Mechanism Analysis of Floor Water Inrush Based on Criteria Importance though Intercrieria Correlation
Abstract
:1. Introduction
2. Mechanism Analysis of Fault Activation Water Inrush
2.1. Analysis of Slip Mechanical Mechanism of Fault Plane
2.2. Water Inrush Path of Coal Seam Floor
2.3. Flow Field Control Equation
3. Numerical Simulation Study
3.1. Establishing a Numerical Simulation Model
3.2. Analysis of Floor Seepage Field
4. Data Analysis
4.1. CRITIC Weights
4.2. Weight Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Q. Progress, problems and prospects of prevention and control technology of mine water and reutilization in China. J. China Coal Soc. 2014, 39, 795–805. [Google Scholar]
- Sun, W.; Du, H.; Zhou, F.; Shao, J. Experimental study of crack propagation of rock-like specimens containing conjugate fractures. Geomech. Eng. 2019, 17, 323–331. [Google Scholar]
- Zhang, S.; Guo, W.; Sun, W. Experimental research on extended activation and water inrush of concealed structure in deep mining. Rock Soil 2015, 36, 3111–3120. [Google Scholar]
- Yu, Q.; Zhang, H.; Zhang, Y. Analysis of fault activation mechanism and influencing factors caused by mining. J. China Coal Soc. 2019, 44, 18–30. [Google Scholar]
- Sun, W.; Xue, Y.; Li, T.; Liu, W. Multi-field coupling of water inrush channel formation in a deep mine with a buried fault. Mine Water Environ. 2019, 38, 528–535. [Google Scholar] [CrossRef]
- Zhu, G.; Du, L.; Liu, Y. Dynamic analysis and numerical simulation of fault slip instability induced by coal extraction. J. China Univ. Min. Technol. 2016, 45, 27–33. [Google Scholar]
- Wu, Q.; Liu, Y.; Liu, D.; Zhou, W. Prediction of floor water inrush: The application of GIS-based AHP vulnerable index method to Donghuantuo coal mine, China. Rock Mech. Rock Eng. 2011, 44, 591–600. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, S.; Sun, W. Experimental and analysis research on water inrush catastrophe mode from coal seam floor in deep mining. J. China Coal Soc. 2018, 43, 219–227. [Google Scholar]
- Sainoki, A.; Mitri, H.S. Effect of fault-slip source mechanism on seismic source parameters. Arab. J. Geosci. 2016, 9, 1–12. [Google Scholar] [CrossRef]
- Sainoki, A.; Mitri, H.S. Influence of undulating fault surface properties on its seismic waves during fault-slip. Int. J. Min. Reclam. Environ. 2016, 30, 1–12. [Google Scholar] [CrossRef]
- Sainoki, A.; Mitri, H.S.; Chinnasane, D. Characterization of Aseismic Fault-Slip in a Deep Hard Rock Mine Through Numerical Modelling: Case Study. Rock Mech. Rock Eng. 2017, 50, 2709–2729. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, X.; Sun, W. Study on mechanism of delayed water inrush caused by mining-induced filling fault activation. Coal Sci. Technol. 2022, 50, 136–143. [Google Scholar]
- Wang, S.; Ma, Q.; Fan, X. Numerical simulation study on floor water inrush mechanism under influence of fault. Coal Technol. 2020, 39, 112–115. [Google Scholar]
- Liu, S.; Liu, W.; Yin, D. Numerical simulation of the lagging water inrush process from insidious fault in coal seam floor. Geotech. Geol. Eng. 2017, 35, 1013–1021. [Google Scholar] [CrossRef]
- Jiao, Z.; Zhao, Y.; Jiang, Y. Fault damage induced by mining and its sensitivity analysis of influencing factors. J. China Coal Soc. 2017, 42, 36–42. [Google Scholar]
- Song, Z.; Hao, J.; Tang, J. Study on water inrush from fault’s prevention and control theory. J. China Coal Soc. 2013, 38, 1511–1515. [Google Scholar]
- Gao, M.-T.; Song, Z.-Q.; Yu, W.-B.; Duan, H.-Q.; Xin, H.-Q.; Tang, J.-Q. Overlying Strata Structure Evolution and Engineering Practice Based on the Mining of Lower Liberating Seam in Deep Bursting Coal Seam Group. Geotech. Geol. Eng. 2021, 39, 3293–3314. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, E.; Luo, Y.; Zhao, L.; Yi, K. Mechanism of water inrush and controlling techniques for fault-traversing roadways with floor heave above highly confined aquifers. Mine Water Environ. 2020, 39, 320–330. [Google Scholar] [CrossRef]
