River Diatoms Reflect Better Past than Current Environmental Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SPI Calculation
2.3. WQI Calculation
3. Results
Parameter | Units | Min | Max | Mean |
---|---|---|---|---|
BOD5 | mg O2·L−1 | 0.00 | 5.70 | 1.22 |
Fecal coliforms | 100 mL−1 | 0 | 104 | 1106 |
Nitrates | ppm | 0.00 | 18.98 | 4.44 |
O2 | % saturation | 33 | 145 | 88 |
pH | 5.50 | 9.32 | 7.86 | |
Phosphates | ppm | 0.00 | 1.90 | 0.41 |
T | °C | 0.0 | 24.50 | 9.70 |
Total solids | ppm | 0.00 | 93.30 | 8.99 |
Turbidity | NTU | 0.77 | 56.42 | 6.13 |
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Round, F.E.; Crawford, R.M.; Mann, D.G. Diatoms: Biology and Morphology of the Genera; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Atazadeh, I.; Sharifi, M.; Kelly, M.G. Evaluation of the Trophic Diatom Index for Assessing Water Quality in River Gharasou, Western Iran. Hydrobiologia 2007, 589, 165–173. [Google Scholar] [CrossRef]
- Kalyoncu, H.; Çİcek, N.L.; Akkoz, C.; Yorulmaz, B. Comparative Performance of Diatom Indices in Aquatic Pollution Assessment. Afr. J. Agric. Res. 2009, 4, 1032–1040. [Google Scholar]
- Zalack, J.T.; Smucker, N.J.; Vis, M.L. Development of a Diatom Index of Biotic Integrity for Acid Mine Drainage Impacted Streams. Ecol. Indic. 2010, 10, 287–295. [Google Scholar] [CrossRef]
- Oeding, S.; Taffs, K.H. Developing a Regional Diatom Index for Assessment and Monitoring of Freshwater Streams in Sub-Tropical Australia. Ecol. Indic. 2017, 80, 135–146. [Google Scholar] [CrossRef]
- Coste, M. Etude Des Methods Biologique Quantitatives d’appreciation de La Qualite Des Eaux; Cemagref: Lyon, France, 1982. [Google Scholar]
- Korhonen, J.J.; Köngäs, P.; Soininen, J. Temporal Variation of Diatom Assemblages in Oligotrophic and Eutrophic Streams. Eur. J. Phycol. 2013, 48, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Iserentant, R.; Blancke, D. A Transplantation Experiment in Running Water to Measure the Response Rate of Diatoms to Changes in Water Quality. In Proceedings of the 8th Diatom Symposium, Paris, France, 27 August–1 September 1984; Volume 27, pp. 347–354. [Google Scholar]
- Wendker, S. Diatom Community Response to Translocation in a Small Softwater Stream. Nova Hedwig. 1992, 55, 397–406. [Google Scholar]
- Lavoie, I.; Campeau, S.; Darchambeau, F.; Cabana, G.; Dillon, P.J. Are Diatoms Good Integrators of Temporal Variability in Stream Water Quality? Freshw. Biol. 2008, 53, 827–841. [Google Scholar] [CrossRef]
- Rimet, F.; Cauchie, H.-M.; Hoffmann, L.; Ector, L. Response of Diatom Indices to Simulated Water Quality Improvements in a River. J. Appl. Phycol. 2005, 17, 119–128. [Google Scholar] [CrossRef]
- Soininen, J.; Eloranta, P. Seasonal Persistence and Stability of Diatom Communities in Rivers: Are There Habitat Specific Differences? Eur. J. Phycol. 2004, 39, 153–160. [Google Scholar] [CrossRef]
- Charles, D.F.; Acker, F.W.; Hart, D.D.; Reimer, C.W.; Cotter, P.B. Large-Scale Regional Variation in Diatom-Water Chemistry Relationships: Rivers of the Eastern United States. In Advances in Algal Biology: A Commemoration of the Work of Rex Lowe; Stevenson, R.J., Pan, Y., Kociolek, J.P., Kingston, J.C., Eds.; Developments in Hydrobiology; Springer: Dordrecht, The Netherlands, 2006; pp. 27–57. ISBN 978-1-4020-5070-1. [Google Scholar]
- Blanco, S.; Bécares, E.; Cauchie, H.-M.; Hoffmann, L.; Ector, L. Comparison of Biotic Indices for Water Quality Diagnosis in the Duero Basin (Spain). Large Rivers 2007, 17, 267–286. [Google Scholar] [CrossRef]
- Lecointe, C.; Coste, M.; Prygiel, J. “Omnidia”: Software for Taxonomy, Calculation of Diatom Indices and Inventories Management. Hydrobiologia 1993, 269, 509–513. [Google Scholar] [CrossRef]
- Mitchell, M.K.; Stapp, W.B.; Beebe, A. Field Manual for Water Quality Monitoring: An Environmental Education Program for Schools; Thomson-Shore: Dexter, MI, USA, 1994. [Google Scholar]
- Sahu, P.; Sikdar, P.K. Hydrochemical Framework of the Aquifer in and around East Kolkata Wetlands, West Bengal, India. Environ. Geol. 2008, 55, 823–835. [Google Scholar] [CrossRef]
- de Boor, C. A Practical Guide to Splines; Springer: New Yourk, NY, USA, 1978. [Google Scholar]
- Al-Yaseri, I.; Morgan, S.; Retzlaff, W. Using Turbidity to Determine Total Suspended Solids in Storm-Water Runoff from Green Roofs. J. Environ. Eng. 2013, 139, 822–828. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- StatSoft Statistica. Version 13.0, Data Analysis Software System. Available online: https://statistica.software.informer.com/13.0/ (accessed on 4 December 2022).
