Prevalence of Antibiotic-Resistant Bacteria in Domestic Water Storage Tanks in Sidon, Lebanon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey
2.2. Sample Collection
2.3. Analysis of Water Samples
2.3.1. Physical Parameters
2.3.2. Chemical Parameters
2.3.3. Bacteriological Analysis
Media
Bacterial Isolation and Storage
Heterotrophic Plate Count
Bacterial Detection in Water Samples
- 1.
- Detection of E. coli and coliform bacteria
- 2.
- Detection of P. aeruginosa
- 3.
- Detection of intestinal Enterococcus
- 4.
- Detection of S. aureus
- 5.
- Bacterial identification via matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF-MS)
2.3.4. Antibacterial Susceptibility Testing
Inoculum Preparation
Kirby–Bauer Disk Diffusion Method
Detection of Methicillin Resistance in Staphylococcus spp.
2.4. Virulence Genes Detection
2.4.1. DNA Extraction
2.4.2. PCR Assay
2.5. Statistical Analysis
3. Results
3.1. Analysis of Water Samples
3.2. Physicochemical Assessment of Sampled Water
3.3. Microbiological Assessment of Water Samples
3.4. Determination of Antibiotic Susceptibility Patterns
3.5. Screening Virulence Genes
3.5.1. Methicillin-Resistant Staphylococcus Aureus (MRSA) and Virulence S. aureus Genes Detection
3.5.2. Virulence P. aeruginosa Genes Detection
3.6. Correlation between Bacterial Levels and Type of Storage Tanks
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liska, D.; Mah, E.; Brisbois, T.; Barrios, P.L.; Baker, L.B.; Spriet, L.L. Narrative review of hydration and selected health outcomes in the general population. Nutrients 2019, 11, 70. [Google Scholar] [CrossRef] [Green Version]
- Houri, A.; El Jeblawi, S.W. Water quality assessment of Lebanese coastal rivers during dry season and pollution load into the Mediterranean Sea. J. Water Health 2007, 5, 615–623. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating First Addendum, 4th ed.; WHO: Geneva, Switzerland, 2017; Available online: https://apps.who.int/iris/handle/10665/254637 (accessed on 2 February 2020).
- Kilb, B.; Lange, B.; Schaule, G.; Flemming, H.C.; Wingender, J. Contamination of drinking water by coliforms from biofilms grown on rubber-coated valves. Int. J. Hyg. Environ. Health 2003, 206, 563–573. [Google Scholar] [CrossRef]
- Prüss-Üstün, A.; Bos, R.; Gore, F.; Bartram, J. Safer Water, Better Health: Costs, Benefits and Sustainability of Interventions to Protect and Promote Health; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Shakoor, S.; Ahmed, I.; Mukhtiar, S.; Ahmed, I.; Hirani, F.; Sultana, S.; Hasan, R. High heterotrophic counts in potable water and antimicrobial resistance among indicator organisms in two peri-urban communities of Karachi, Pakistan. BMC Res. Notes 2018, 11, 1–6. [Google Scholar] [CrossRef]
- Akter, T.; Jhohura, F.T.; Akter, F.; Chowdhury, T.R.; Mistry, S.K.; Dey, D. Water Quality Index for measuring drinking water quality in rural Bangladesh: A crosssectional study. J. Health Popul. Nutr. 2016, 35, 4. [Google Scholar] [CrossRef] [Green Version]
- Mulamattathil, S.G.; Bezuidenhout, C.; Mbewe, M. Analysis of physico-chemical and bacteriological quality of drinking water in Mafikeng, South Africa. J. Water Health 2015, 13, 1143–1152. [Google Scholar] [CrossRef] [Green Version]
- Kulinkina, A.V.; Plummer, J.D.; Chui, K.K.H.; Kosinski, K.C.; Adomako-Adjei, T.; Egorov, A.I.; Naumova, E.N. Physicochemical parameters affecting the perception of borehole water quality in Ghana. Int. J. Hyg. Environ. Health 2017, 220, 990–997. [Google Scholar] [CrossRef]
- Nielsen, D.L.; Brock, M.A.; Rees, G.N.; Baldwin, D.S. Effects of increasing salinity on freshwater ecosystems in Australia. Aust. J. Bot. 2003, 51, 655–665. [Google Scholar] [CrossRef]
