnon, G.A. Simultaneous detection of SARS-CoV-2, influenza A, respiratory syncytial virus, and measles in wastewater by multiplex RT-qPCR. Sci. Total Environ. 2023, 889, 164261. [Google Scholar] [CrossRef] [PubMed]
- Ando, H.; Ahmed, W.; Iwamoto, R.; Ando, Y.; Okabe, S.; Kitajima, M. Impact of the COVID-19 pandemic on the prevalence of influenza A and respiratory syncytial viruses elucidated by wastewater-based epidemiology. Sci. Total Environ. 2023, 880, 162694. [Google Scholar] [CrossRef]
- Mercier, E.; D’Aoust, P.M.; Thakali, O.; Hegazy, N.; Jia, J.J.; Zhang, Z.; Eid, W.; Plaza-Diaz, J.; Kabir, M.P.; Fang, W.; et al. Municipal and neighbourhood level wastewater surveillance and subtyping of an influenza virus outbreak. Sci. Rep. 2022, 12, 15777. [Google Scholar] [CrossRef] [PubMed]
- Haak, L.; Delic, B.; Li, L.; Guarin, T.; Mazurowski, L.; Dastjerdi, N.G.; Dewan, A.; Pagilla, K. Spatial and temporal variability and data bias in wastewater surveillance of SARS-CoV-2 in a sewer system. Sci. Total Environ. 2022, 805, 150390. [Google Scholar] [CrossRef] [PubMed]
- Strike, W.; Amirsoleimani, A.; Olaleye, A.; Noble, A.; Lewis, K.; Faulkner, L.; Backus, S.; Lindeman, S.; Eterovich, K.; Fraley, M.; et al. Development and Validation of a Simplified Method for Analysis of SARS-CoV-2 RNA in University Dormitories. ACS ES T Water 2022, 2, 1984–1991. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, S.F.; Rossi, G.; Low, A.S.; McAteer, S.P.; O’Keefe, B.; Findlay, D.; Cameron, G.J.; Pollard, P.; Singleton, P.T.R.; Ponton, G.; et al. Site Specific Relationships between COVID-19 Cases and SARS-CoV-2 Viral Load in Wastewater Treatment Plant Influent. Environ. Sci. Technol. 2021, 55, 15276–15286. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Li, L.; Haak, L.; Payen, S.H.; Carine, M.; Adhikari, K.; Uppal, T.; Hartley, P.D.; Vasquez-Gross, H.; Petereit, J.; et al. Significance of wastewater surveillance in detecting the prevalence of SARS-CoV-2 variants and other respiratory viruses in the community—A multi-site evaluation. One Health 2023, 16, 100536. [Google Scholar] [CrossRef]
- Clark, J.R.; Terwilliger, A.; Avadhanula, V.; Tisza, M.; Cormier, J.; Javornik-Cregeen, S.; Ross, M.C.; Hoffman, K.L.; Troisi, C.; Hanson, B.; et al. Wastewater pandemic preparedness: Toward an end-to-end pathogen monitoring program. Front. Public Health 2023, 11, 1137881. [Google Scholar] [CrossRef]
- McClary-Gutierrez, J.S.; Aanderud, Z.T.; Al-Faliti, M.; Duvallet, C.; Gonzalez, R.; Guzman, J.; Holm, R.H.; Jahne, M.A.; Kantor, R.S.; Katsivelis, P.; et al. Standardizing data reporting in the research community to enhance the utility of open data for SARS-CoV-2 wastewater surveillance. Environ. Sci. Water Res. Technol. 2021, 7, 1545–1551. [Google Scholar] [CrossRef]
- Bar-Or, I.; Weil, M.; Indenbaum, V.; Bucris, E.; Bar-Ilan, D.; Elul, M.; Levi, N.; Aguvaev, I.; Cohen, Z.; Shirazi, R.; et al. Detection of SARS-CoV-2 variants by genomic analysis of wastewater samples in Israel. Sci. Total Environ. 2021, 789, 148002. [Google Scholar] [CrossRef]
- Report of the Advisory Panel on the Federal Research Support System. Available online: https://ised-isde.canada.ca/site/panel-federal-research-support/en/report-advisory-panel-federal-research-support-system (accessed on 27 July 2023).
- Science Business. Available online: https://sciencebusiness.net/news/international-news/security-crackdown-canadian-government-hampering-research-collaboratio (accessed on 15 July 2023).