- Szczepocka, E.; Szulc, B. The use of benthic diatoms in estimating water quality of variously polluted rivers. Oceanol. Hydrobiol. Stud. 2009, 38, 17–26. [Google Scholar] [CrossRef]
- Prygiel, J.; Coste, M. The Assessment of Water Quality in the Artois-Picardie Water Basin (France) by the Use of Diatom Indices. Hydrobiologia 1993, 269, 343–349. [Google Scholar] [CrossRef]
- Tudesque, L.; Tisseuil, C.; Lek, S. Scale-Dependent Effects of Land Cover on Water Physico-Chemistry and Diatom-Based Metrics in a Major River System, the Adour-Garonne Basin (South Western France). Sci. Total Environ. 2014, 466–467, 47–55. [Google Scholar] [CrossRef]
- Larras, F.; Coulaud, R.; Gautreau, E.; Billoir, E.; Rosebery, J.; Usseglio-Polatera, P. Assessing Anthropogenic Pressures on Streams: A Random Forest Approach Based on Benthic Diatom Communities. Sci. Total Environ. 2017, 586, 1101–1112. [Google Scholar] [CrossRef]
- Lavoie, I.; Hamilton, P.B.; Wang, Y.-K.; Dillon, P.J.; Campeau, S. A Comparison of Stream Bioassessment in Québec (Canada) Using Six European and North American Diatom-Based Indices. Nova Hedwig. 2009, 135, 37–56. [Google Scholar]
- Taylor, J.C.; van Vuuren, M.J.; Pieterse, A.J.H. The Application and Testing of Diatom-Based Indices in the Vaal and Wilge Rivers, South Africa. Water SA 2007, 33, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Bottin, M.; Soininen, J.; Ferrol, M.; Tison-Rosebery, J. Do Spatial Patterns of Benthic Diatom Assemblages Vary across Regions and Years? Freshw. Sci. 2014, 33, 402–416. [Google Scholar] [CrossRef]
- Tibby, J. Development of a Diatom-Based Model for Inferring Total Phosphorus in Southeastern Australian Water Storages. J. Paleolimnol. 2004, 31, 23–36. [Google Scholar] [CrossRef]
- Gottschalk, S.; Kahlert, M. Shifts in Taxonomical and Guild Composition of Littoral Diatom Assemblages along Environmental Gradients. Hydrobiologia 2012, 694, 41–56. [Google Scholar] [CrossRef]
- Lacoursiere, S.; Lavoie, I.; Rodriguez, M.A.; Campeau, S. Modeling the Response Time of Diatom Assemblages to Simulated Water Quality Improvement and Degradation in Running Waters. Can. J. Fish. Aquat. Sci. 2011, 68, 487–498. [Google Scholar] [CrossRef]
- Hirst, H.; Chaud, F.; Delabie, C.; Jüttner, I.; Ormerod, S.J. Assessing the Short-Term Response of Stream Diatoms to Acidity Using Inter-Basin Transplantations and Chemical Diffusing Substrates. Freshw. Biol. 2004, 49, 1072–1088. [Google Scholar] [CrossRef]
- Rimet, F. Benthic Diatom Assemblages and Their Correspondence with Ecoregional Classifications: Case Study of Rivers in North-Eastern France. Hydrobiologia 2009, 636, 137–151. [Google Scholar] [CrossRef]
Month | p Value |
---|---|
VI | 1.000 |
V | 0.778 |
IV | 0.205 |
III | 0.060 |
II | 0.052 |
I | 0.006 |
C | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viso, R.; Blanco, S. River Diatoms Reflect Better Past than Current Environmental Conditions. Water 2023, 15, 333. https://doi.org/10.3390/w15020333
Viso R, Blanco S. River Diatoms Reflect Better Past than Current Environmental Conditions. Water. 2023; 15(2):333. https://doi.org/10.3390/w15020333
Chicago/Turabian StyleViso, Raquel, and Saúl Blanco. 2023. "River Diatoms Reflect Better Past than Current Environmental Conditions" Water 15, no. 2: 333. https://doi.org/10.3390/w15020333
APA StyleViso, R., & Blanco, S. (2023). River Diatoms Reflect Better Past than Current Environmental Conditions. Water, 15(2), 333. https://doi.org/10.3390/w15020333