- Mahato, S.; Mahato, A.; Karna, P.K.; Balmiki, N. Investigating aquifer contamination and groundwater quality in eastern Terai region of Nepal. BMC Res. Notes 2018, 11, 321. [Google Scholar] [CrossRef] [Green Version]
- Lawson, E.O. Physico-Chemical Parameters and Heavy Metal Contents of Water from the Mangrove Swamps of Lagos Lagoon, Lagos, Nigeria. Adv. Biol. Res. 2011, 5, 8–21. [Google Scholar]
- Ashbolt Nicholas, J. Microbial Contamination of Drinking Water and Human Health from Community Water Systems. Curr. Environ. Health Rep. 2015, 2, 95–106. [Google Scholar] [CrossRef]
- Anwer, R.; Almarri, F.; Albogami, M.; Alahadib, F. MALDi-TOF MS for Rapid Analysis of Bacterial Pathogens Causing Urinary tract Infections in the Riyadh Region. Diseases 2022, 10, 78. [Google Scholar] [CrossRef]
- Khan, M.; AlMadani, A. Assessment of microbial quality in household water tanks in Dubai, United Arab Emirates. Environ. Eng. Res. 2017, 22, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Adesoji, A.T.; Onuh, J.P.; Bagu, J.; Itohan, S.A. Prevalence and antibiogram study of Staphylococcus aureus isolated from clinical and selected drinking water of Dutsin-Ma, Katsina state, Nigeria. Afr. Health Sci. 2019, 19, 1385–1392. [Google Scholar] [CrossRef] [Green Version]
- Government of Lebanon, & United Nations. Lebanon Crisis Response Plan 2017-2020(2019 update) (Vol. 2020). 2019. Available online: https://www.unhcr.org/lb/wp-content/uploads/sites/16/2019/04/LCRP-EN-2019,pdf (accessed on 30 March 2020).
- Massoud, M.A.; Al-Abady, A.; Jurdi, M.; Nuwayhid, I. The challenges of sustainable access to safe drinking water in rural areas of developing countries: Case of Zawtar El-Charkieh, Southern Lebanon. J. Environ. Health 2010, 72, 24–30. [Google Scholar]
- CDR. Basic Services: Potable Water Supply. 2014. Available online: http://www.cdr.gov.lb/eng/progress_reports/pr102014/Ewater.pdf (accessed on 21 March 2020).
- Tran, T. Standard Methods For the Examination of Water and Wastewater, 23nd ed.; Rodger, B., Andrew, E., Eugene, R., Eds.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2017; Available online: https://www.academia.edu/38769108/Standard_Methods_For_the_Examination_of_Water_and_Wastewater_23nd_edition (accessed on 13 January 2020).
- 5667-21:2010; Water Quality—Sampling—Part 21: Guidance on Sampling of Drinking Water Distributed by Tankers or Means Other than Distribution Pipes. International Organization for Standardization: Geneva, Switzerland, 2010.
- 10523:1994; Water Quality—Determination of pH. International Organization for Standardization: Geneva, Switzerland, 1994.
- 7708:1985; Water Quality—Evaluation of Membrane Filters Used for Microbiological Analyses. International Organization for Standardization: Geneva, Switzerland, 1995.
- Sanaa, S.; Fosu Samuel Sebiawu, G.; Jackson, N.; Karikari, T. Assessment of the quality of groundwater for drinking purposes in the Upper West and Northern regions of Ghana. SpringerPlus 2016, 5, 2001. [Google Scholar] [CrossRef] [Green Version]
- Department of Water Affairs and Forestry. South African Water Quality Guidelines, 2nd ed.; Department of Water Affairs and Forestry: Cape Town, South Africa, 1996; Volume 1. [Google Scholar]
- Guo, N.; Wei, Q.; Xu, Y. Optimization of cryopreservation of pathogenic microbial strains. J. Biosaf. Biosecurity 2020, 2, 66–70. [Google Scholar] [CrossRef]
- Bayot, M.; Bragg, B. Antimicrobial Susceptibility Testing; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539714/ (accessed on 9 March 2020).
