Bottled Mineral Waters as Unconventional Sampling in Hydro-Geological Research
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Geochemical Features of Considered Bottled Mineral Waters
3.2. Analysis of Stable Isotopes
- (i)
- the Global Meteoric Water Line (GMWL) as obtained from equation δ2H = 8 δ18O + 10 [45];
- (ii)
- the Local Meteoric Water Line (xLWL, where the first letter recalls the country name, e.g., ILWL for Italy and GLWL for Greece) based on the IAEA network data;
- (iii)
- the Local Bottled Water Line (xBWL, where the first letter recalls the country name, e.g., IBWL for Italy and GBWL for Greece).
3.2.1. Italy
3.2.2. Greece
3.2.3. Slovenia
3.2.4. Austria
3.2.5. Croatia
3.2.6. France
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IAEA-GNIP. Available online: https://www.iaea.org/services/networks/gnip (accessed on 3 June 2022).
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Gat, J.R.; Carmi, I. Evolution of the Isotopic Composition of Atmospheric Waters in the Mediterranean Sea Area. J. Geophys. Res. 1970, 75, 3039–3048. [Google Scholar] [CrossRef]
- Gat, J.R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Process. 2000, 14, 1341–1355. [Google Scholar] [CrossRef]
- Bowen, G.J.; Wilkinson, B. Spatial distribution of δ18O in meteoric precipitation. Geology 2002, 30, 315–318. [Google Scholar] [CrossRef]
- Bowen, G.J.; Revenaugh, J. Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res. 2003, 39, 1299. [Google Scholar] [CrossRef]
- ErdelyiIstvan, D.; Hatvani, I.G.; Jeon, H.; Jones, M.; Tyler, J.; Kern, Z. Predicting spatial distribution of stable isotopes in precipitation by classical geostatistical-and machine learning methods. J. Hydrol. 2023, 617 Pt C, 129129. [Google Scholar] [CrossRef]
- Tsunogai, U.; Wakita, H. Precursory chemical changes in ground water: Kobe earthquake, Japan. Science 1995, 269, 61–63. [Google Scholar] [CrossRef]
- Inan, S.; Balderer, W.P.; Leuenberger-West, F.; Yakan, H.; Uozvan, A.; Freund, F.T. Springwater chemical anomalies prior to the Mw = 7.2 Van Earthquake (Turkey). Geochem. J. 2012, 46, e11–e16. [Google Scholar] [CrossRef]
- Fidani, C.; Balderer, W.; Leuenberger, F. The possible influences of the 2012 Modena earthquakes on the fluorescence spectra of bottled mineral water. Hydrol. Curr. Res. 2017, 8, 288. [Google Scholar] [CrossRef]
- Naddeo, V.; Zarra, T.; Belgiorno, A. A comparative approach to the variation of natural elements in Italian bottled waters according to the national and international standard limits. J. Food Compos. Anal. 2008, 21, 505–514. [Google Scholar] [CrossRef]
- Ballantine, P.W.; Ozanne, L.K.; Bayfield, R. Why buy free? exploring perceptions of bottled water consumption and its environmental consequences. Sustainability 2019, 11, 757. [Google Scholar] [CrossRef]
- STATISTA Database. Available online: https://www.statista.com/outlook/cmo/non-alcoholic-drinks/bottled-water/eu-27 (accessed on 15 January 2023).
- IBWA. International Bottled Water Association. 2023. Available online: https://bottledwater.org/nr/consumers-want-bottled-water-to-be-available-wherever-drinks-are-sold-and-if-its-not-most-will-choose-another-packaged-beverage-that-uses-much-more-plastic/ (accessed on 15 January 2023).
