The Natural Consequences of Land Use Change on Transformation and Vegetation Development in the Upper Odra Floodplain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Cartographic Works
2.3. Vegetation Research
3. Results
3.1. Changes in Land Use and Land Cover between 1910 and 2022
3.1.1. Transect 1: Anthropogenically Transformed Part of Valley
3.1.2. Transect 2: Embankments and Oxbow Lake
3.1.3. Transect 3: Arable Areas and Wet Meadows
3.1.4. Transect 4: Riverside and Oxbow Lake
3.1.5. Transect 5: Willow Communities on the Former Oxbow
3.1.6. Transect 6: Riverside Forest and Water Communities
3.2. Vegetation and Floristic Diversity
3.2.1. Non-Forest Vegetation
3.2.2. Forest Vegetation
3.2.3. Flora Diversity
4. Discussion
5. Conclusions
- As a result of engineering works and straightening the river channel, the mosaic of wetlands and natural floodplains has been completely transformed, including willow meadows.
- The areas associated with the dikes are rich in plant species and form fresh grasslands that are not dependent on the presence of the river for their development.
- Most of the floodplain is colonized by geographically alien species. The areas they occupy are poor in terms of floristic diversity. A contemporary threat to the ecosystems of the Odra Valley, also in this section, is the mass occurrence of alien species such as R. japonica, R. sachalinensis and I. glandulifera.
- In spite of increased anthropopressure, the riparian forest Salicetum-fragilis has been preserved in this section of the Odra River almost unchanged in terms of species composition. This complex is also one of the important components of the forest landscape in this area.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ward, J.; Tockner, K.; Uehlinger, U.; Malard, F. Understanding natural patterns and processes in river corridors as the basis for effective river restoration. Regul. Rivers Res. Manag. 2001, 17, 311–323. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Hooke, R.L. On the history of humans as geomorphic agents. Geology 2000, 28, 843–846. [Google Scholar] [CrossRef]
- Howell, T.A. Enhancing Water Use Efficiency in Irrigated Agriculture. Agron. J. 2001, 93, 281–289. [Google Scholar] [CrossRef]
- Jones, D.K.C. The Evolution of Hillslope Processes. In Geomorphological Processes and Landscape Change: Britain in the Last 1000 Years; Higgitt, D.L., Lee, E.M., Eds.; RGS-IBG Book Series; Blackwell Publishing Ltd.: Oxford, UK, 2011; pp. 61–89. ISBN 978-1-444-39942-4. [Google Scholar]
- Williams, M.; Zalasiewicz, J.; Davies, N.; Mazzini, I.; Goiran, J.-P.; Kane, S. Humans as the third evolutionary stage of biosphere engineering of rivers. Anthropocene 2014, 7, 57–63. [Google Scholar] [CrossRef]
- Alemu, T.; Pertoldi, C.; Hundera, K.; Ambelu, A. Spatial patterns of riparian vegetation community composition and diversity along human—Affected East African highland streams. Ecohydrology 2023, 16, e2524. [Google Scholar] [CrossRef]
- Szpikowski, J.; Szpikowska, G.; Domańska, M. Old Melioration Systems: The Influence onto Functioning of Geoecosystems of River Valleys in The Parsęta (NW Poland). Quaest. Geogr. 2015, 34, 129–140. [Google Scholar] [CrossRef]