- Sojobi, A.O.; Zayed, T. Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. Environ. Res. 2022, 203, 111609. [Google Scholar] [CrossRef] [PubMed]
- Castro, G.B.; Bernegossi, A.C.; Sousa, B.J.d.O.; De Lima E Silva, M.R.; Silva, F.R.D.; Freitas, B.L.S.; Ogura, A.P.; Corbi, J.J. Global occurrence of SARS-CoV-2 in environmental aquatic matrices and its implications for sanitation and vulnerabilities in Brazil and developing countries. Int. J. Environ. Health Res. 2022, 32, 2160–2199. [Google Scholar] [CrossRef] [PubMed]
- Abdeldayem, O.M.; Dabbish, A.M.; Habashy, M.M.; Mostafa, M.K.; Elhefnawy, M.; Amin, L.; Al-Sakkari, E.G.; Ragab, A.; Rene, E.R. Viral outbreaks detection and surveillance using wastewater-based epidemiology, viral air sampling, and machine learning techniques: A comprehensive review and outlook. Sci. Total Environ. 2022, 803, 149834. [Google Scholar] [CrossRef] [PubMed]
- Buonerba, A.; Corpuz, M.V.A.; Ballesteros, F.; Choo, K.H.; Hasan, S.W.; Korshin, G.V.; Belgiorno, V.; Barceló, D.; Naddeo, V. Coronavirus in water media: Analysis, fate, disinfection and epidemiological applications. J. Hazard. Mater. 2021, 415, 125580. [Google Scholar] [CrossRef] [PubMed]
- Robins, K.; Leonard, A.F.C.; Farkas, K.; Graham, D.W.; Jones, D.L.; Kasprzyk-Hordern, B.; Bunce, J.T.; Grimsley, J.M.S.; Wade, M.J.; Zealand, A.M.; et al. Research needs for optimising wastewater-based epidemiology monitoring for public health protection. J. Water Health 2022, 20, 1284–1313. [Google Scholar] [CrossRef]
- Bhalla, N.; Pan, Y.; Yang, Z.; Payam, A.F. Opportunities and Challenges for Biosensors and Nanoscale Analytical Tools for Pandemics: COVID-19. ACS Nano 2020, 14, 7783–7807. [Google Scholar] [CrossRef]
- Nourinejad, M.; Berman, O.; Larson, R.C. Placing sensors in sewer networks: A system to pinpoint new cases of coronavirus. PLoS ONE 2021, 16, e0248893. [Google Scholar] [CrossRef]
- Mingers, J.; Yang, L. Evaluating journal quality: A review of journal citation indicators and ranking in business and management. Eur. J. Oper. Res. 2017, 257, 323–337. [Google Scholar] [CrossRef]
- Abid, R.; Shahzad, M.K.; Sulaman, S.M.; Faheem, M.; Naeem, M.; Khan, R.; Khalil, A.A.K.; Haider, A.; Ahmad, B.; Gul, R.; et al. Therapeutic significance of nano- and biosensor technology in combating SARS-CoV-2: A review. Appl. Nanosci. 2022, 12, 3127–3140. [Google Scholar] [CrossRef]
- Hamouda, M.; Mustafa, F.; Maraqa, M.; Rizvi, T.; Aly Hassan, A. Wastewater surveillance for SARS-CoV-2: Lessons learnt from recent studies to define future applications. Sci. Total Environ. 2021, 759, 143493. [Google Scholar] [CrossRef]
- Michael-Kordatou, I.; Karaolia, P.; Fatta-Kassinos, D. Sewage analysis as a tool for the COVID-19 pandemic response and management: The urgent need for optimised protocols for SARS-CoV-2 detection and quantification. J. Environ. Chem. Eng. 2020, 8, 104306. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Bivins, A.; Bertsch, P.M.; Bibby, K.; Choi, P.M.; Farkas, K.; Gyawali, P.; Hamilton, K.A.; Haramoto, E.; Kitajima, M.; et al. Surveillance of SARS-CoV-2 RNA in wastewater: Methods optimization and quality control are crucial for generating reliable public health information. Curr. Opin. Environ. Sci. Health 2020, 17, 82–93. [Google Scholar] [CrossRef] [PubMed]
Sr. No. | Items | Results |
---|---|---|
1 | Search String | ((((((TS = (Monitoring of SARS-CoV-2 and respiratory viruses in wastewater))) OR TS = ((Surveillance of SARS-CoV-2 and respiratory viruses in wastewater))) OR TS = ((Wastewater surveillance of respiratory viruses))) OR TS = ((Wastewater based epidemiology of SARS-CoV-2)))) OR TS = ((((Wastewater based epidemiology of COVID-19)))) OR TS = ((Wastewater surveillance for COVID-19)) OR TS = ((SARS-CoV-2 surveillance in wastewater)) |
2 | Query Link | https://www.webofscience.com/wos/woscc/summary/842163db-8860-4094-a5b6-c5e15dbc5da1-96169533/relevance/1 |
3 | Database | Web of Science |
4 | Initial number of publications retrieved | 916 |
5 | Search date | 6 July 2023 |
6 | Inclusion criteria | Only English material, data limited to 2014–2023 |
7 | Final number of publications retained for analysis | 904 |