- Yang, T.; Shi, W.; Li, S. State of the art and trends of water-inrush mechanism of nonlinear flow in fractured rock Mass. J. China Coal Soc. 2016, 41, 1598–1609. [Google Scholar]
- Li, L.; Yang, T.; Liang, Z.; Zhu, W.; Tang, C. Numerical investigation of groundwater outbursts near faults in underground coal mines. Int. J. Coal Geol. 2011, 85, 276–288. [Google Scholar]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining objective weights in multiple criteria problems: The critic method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Wu, H.W.; Zhen, J.; Zhang, J. Urban rail transit operation safety evaluation based on an improved CRITIC method and cloud model. J. Rail Transp. Plan. Manag. 2020, 16, 100206. [Google Scholar] [CrossRef]
- Shang, D.; Zhao, Z.; Dou, Z.; Yang, Q. Shear behaviors of granite fractures immersed in chemical solutions. Eng. Geol. 2020, 279, 105869. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, D.; Shang, D.; Zhao, H.; Song, Z.; Yu, H. Influence of confining pressure unloading at post-peak on deformation and permeability characteristics of raw coal. Rock Soil Mech. 2018, 39, 2017–2024+2034. [Google Scholar]
- Chen, C.; Peng, S.; Xu, J.; Tang, Y.; Shang, D. Experimental study of stress relaxation characteristics of sandstone under stress and pore-water pressure coupling. Chin. J. Rock Mech. Eng. 2022, 41, 1193–1207. [Google Scholar]
Group Name | Thickness /m | The Angle of Internal Friction (°) | Elastic Modulus /GPa | Poisson’s Ratio | Cohesion /MPa | Tensile Strength /MPa | Density (g/cm3) | Permeability | Porosity |
---|---|---|---|---|---|---|---|---|---|
top slab_1 | 6 | 36 | 3.5 | 0.34 | 3.0 | 0.32 | 2.51 | 3.21 × 10−9 | 0.200 |
top slab_2 | 21 | 40 | 5.2 | 0.26 | 5.1 | 0.41 | 2.53 | 1.50 × 10−9 | 0.100 |
top slab_3 | 12 | 39 | 2.8 | 0.31 | 2.4 | 0.31 | 2.60 | 5.46 × 10−9 | 0.050 |
top slab_4 | 15 | 38 | 5.5 | 0.34 | 5.2 | 0.41 | 2.61 | 2.45 × 10−9 | 0.100 |
top slab_5 | 12 | 39 | 3.2 | 0.34 | 2.4 | 0.22 | 2.55 | 3.25 × 10−9 | 0.050 |
bottom slab_1 | 15 | 40 | 5.0 | 0.29 | 5.0 | 0.50 | 2.51 | 1.00 × 10−10 | 0.001 |
bottom slab_2 | 10 | 41 | 4.7 | 0.31 | 3.8 | 0.42 | 2.53 | 1.00 × 10−10 | 0.001 |
bottom slab_3 | 12 | 38 | 3.6 | 0.36 | 2.2 | 0.21 | 2.60 | 1.00 × 10−10 | 0.001 |
bottom slab_4 | 11 | 39 | 3.7 | 0.33 | 2.6 | 0.35 | 2.53 | 1.00 × 10−10 | 0.001 |
bottom slab_5 | 10 | 37 | 3.6 | 0.33 | 2.9 | 0.33 | 2.54 | 1.00 × 10−10 | 0.001 |
fault | / | 30 | 2.4 | 0.38 | 1.5 | 0.25 | 1.25 | 5.00 × 10−10 | 0.500 |
coal seam | 6 | 28 | 3.0 | 0.36 | 1.6 | 0.30 | 1.33 | 2.45 × 10−10 | 0.100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Liu, H.; Cao, Z.; Yang, H.; Li, J. Mechanism Analysis of Floor Water Inrush Based on Criteria Importance though Intercrieria Correlation. Water 2023, 15, 232. https://doi.org/10.3390/w15020232
Sun W, Liu H, Cao Z, Yang H, Li J. Mechanism Analysis of Floor Water Inrush Based on Criteria Importance though Intercrieria Correlation. Water. 2023; 15(2):232. https://doi.org/10.3390/w15020232
Chicago/Turabian StyleSun, Wenbin, Hongqiang Liu, Zhenbo Cao, Hui Yang, and Jingjing Li. 2023. "Mechanism Analysis of Floor Water Inrush Based on Criteria Importance though Intercrieria Correlation" Water 15, no. 2: 232. https://doi.org/10.3390/w15020232
APA StyleSun, W., Liu, H., Cao, Z., Yang, H., & Li, J. (2023). Mechanism Analysis of Floor Water Inrush Based on Criteria Importance though Intercrieria Correlation. Water, 15(2), 232. https://doi.org/10.3390/w15020232