- Falkenmark, M. Freshwater as shared between society and ecosystems: From divided approaches to integrated challenges. Philos. Trans. R. Soc. B Biol. Sci. 2003, 358, 2037–2049. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Rotherham, I.D. Recombinant Ecology—A Hybrid Future? Springer International Publishing: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-319-49797-6. [Google Scholar]
- Alberti, M.; Marzluff, J.M.; Shulenberger, E.; Bradley, G.; Ryan, C.; Zumbrunnen, C. Integrating humans into ecology: Opportunities and challenges for studying urban ecosystems. BioScience 2003, 53, 1169–1179. [Google Scholar] [CrossRef]
- Walker, L.R. The Biology of Disturbed Habitats; Oxford University Press: Oxford, UK, 2012; 334p. [Google Scholar]
- Nádudvari, Á.; Czajka, A.; Wyżga, B.; Zygmunt, M.; Wdowikowski, M. Patterns of Recent Changes in Channel Morphology and Flows in the Upper and Middle Odra River. Water 2023, 15, 370. [Google Scholar] [CrossRef]
- Rahmonov, O.; Środek, D.; Pytel, S.; Makieieva, N.; Kupka, T. Relationships between Heavy Metal Concentrations in Greater Celandine (Chelidonium majus L.) Tissues and Soil in Urban Parks. Int. J. Environ. Res. Public Health 2023, 20, 3887. [Google Scholar] [CrossRef] [PubMed]
- Hanczaruk, R.; Kompała-Bąba, A. Anthropogenic transformations of river valley’s vegetation and their impact on perception of ecosystem services by inhabitants. A case study from the Kłodnica Valley (Silesian Upland, Poland). Pol. J. Nat. Sci. 2019, 34, 531–558. [Google Scholar]
- Rahmonov, O.; Czajka, A.; Nádudvari, Á.; Fajer, M.; Spórna, T.; Szypuła, B. Soil and Vegetation Development on Coal-Waste Dump in Southern Poland. Int. J. Environ. Res. Public Health 2022, 19, 9167. [Google Scholar] [CrossRef] [PubMed]
- Koszela, K.; Tokarska-Guzik, B. Alien plant species in the protected landscape area of the Odra river meanders: Habitat preferences and threats. Biodivers. Res. Conserv. 2008, 9–10, 73–80. [Google Scholar]
- Rahmonov, O. Development and functioning of riparian ecosystem (Fraxino-Alnetum) under the influence of human impact. In Proceedings of the 9th International Conference “Environmental Engineering”, Vilnius, Lithuania, 22–23 May 2014. [Google Scholar] [CrossRef]
- Rahmonov, O.; Dragan, W.; Cabała, J.; Krzysztofik, R. Long-Term Vegetation Changes and Socioeconomic Effects of River Engineering in Industrialized Areas (Southern Poland). Int. J. Environ. Res. Public Health 2023, 20, 2255. [Google Scholar] [CrossRef] [PubMed]
- Kiss, T.; Nagy, J.; Fehérváry, I.; Vaszkó, C. (Mis) management of floodplain vegetation: The effect of invasive species on vegetation roughness and flood levels. Sci. Total Environ. 2019, 686, 931–945. [Google Scholar] [CrossRef]
- Wieting, C.; Friedman, J.M.; Rathburn, S. River channel response to invasive plant treatment across the American Southwest. Earth Surf. Process. Landf. 2022, 48, 569–581. [Google Scholar] [CrossRef]
- Bradley, B.A.; Beaury, E.M.; Fusco, E.J.; Lopez, B.E. Invasive Species Policy Must Embrace a Changing Climate. BioScience 2003, 73, 124–133. [Google Scholar] [CrossRef]
- Rahmonov, O.; Snytko, V.A.; Szczypek, T. Influence of melioration in natural ecological processes of a small river valley (Poland). Geogr. Nat. Resour. 2016, 37, 379–384. [Google Scholar] [CrossRef]