Ranks | Institutes | Country | Documents | Citations | Citation per Publication |
---|---|---|---|---|---|
1 | Hokkaido University | Japan | 32 | 2884 | 90.1 |
2 | University of Notre Dame | Australia | 29 | 3022 | 104.2 |
3 | CSIRO Land and Water Institute | Australia | 26 | 2657 | 102.1 |
4 | Stanford University | United States | 22 | 610 | 27.7 |
5 | University of Yamanashi | Japan | 21 | 1732 | 82.47 |
6 | Arizona State University | United States | 20 | 901 | 45.05 |
7 | Bangor University | United Kingdom | 20 | 784 | 39.2 |
8 | The University of Queensland | Australia | 20 | 1829 | 91.45 |
9 | MIT | United States | 19 | 625 | 32.89 |
10 | Nanyang Technological University | Singapore | 19 | 585 | 30.78 |
Rank | Authors | Total Documents | Total Citations | Citation per Publication |
---|---|---|---|---|
1 | Ahmed, Warish | 32 | 2633 | 82.2 |
2 | Kitajima, Masaaki | 29 | 2844 | 98 |
3 | Bivins, Aaron | 28 | 2317 | 82.7 |
4 | Bibby, Kyle | 21 | 2600 | 123.8 |
5 | Kumar, Manish | 20 | 615 | 30.7 |
6 | Simpson, Stuart l. | 19 | 1826 | 96.1 |
7 | Haramoto, Eiji | 18 | 1433 | 79.6 |
8 | Farkas, Kata | 14 | 573 | 40.9 |
9 | Jiang, Guangming | 14 | 323 | 23.0 |
10 | Joehm, Alexandria b. | 13 | 327 | 25.1 |
Rank | Authors | Article Title | Journal | Citation |
---|---|---|---|---|
1 | Sojobi et al., 2022 [75] | Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review | Environmental Research | 479 |
2 | Castro et al., 2022 [76] | Global occurrence of SARS-CoV-2 in environmental aquatic matrices and its implications for sanitation and vulnerabilities in Brazil and developing countries | International Journal of Environmental Health Research | 354 |
3 | Robins et al., 2022 [79] | Research needs for optimising wastewater-based epidemiology monitoring for public health protection | Journal of Water and Health | 324 |
4 | Abdeldayem et al., 2022 [77] | Viral outbreaks detection and surveillance using wastewater-based epidemiology, viral air sampling, and machine learning techniques: A comprehensive review and outlook | Science of the Total Environment | 310 |
5 | Donia et al., 2021 [82] | COVID-19 Crisis Creates Opportunity towards Global Monitoring & Surveillance | Pathogens | 305 |
6 | Bhalla et al., 2020 [80] | Opportunities and Challenges for Biosensors and Nanoscale Analytical Tools for Pandemics: COVID-19 | Acs Nano | 305 |
7 | Buonerba et al., 2021 [78] | Coronavirus in water media: Analysis, fate, disinfection and epidemiological applications | Journal of Hazardous Materials | 245 |
8 | Maryam et al., 2023 [14] | COVID-19 surveillance in wastewater: An epidemiological tool for the monitoring of SARS-CoV-2 | Frontiers In Cellular and Infection Microbiology | 242 |
9 | Corpuz et al., 2020 [17] | Viruses in wastewater: occurrence, abundance and detection methods | Science of the Total Environment | 242 |
10 | Mohapatra et al., 2021 [83] | The novel SARS-CoV-2 pandemic: Possible environmental transmission, detection, persistence and fate during wastewater and water treatment | Science of the Total Environment | 240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waseem, H.; Abid, R.; Ali, J.; Oswald, C.J.; Gilbride, K.A. Wastewater-Based Epidemiology of SARS-CoV-2 and Other Respiratory Viruses: Bibliometric Tracking of the Last Decade and Emerging Research Directions. Water 2023, 15, 3460. https://doi.org/10.3390/w15193460
Waseem H, Abid R, Ali J, Oswald CJ, Gilbride KA. Wastewater-Based Epidemiology of SARS-CoV-2 and Other Respiratory Viruses: Bibliometric Tracking of the Last Decade and Emerging Research Directions. Water. 2023; 15(19):3460. https://doi.org/10.3390/w15193460
Chicago/Turabian StyleWaseem, Hassan, Rameesha Abid, Jafar Ali, Claire J. Oswald, and Kimberley A. Gilbride. 2023. "Wastewater-Based Epidemiology of SARS-CoV-2 and Other Respiratory Viruses: Bibliometric Tracking of the Last Decade and Emerging Research Directions" Water 15, no. 19: 3460. https://doi.org/10.3390/w15193460
APA StyleWaseem, H., Abid, R., Ali, J., Oswald, C. J., & Gilbride, K. A. (2023). Wastewater-Based Epidemiology of SARS-CoV-2 and Other Respiratory Viruses: Bibliometric Tracking of the Last Decade and Emerging Research Directions. Water, 15(19), 3460. https://doi.org/10.3390/w15193460