- Elsayed, M.S.; El-Bagoury, A.E.M.; Dawoud, M.A. Phenotypic and genotypic detection of virulence factors of Staphylococcus aureus isolated from clinical and subclinical mastitis in cattle and water buffaloes from different farms of Sadat City in Egypt. Vet. World 2015, 8, 1051–1058. [Google Scholar] [CrossRef] [Green Version]
- Koosha, R.Z.; Hosseini, H.M.; Aghdam, E.M.; Fooladi, A.A.I.; Tajandareh, S.G. Distribution of tsst-1 and mecA genes in Staphylococcus aureus isolated from clinical specimens. Jundishapur J. Microbiol. 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Morales-Espinosa, R.; Soberón-Chávez, G.; Delgado-Sapién, G.; Sandner-Miranda, L.; Méndez, J.L.; González-Valencia, G.; Cravioto, A. Genetic and phenotypic characterization of a Pseudomonas aeruginosa population with high frequency of genomic islands. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- WHO/UNICEF. UN-Water Global Analysis and Assessment of Sanitation and Drinking-water (GLAAS)-Lebanon. 2015. Available online: www.who.int (accessed on 15 January 2022).
- Singh, A.K.; Das, S.; Singh, S.; Pradhan, N.; Gajamer, V.R.; Kumar, S.; Tiwari, H.K. Physicochemical parameters and alarming coliform count of the potable water of Eastern Himalayan state Sikkim: An indication of severe fecal contamination and immediate health risk. Front. Cell Dev. Biol. 2019, 7, 174. [Google Scholar] [CrossRef] [Green Version]
- Haydar, C.; Nehme, N.; Awad, S.; Koubayssi, B.; Fakih, M.; Yaacoub, A.; Hamieh, T. Physiochemical and Microbial Assessment of Water Quality in the Upper Litani River Basin, Lebanon. J. Environ. Earth Sci. 2014, 4, 87–97. [Google Scholar]
- Machayekhi, D.; Pierpaoli, M.; Cancelliere, G. Domestic Water in the Bekaa Valley, Lebanon Demand, Access and Institutional Aspects. 2017. Available online: http://pubs.iied.org/10179 (accessed on 23 January 2020).
- Korfali, S.I.; Jurdi, M. Assessment of domestic water quality: Case study, Beirut, Lebanon. Environ. Monit. Assess. 2007, 135, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Chalchisa, D.; Megersa, M.; Beyene, A. Assessment of the quality of drinking water in storage tanks and its implication on the safety of urban water supply in developing countries. Environ. Syst. Res. 2018, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yasin, M.; Ketema, T.; Bacha, K. Physico-chemical and bacteriological quality of drinking water of different sources, Jimma zone, Southwest Ethiopia. BMC Res. Notes 2015, 8, 541. [Google Scholar] [CrossRef] [Green Version]
- Bisi-Johnson, M.A.; Adediran, K.O.; Akinola, S.A.; Popoola, E.O.; Okoh, A.I. Comparative physicochemical and microbiological qualities of source and stored householdwaters in some selected communities in southwestern Nigeria. Sustainability 2017, 9, 454. [Google Scholar] [CrossRef] [Green Version]
- Sila, O.N. Physico-chemical and bacteriological quality of water sources in rural settings, a case study of Kenya, Africa. Sci. Afr. 2019, 2, e00018. [Google Scholar] [CrossRef]
- World Health Organization. Hardness in Drinking-Water: Background Document for Development of Who Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Kumar, M.; Puri, A. A review of permissible limits of drinking water. Indian J. Occup. Environ. Med. 2012, 16, 40–44. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, R.; Zhu, G. Evaluation of physicochemical characteristics in drinking water sources emphasized on fluoride: A case study of Yancheng, China. Int. J. Environ. Res. Public Health 2019, 16, 30. [Google Scholar] [CrossRef] [Green Version]
- Peter, A.; Routledge, E. Present-day monitoring underestimates the risk of exposure to pathogenic bacteria from cold water storage tanks. PLoS ONE 2018, 13, e0195635. [Google Scholar] [CrossRef]