- Pautou, G.; Décamps, H.; Fortuné, M.; Gazelle, F. Historical influence of man on the riparian dynamics of a fluvial landscape. Landsc. Ecol. 1988, 1, 163–173. [Google Scholar] [CrossRef]
- Ashton, N.; Lewis, S.G.; Parfitt, S.; White, M. Riparian landscapes and human habitat preferences during the Hoxnian (MIS 11) Interglacial. J. Quat. Sci. 2006, 21, 497–505. [Google Scholar] [CrossRef]
- Dufour, S.; Piégay, H. From the myth of a lost paradise to targeted river restoration: Forget natural references and focus on human benefits. River Res. Appl. 2009, 25, 568–581. [Google Scholar] [CrossRef]
- Dufour, S.; Rinaldi, M.; Piégay, H.; Michalon, A. How do river dynamics and human influences affect the landscape pattern of fluvial corridors? Lessons from the Magra River, Central–Northern Italy. Landsc. Urban Plan. 2015, 134, 107–118. [Google Scholar] [CrossRef]
- Harvolk, S.; Symmank, L.; Sundermeier, A.; Otte, A.; Donath, T.W. Human impact on plant biodiversity in functional floodplains of heavily modified rivers—A comparative study along German Federal Waterways. Ecol. Eng. 2015, 84, 463–475. [Google Scholar] [CrossRef]
- Xu, F.; Otte, A.; Ludewig, K.; Donath, T.W.; Harvolk-Schöning, S. Land Cover Changes (1963–2010) and Their Environmental Factors in the Upper Danube Floodplain. Sustainability 2017, 9, 943. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Szyga-Pluta, K. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966–2015. Theor. Appl. Clim. 2018, 135, 1517–1530. [Google Scholar] [CrossRef]
- Born, A. Regulacja Odry i rozbudowa urządzeń technicznych. In Monografia Odry; Grodek, A., Kiełczewska-Zalewska, M., Zierhoffer, A., Eds.; Publisher Instytut Zachodni: Poznań, Poland, 1948; pp. 419–453. [Google Scholar]
- Czajka, A.; Nádudvari, Á. Anthropogenic influences on the morphodynamics of the upper Odra channel. Environ. Socio-Econ. Stud. 2016, 4, 43–52. [Google Scholar] [CrossRef]
- Kasperek, R.S. Changes in the Meandering Upper Odra River as a Result of Flooding Part I. Morphology and Biodiversity. Pol. J. Environ. Stud. 2015, 24, 2459–2465. [Google Scholar] [CrossRef]
- Rutkowski, L. Key for Vascular Plants Identification; Polish Scientific Press: Warsaw, Poland, 2011; 814p, ISBN 978-83-01-14342-8. [Google Scholar]
- Mirek, Z.; Piękoś-Mirkowa, H.; Zając, A.; Zając, M. Flowering Plants and Pteridophytes of Poland: A Checklist; W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 2002; Volume 1, pp. 1–442. [Google Scholar]
- Klimek, K. Human-induced overbank sedimentation in the foreland of the Eastern Sudety Mountains. Earth Surf. Process. Landf. 2002, 27, 391–402. [Google Scholar] [CrossRef]
- Czajka, A.; Ciszewski, D. Deposition of overbank sediments within a regulated reach of the upper Odra River, Poland. IAHS-AISH Publ. 2010, 337, 137–142. [Google Scholar]
- Loheide, S.P.; Gorelick, S.M. Riparian hydroecology: A coupled model of the observed interactions between groundwater flow and meadow vegetation patterning. Water Resour. Res. 2007, 43, W07414. [Google Scholar] [CrossRef]