- EC. Council directive 80/777/EEC of 15 July 1980 on the approximation of the laws of the Member States relating to the exploitation and marketing of natural mineral waters. Off. J. Eur. Commun. 1980, 229, 1–10. [Google Scholar]
- Tapias, J.C.; Melián, R.; Sendrós, A.; Font, X.; Casas, A. Geochemical Characterisation and Health Concerns of Mineral Bottled Waters in Catalonia (North-Eastern Spain). Water 2022, 14, 3581. [Google Scholar] [CrossRef]
- Lee, K.-J.; Yu, S.; Kim, K.-H.; Kang, K.-G.; Moon, S.-H.; Kim, M.-S.; Yun, S.-T. Hydrogeochemical Characteristics of Bottled Waters Sourced from Bedrock Aquifers in South Korea: Evaluation of Water Type and Natural Background Levels. Water 2022, 14, 1457. [Google Scholar] [CrossRef]
- Rman, N.; Szőcs, T.; Palcsu, L.; Lapanje, A. Chemical and isotopic composition of CO2-rich magnesium–sodium–bicarbonate–sulphate-type mineral waters from volcanoclastic aquifer in Rogaška Slatina, Slovenia. Environ. Geochem. Health 2022, 44, 2187–2214. [Google Scholar] [CrossRef] [PubMed]
- Iyakarea, J.D.; Taupinb, J.-D.; Hitimanaa, C.N.; Dusabimanaa, T.; Ghalitc, M.; El Ouahabid, M.; Benalie, M.; Ngendof, C.; Gharibi, E.K. Hydrochemical study of bottled water in Rwanda and relationship with their origin. Water Supply 2022, 22, 1155–1167. [Google Scholar] [CrossRef]
- Misund, A.; Frengstad, B.; Siewers, U.; Reimann, C. Variation of 66 elements in European mineral waters. Sci. Total. Environ. 1999, 243–244, 21–41. [Google Scholar] [CrossRef]
- Fugedi, U.; Kuti, L.; Jordan, G.; Kerek, B. Investigation of the hydrogeochemistry of some bottled mineral waters in Hungary. J. Geochem. Explor. 2010, 107, 305–316. [Google Scholar] [CrossRef]
- Kendall, C.; Caldwell, E.A. Fundamentals of Isotope Geochemistry. In Isotope Tracers in Catchment Hydrology; Kendall, C., McDonnell, J.J., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1998; pp. 51–86. [Google Scholar]
- Rozanski, K.; Sonntag, C.; Munnich, K.O. Factors controlling stable isotope composition of European precipitation. Tellus 1982, 34, 142–150. [Google Scholar] [CrossRef]
- Poage, M.A.; Chamberlain, C.P. Empirical Relationships Between Elevation and the Stable Isotope Composition of Precipitation and Surface Waters: Considerations for Studies of Paleoelevation Change. Am. J. Sci. 2001, 301, 1–15. [Google Scholar] [CrossRef]
- Guo, H.; Zhu, G.; He, Y.; Zhou, J.; Pan, H.; Ma, X.; Zhang, J. Dynamic characteristics and influencing factors of precipitation δ18O, China. Theor. Appl. Clim. 2019, 138, 899–910. [Google Scholar] [CrossRef]
- Vystavna, Y.; Matiatos, I.; Wassenaar, L.I. Temperature and precipitation effects on the isotopic composition of global precipitation reveal long-term climate dynamics. Sci. Rep. 2021, 11, 18503. [Google Scholar] [CrossRef]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology, 2nd ed.; Lewis Publisher: Boca Raton, FL, USA, 1997; pp. 13–168. ISBN 978 1 5667 0249 2. [Google Scholar] [CrossRef]
- Bowen, G.J.; Winter, D.A.; Spero, H.J.; Zierenberg, R.A.; Reeder, M.D.; Cerling, T.E.; Ehleringer, J.R. Stable hydrogen and oxygen isotope ratios of bottled waters of the world. Rapid Commun. Mass Spectrom. 2005, 19, 3442–3450. [Google Scholar] [CrossRef] [PubMed]
- Rapti-Caputo, D.; Martinelli, G. The geochemical and isotopic composition of aquifer systems in the deltaic region of the Po River plain (northern Italy). Hydrogeol. J. 2009, 17, 467–480. [Google Scholar] [CrossRef]
- Raco, B.; Dotsika, E.; Feroni, A.C.; Battaglini, R.; Poutoukis, D. Stable isotope composition of Italian bottled waters. J. Geochem. Explor. 2013, 124, 203–211. [Google Scholar] [CrossRef]
- Brencic, M.; Vreca, P. Identification of sources and production processes of bottled waters by stable hydrogen and oxygen isotope ratios. Rapid Commun. Mass Spectrom. 2006, 20, 3205–3212. [Google Scholar] [CrossRef] [PubMed]
- Dotsika, E.; Poutoukis, D.; Raco, B.; Psomiadis, D. Stable isotope composition of Hellenic bottled waters. J. Geochem. Explor. 2010, 107, 299–304. [Google Scholar] [CrossRef]
- Brenčič, M.; Ferjan, T.; Gosar, M. Geochemical survey of Slovenian bottled waters. J. Geochem. Explor. 2010, 107, 400–409. [Google Scholar] [CrossRef]
- Zuliani, T.; Kanduč, T.; Novak, R.; Vreča, P. Characterization of bottled waters by multielemental analysis, stable and radiogenic isotopes. Water 2020, 12, 2454. [Google Scholar] [CrossRef]
- IAEA-GNIP Database. Available online: https://nucleus.iaea.org/wiser (accessed on 3 June 2022).
- Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Water, 3rd ed.; U.S. Geological Survey: Reston, VA, USA, 1985; Water-Supply Paper 2254.