- Loheide, S.P.; Booth, E.G. Effects of changing channel morphology on vegetation, groundwater, and soil moisture regimes in groundwater-dependent ecosystems. Geomorphology 2011, 126, 364–376. [Google Scholar] [CrossRef]
- Glanville, K.; Sheldon, F.; Butler, D.; Capon, S. Effects and significance of groundwater for vegetation: A systematic review. Sci. Total Environ. 2023, 875, 162577. [Google Scholar] [CrossRef] [PubMed]
- Hughes, F.M.R.; Rood, S.B. Allocation of River Flows for Restoration of Floodplain Forest Ecosystems: A Review of Approaches and Their Applicability in Europe. Environ. Manag. 2003, 32, 12–33. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, J.A.G. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- Paine, L.K.; Ribic, C.A. Comparison of riparian plant communities under four land management systems in southwestern Wisconsin. Agric. Ecosyst. Environ. 2002, 92, 93–105. [Google Scholar] [CrossRef]
- Richardson, D.M.; Holmes, P.M.; Esler, K.J.; Galatowitsch, S.M.; Stromberg, J.C.; Kirkman, S.P.; Pyšek, P.; Hobbs, R.J. Riparian vegetation: Degradation, alien plant invasions, and restoration prospects. Divers. Distrib. 2007, 13, 126–139. [Google Scholar] [CrossRef]
- Rahmonov, O.; Majgier, L.; Rahmonov, M. Chemical Composition of Tissues of Syringa vulgaris L. and Soil Features in Abandoned Cemeteries. Soil Syst. 2023, 7, 18. [Google Scholar] [CrossRef]
- Baart, I.; Hohensinner, S.; Zsuffa, I.; Hein, T. Supporting analysis of floodplain restoration options by historical analysis. Environ. Sci. Policy 2013, 34, 92–102. [Google Scholar] [CrossRef]
- Tokarska-Guzik, B. The Establishment and Spread of Alien Plant Species (Kenophytes) in the Flora of Poland; Prace Naukowe nr. 2372; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2005; pp. 1–213. [Google Scholar]
- Zając, A.; Tokarska-Guzik, B.; Zając, M. The role of rivers and streams in the migration of alien plants into the Polish Carpathians. Biodivers. Res. Conserv. 2011, 23, 43–56. [Google Scholar] [CrossRef]
- Kazun, A. Alluvial meadows of Cnidion dubii Bal.-Tul. 1966 in the middle Oder River valley (Natura 2000 site “Legi Odrzanskie”, SW Poland). Steciana 2014, 18, 49–55. [Google Scholar] [CrossRef]
- Zarzycki, J.; Korzeniak, J.; Perzanowska, J. Impact of Land Use Changes on the Diversity and Conservation Status of the Vegetation of Mountain Grasslands (Polish Carpathians). Land 2022, 11, 252. [Google Scholar] [CrossRef]
- Rahmonov, O.; Snytko, V.A.; Szczypek, T.; Parusel, T. Vegetation development on post-industrial territories of the Silesian Upland (Southern Poland). Geogr. Nat. Resour. 2013, 34, 96–103. [Google Scholar] [CrossRef]
Parameter | Entire Section | Channelized Section | Meandering Section | |||
1910 | 2022 | 1910 | 2022 | 1910 | 2022 | |
Gradient [o/oo] | 0.80 | 0.72 | 0.08 | 0.41 | 1.23 | 0.86 |
Sinuosity | 2.18 | 1.66 | 1.61 | 1.00 | 2.20 | 2.03 |
Land Use Class | 1910 | 1940 | 1984 | 2022 | ||||
---|---|---|---|---|---|---|---|---|
Area | ||||||||
km2 | % | km2 | % | km2 | % | km2 | % | |
Water bodies | 0.09 | 0.9 | 0.19 | 1.9 | 1.22 | 12.3 | 1.60 | 16.1 |
Arableland | 8.02 | 80.6 | 7.07 | 71.1 | 3.55 | 35.7 | 3.47 | 34.9 |
Grassland | 0.76 | 7.6 | 1.45 | 14.6 | 2.40 | 24.1 | 1.84 | 18.5 |
Forests | 0.76 | 7.6 | 0.93 | 9.3 | 2.54 | 25.5 | 2.18 | 21.9 |