- Dinelli, E.; Lima, A.; De Vivo, B.; Albanese, S.; Cicchella, D.; Valera, P. Hydrogeochemical analysis on Italian bottled mineral waters: Effects of geology. J. Geochem. Explor. 2010, 107, 317–335. [Google Scholar] [CrossRef]
- Yu, S.; Chae, G.; Oh, J.; Kim, S.-H.; Kim, D.-I.; Yun, S.-T. Hydrochemical and Isotopic Difference of Spring Water Depending on Flow Type in a Stratigraphically Complex Karst Area of South Korea. Front. Earth Sci. 2021, 9, 712865. [Google Scholar] [CrossRef]
- Ciotoli, G.; Guerra, M. Distribution and physico-chemical data of Italian bottled natural mineral waters. J. Maps 2016, 12, 917–935. [Google Scholar] [CrossRef]
- Vázquez, A.; Costoya, M.; Peña, R.M.; García, S.; Herrero, C. A rainwater quality monitoring network: A preliminary study of the composition of rainwater in Galicia (NW Spain). Chemosphere 2003, 51, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Boussaton, M.; Coquillat, S.; Chauzy, S.; Georgis, J.F. Influence of water conductivity on micro-discharges from raindrops in strong electric fields. Atmos. Res. 2005, 76, 330–345. [Google Scholar] [CrossRef]
- Beysens, D.; Lekouch, I.; Muselli, M.; Mileta, M.; Milimouk-Melnytchouk, I.; Sojat, V. Physical and chemical properties of dew and rain water in the Dalmatian coast, Croatia. In Proceedings of the 5th International Conference on Fog, Fog Collection and Dew, Münster, Germany, 25–30 July 2010. FOGDEW2010-24. [Google Scholar]
- Langelier, W.F.; Ludwig, H.F. Graphical Methods for Indicating the Mineral Character of Natural Waters. J. Am. Water Works Assoc. 1942, 34, 335–352. [Google Scholar] [CrossRef]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Pfahl, S.; Sodemann, H. What controls deuterium excess in global precipitation? Clim. Past 2014, 10, 771–781. [Google Scholar] [CrossRef]
- LeGrande, A.N.; Schmidt, G.A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 2006, 33, L12604. [Google Scholar] [CrossRef]
- Natali, S.; Baneschi, I.; Doveri, M.; Giannecchini, R.; Selmo, E.; Zanchetta, G. Meteorological and geographical control on stable isotopic signature of precipitation in a western Mediterranean area (Tuscany, Italy): Disentangling a complex signal. J. Hydrol. 2021, 603, 126944. [Google Scholar] [CrossRef]
- Gonfiantini, R. On the isotopic composition of precipitation. In Hydrology and Isotope Geochemistry; In Proc. Int. Symp memory of Jean Charles Fontes; CNRS-Universitè de Paris-Sud: Bures-sur-Yvette, France, 1998; pp. 3–22. [Google Scholar]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R.; Swart, P.K.; Lohmann, K.C.; Mckenzie, J.; Savin, S. Isotopic Patterns in Modern Global Precipitation. Climate Change in Continental Isotopic Records; Am. Geophys Union: Washington, DC, USA, 1993; pp. 1–36. [Google Scholar] [CrossRef]
- Batibeniz, F.; Ashfaq, M.; Önol, B.; Turuncoglu, U.U.; Mehmood, S.; Evans, K.J. Identification of major moisture sources across the Mediterranean Basin. Clim. Dyn. 2020, 54, 4109–4127. [Google Scholar] [CrossRef]
- Dünkeloh, A.; Jacobeit, J. Circulation dynamics of Mediterranean precipitation variability 1948–98: Circulation dynamics of mediterranean precipitation variability. Int. J. Climatol. 2003, 23, 1843–1866. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, B.; Chen, G.; Chen, A.; Yang, S.; Ye, Z. Tracing the geographic origin of beef in China on the basis of the combination of stable isotopes and multielement analysis. J. Agric. Food Chem. 2013, 61, 7055–7060. [Google Scholar] [CrossRef] [PubMed]
- Balaram, V.; Satyanarayanan, M. Data quality in geochemical elemental and isotopic analysis. Minerals 2022, 12, 999. [Google Scholar] [CrossRef]
- Dunn, P.J.H.; Carter, J.F.; Chesson, L.A.; Doyle, S.P.; Howa, J.D.; Gaunt, W.; Whetton, M. The FIRMS Network’s PT scheme: What can be learned about inter-laboratory performance? Forensic Chem. 2021, 22, 100306. [Google Scholar] [CrossRef]