Buildings | 0.32 | 3.2 | 0.31 | 3.1 | 0.24 | 2.4 | 0.86 | 8.6 |
Total | 9.95 | 100.0 | 9.95 | 100.0 | 9.95 | 100.0 | 9.95 | 100.0 |
Plant Names | T1 | T2 | T3 | T4 | T5 | T6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | A | A | C | C | A | C | |
Acer negundo * L. | + | . | . | + | . | . | + | + | . | . | + | |
Acer platanoides L. | . | . | . | . | . | . | . | + | + | . | + | + |
Acer pseudoplatanus L. | + | + | ||||||||||
Achillea millefolium L. | + | + | ||||||||||
Aegopodium podagraria L. | + | + | + | + | + | + | + | + | ||||
Agropyron repens (L.) | + | + | ||||||||||
Agrostis gigantea Roth | + | + | + | |||||||||
Alisma plantago-aquatica L. | + | + | ||||||||||
Allium ursinum L. | + | |||||||||||
Alliaria petiolata (M. Bieb.) Cavara et Grande | + | + | + | + | ||||||||
Alnus glutinosa (L.) | + | + | + | |||||||||
Anthriscus sylvestris (L.) | + | |||||||||||
Arctium lappa L. | + | + | ||||||||||
Arrhenatherum elatius (L.) | + | + | + | + | + | |||||||
Artemisia vulgaris L. | + | + | ||||||||||
Avena pratensis L. | + | + | ||||||||||
Betula pendula Roth. | + | + | ||||||||||
Caltha palustris L. | + | + | ||||||||||
Campanula patula L. | + | + | + | |||||||||
Carex flava L. | + | |||||||||||
Carex parviflora Host | + | |||||||||||
Cerasus avium (L.) | + | |||||||||||
Chelidonium majus L. | + | |||||||||||
Convolvulus arvensis L. | + | |||||||||||
Cornus alba L. | + | + | ||||||||||
Cornus sanguinea L. | + | |||||||||||
Crataegus laevigata (Poir.) | + | + | ||||||||||
Crataegus monogyna Jacq | + | + | + | |||||||||
Crepis mollis (Jacq.) | + | + | ||||||||||
Cynosurus cristatus L. | + | + | + | |||||||||
Dactylis glomerata L. | + | + | + | |||||||||
Equisetum arvense L. | + | + | + | |||||||||
Euonymus europaeus L. | + | |||||||||||
Euphorbia esula L. | + | |||||||||||
Festuca pratensis Huds. | + | + | ||||||||||
Fraxinus excelsior L. | + | + | + | + | ||||||||
Galeobdolon luteum Huds. | + | + | + | |||||||||
Galeopsis tetrahit L. | + | + | + | |||||||||
Galium aparine L. | + | + | + | + | + | + | + | + | + | |||
Galium mollugo L. | + | + | + | |||||||||
Galium verum L. | + | + | + | |||||||||
Geum rivale L. | + | + | ||||||||||
Glechoma hederacea L. | + | |||||||||||
Helianthus tuberosus L. | + | |||||||||||
Heracleum sphondylium L. | + | + | ||||||||||
Holcus lanatus L. | + | + | ||||||||||
Holcus mollis L. | + | |||||||||||
Humulus lupulus L. | + | + | + | + | + | + | ||||||
Impatiens glandulifera Royle | + | + | + | + | + | |||||||
Impatiens parviflora DC. | + | |||||||||||
Iris pseudacorus L. | + | + | + | |||||||||
Juglans regia L. | ||||||||||||
Juncus conglomeratus L. | + | + | + | |||||||||
Lamium maculatum L. | ||||||||||||
Lemna minor L. | + | |||||||||||
Leontodon hispidus L. | + | + | ||||||||||
Leucanthemum vulgare Lam. | + | + | ||||||||||
Lotus corniculatus L. | + | + | ||||||||||
Medicago falcata L. | + | + | ||||||||||
Medicago lupulina L. | + | + | ||||||||||
Medicago sativa L. | + | + | ||||||||||
Mentha aquatica L. | + | |||||||||||
Myosotis palustris (L.) L. em. Rchb. | ||||||||||||
Nuphar lutea Sm. | + | + | ||||||||||
Padus avium Mill. | + | + | ||||||||||
Padus serotina (Ehrh.) | + | + | ||||||||||
Parthenocissus inserta (A.Kern.) Fritsch | + | + | ||||||||||
Phalaris arundinacea L. | + | + | + | + | ||||||||
Phragmites australis (Cav.) | + | + | + | + | + | |||||||
Pinus sylvestris L. | + | + | ||||||||||
Plantago lanceolata L. | + | + | ||||||||||
Populus nigra L. | + | + | + | + | + | |||||||
Populus tremula L. | + | + | + | |||||||||
Potentilla erecta (L.) | + | + | ||||||||||
Quercus robur L. | + | + | + | + | + | + | ||||||
Quercus rubra L. | + | + | ||||||||||
Ranunculus acris L. | + | |||||||||||
Reynoutria japonica Houtt. | + | + | + | + | + | |||||||
Reynoutria sachalinensis (F. Schmidt) Nakai | + | + | + | + | + | + | ||||||
Rhamnus catharticus L. | + | + | + | + | ||||||||
Robinia pseudacacia L. | + | |||||||||||
Rosa canina L. | + | + | ||||||||||
Rubus idaeus L. | + | + | ||||||||||
Sagittaria sagittifolia L. | + | + | + | |||||||||
Salix alba L. | + | + | + | + | + | + | + | + | ||||
Salix caprea L. | + | + | + | + | ||||||||
Salix fragilis L. | + | + | + | + | + | + | + | + | ||||
Salix purpurea L. | + | + | + | |||||||||
Salix triandra L. | + | + | + | |||||||||
Salix viminalis L. | + | |||||||||||
Sambucus nigra L. | + | + | + | + | + | + | ||||||
Sanguisorba officinalis L. | + | + | ||||||||||
Schoenoplectus lacustris (L.) | + | + | ||||||||||
Scutellaria galericulata L. | + | + | + | + | ||||||||
Solidago canadensis L. | + | + | + | + | ||||||||
Stellaria media (L.) | + | + | + | |||||||||
Symphytum officinale L. | + | |||||||||||
Tanacetum vulgare L. | + | + | + | |||||||||
Taraxacum officinale coll. | + | + | ||||||||||
Tilia cordata Mill. | ||||||||||||
Tragopogon pratensis L. | + | + | + | + | ||||||||
Trifolium montanum L. | + | |||||||||||
Trifolium pratense L. | + | + | ||||||||||
Trifolium repens L. | + | |||||||||||
Ulmus laevis Pall. | + | + | ||||||||||
Urtica dioica L. | + | + | + | + | + | + | + | |||||
Valeriana sambucifolia J. C. Mikan | + | + | ||||||||||
Verbascum nigrum L. | + | |||||||||||
Veronica chamaedrys L. | + | |||||||||||
Vicia cracca L. | + | + | ||||||||||
Vicia sepium L. | + | + | ||||||||||
Vicia tetrasperma (L.) | + | + | ||||||||||
Viola reichenbachiana Boreau | + | |||||||||||
Viscum album L. | + | |||||||||||
Total | 40 | 29 | 31 | 7 | 30 | 15 | 32 | 23 | 26 | 18 | 22 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czajka, A.; Rahmonov, O.; Szypuła, B. The Natural Consequences of Land Use Change on Transformation and Vegetation Development in the Upper Odra Floodplain. Water 2023, 15, 3493. https://doi.org/10.3390/w15193493
Czajka A, Rahmonov O, Szypuła B. The Natural Consequences of Land Use Change on Transformation and Vegetation Development in the Upper Odra Floodplain. Water. 2023; 15(19):3493. https://doi.org/10.3390/w15193493
Chicago/Turabian StyleCzajka, Agnieszka, Oimahmad Rahmonov, and Bartłomiej Szypuła. 2023. "The Natural Consequences of Land Use Change on Transformation and Vegetation Development in the Upper Odra Floodplain" Water 15, no. 19: 3493. https://doi.org/10.3390/w15193493
APA StyleCzajka, A., Rahmonov, O., & Szypuła, B. (2023). The Natural Consequences of Land Use Change on Transformation and Vegetation Development in the Upper Odra Floodplain. Water, 15(19), 3493. https://doi.org/10.3390/w15193493