- Millar, C.; Janzen, K.; Nehemy, M.F.; Koehler, G.; Hervé-Fernández, P.; McDonnell, J.J. Organic contamination detection for isotopic analysis of water by laser spectroscopy. Rapid Commun. Mass Spectrom. 2021, 35, e9118. [Google Scholar] [CrossRef] [PubMed]
- Won, E.-J.; Kim, S.H.; Go, Y.-S.; Kumar, K.S.; Kim, M.-S.; Yoon, S.-H.; Bayon, G.; Kim, J.-H.; Shin, K.-H. A Multi-Elements Isotope Approach to Assess the Geographic Provenance of Manila Clams (Ruditapes philippinarum) via Recombining Appropriate Elements. Foods 2021, 10, 646. [Google Scholar] [CrossRef] [PubMed]
- Terzer-Wassmuth, S.; Ortega, L.; Araguás-Araguás, L.; Wassenaar, L.I. The first IAEA inter-laboratory comparison exercise in Latin America and the Caribbean for stable isotope analyses of water samples. Isot. Environ. Health Stud. 2020, 56, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Quattrini, S.; Pampaloni, B.; Brandi, M.L. Natural mineral waters: Chemical characteristics and health effects. Clin. Cases Miner. Bone Metab. 2016, 13, 173–180. [Google Scholar] [CrossRef]
- Davies, P.S.W. Stable isotopes: Their use and safety in human nutrition studies. Eur. J. Clin. Nutr. 2020, 74, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Gat, J.R.; Klein, B.; Kushnir, Y.; Roether, W.; Wernli, H.; Yam, R.; Shemesh, A. Isotope composition of air moisture over the Mediterranean Sea: An index of the air-sea interaction pattern. Tellus 2003, 55B, 953–965. [Google Scholar]
- Bowen, G.J.; Cai, Z.; Fiorella, R.P.; Putman, A.L. Isotopes in the water cycle: Regional- to global-scale patterns and applications. Annu. Rev. 2019, 47, 453–479. [Google Scholar] [CrossRef]
- Rozanski, K.; Froelich, K.J.; Mook, W.G. Environmental Isotopes in the Hydrological Cycle, Principles and Applications, Surface Water; IHP-V-Technical Documents in Hydrology; Mook, W.G., Ed.; UNESCO/IAEA: Paris, France, 2001; Volume III, p. 117. [Google Scholar]
- Mook, W.G. Environmental Isotopes in the Hydrological Cycle. Principles and Applications, Introduction theory, methods, review; IHP-V-Technical Documents in Hydrology; Mook, W.G., Ed.; UNESCO/IAEA: Paris, France, 2001; Volume I, p. 164. [Google Scholar]
- Merlivat, L.; Jouzel, J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J. Geophys. Res. Atmos. 1979, 84, 5029–5033. [Google Scholar] [CrossRef]
- Celle-Jeanton, H.; Gonfiantini, R.; Travi, Y.; Sol, B. Oxygen-18 variations of rainwater during precipitation: Application of the Rayleigh model to selected rainfalls in Southern France. J. Hydrol. 2004, 289, 165–177. [Google Scholar] [CrossRef]
- Kattan, Z. Environmental isotope study of the major karst springs in Damascus limestone aquifer systems: Case of the Figeh and Barada springs. J. Hydrol. 1997, 193, 161–182. [Google Scholar] [CrossRef]
- Longinelli, A.; Selmo, E. Isotopic composition of precipitation in Italy: A first overall map. J. Hydrol. 2003, 270, 75–88. [Google Scholar] [CrossRef]
- Cruz-San Julian, J.; Araguás, L.; Różánski, K.; Benavente, J.; Cardenal, J.; Hidalgo, M.C.; Garcia-Lopez, S.; Martinesz-Garrido, J.C.; Moral, F.; Olias, M. Sources of precipitation over South-Eastern Spain and groundwater recharge. An isotopic study. Tellus 1992, 44B, 226–236. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapti, D.; Martinelli, G.; Zheng, G.; Vincenzi, C. Bottled Mineral Waters as Unconventional Sampling in Hydro-Geological Research. Water 2023, 15, 3466. https://doi.org/10.3390/w15193466
Rapti D, Martinelli G, Zheng G, Vincenzi C. Bottled Mineral Waters as Unconventional Sampling in Hydro-Geological Research. Water. 2023; 15(19):3466. https://doi.org/10.3390/w15193466
Chicago/Turabian StyleRapti, Dimitra, Giovanni Martinelli, Guodong Zheng, and Clelia Vincenzi. 2023. "Bottled Mineral Waters as Unconventional Sampling in Hydro-Geological Research" Water 15, no. 19: 3466. https://doi.org/10.3390/w15193466
APA StyleRapti, D., Martinelli, G., Zheng, G., & Vincenzi, C. (2023). Bottled Mineral Waters as Unconventional Sampling in Hydro-Geological Research. Water, 15(19), 3466. https://doi.org/10.3390/w15193466