- Sule, I.O.; Agbabiaka, T.O.; Akomolafe, A.V. Bacteriological Quality of Water Stored Exteriorly in Storage Tanks. Res. J. Environ. Sci. 2011, 5, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Zaqoot, H.A.; Hamada, M.; El-Tabash, M.A. Investigation of drinking water quality in the kindergartens of Gaza Strip Governorates. J. Tethys 2016, 4, 88–99. [Google Scholar]
- Pesewu, G.; Norshie, V.; Boakye, N.; Olu-Taiwo, M.; Adjei, D.; Mills-Robertson, F.; Ayeh-Kumi, P. Bacteriological Assessment of the Quality of Water Stored in Household Poly Tanks in Student Hostels in the Korle-Bu Teaching Hospital, Accra, Ghana. Val. Int. J. 2014, 1, 194–202. [Google Scholar]
- Gavini, F.; Leclerc, H.; Mossel, D.A.A. Enterobacteriaceae of the “Coliform Group” in Drinking Water: Identification and Worldwide Distribution. Syst. Appl. Microbiol. 1985, 6, 312–318. [Google Scholar] [CrossRef]
- Kämpfer, P.; Nienhüser, A.; Packroff, G.; Wernicke, F.; Mehling, A.; Nixdorf, K.; Esser, M. Molecular identification of coliform bacteria isolated from drinking water reservoirs with traditional methods and the Colilert-18 system. Int. J. Hyg. Environ. Health 2008, 211, 374–384. [Google Scholar] [CrossRef]
- Bain, R.; Cronk, R.; Wright, J.; Yang, H.; Slaymaker, T.; Bartram, J. Fecal Contamination of Drinking-Water in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. PLoS Med. 2014, 11, e1001644. [Google Scholar] [CrossRef] [Green Version]
- Murray, R.T.; Rosenberg Goldstein, R.E.; Maring, E.F.; Pee, D.G.; Aspinwall, K.; Wilson, S.M.; Sapkota, A.R. Prevalence of microbiological and chemical contaminants in private drinking water wells in maryland, usa. Int. J. Environ. Res. Public Health 2018, 15, 1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akuffo, I.; Cobbina, S.J.; Alhassan, E.H.; Nkoom, M. Assessment Of The Quality Of Water Before And After Storage In The Nyankpala Community Of The Tolon-Kumbungu District, Ghana. Int. J. Sci. Technol. Res. 2013, 2, 221–227. [Google Scholar]
- Tabor, M.; Kibret, M.; Abera, B. Bacteriological and Physicochemical Quality of Drinking Water and Hygiene- Sanitation Practices of the Consumers in Bahir Dar City, Ethiopia. Ethiop. J. Health Sci. 2011, 21, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, H.; Berglund, B.; Xu, H.; Chi, X.; Zhao, Q.; Zhou, Z. Genetic characterization and virulence of a carbapenem-resistant Raoultella ornithinolytica isolated from well water carrying a novel megaplasmid containing blaNDM-1. Environ. Pollut. 2020, 260, 114041. [Google Scholar] [CrossRef]
- Yadav, N.; Singh, S.; Goyal, S.K. Effect of Seasonal Variation on Bacterial Inhabitants and Diversity in Drinking Water of an Office Building, Delhi. Air Soil Water Res. 2019, 12, 117862211988233. [Google Scholar] [CrossRef] [Green Version]
- Levy, K.; Nelson, K.L.; Hubbard, A.; Eisenberg, J.N.S. Rethinking indicators of microbial drinking water quality for health studies in tropical developing countries: Case study in northern coastal Ecuador. Am. J. Trop. Med. Hyg. 2012, 86, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Mote, B.L.; Turner, J.W.; Lipp, E.K. Persistence and growth of the fecal indicator bacteria enterococci in detritus and natural estuarine plankton communities. Appl. Environ. Microbiol. 2012, 78, 2569–2577. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, T.; Kohnen, W.; Jansen, B.; Obst, U. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol. Ecol. 2003, 43, 325–335. [Google Scholar] [CrossRef]
- Ullah, A.; Durrani, R.; Ali, G.; Ahmed, S.H. Prevalence of antimicrobial resistant Pseudomonas aeruginosa in fresh water spring contaminated with domestic sewage. J. Biol. Food Sci. Res. 2012, 1, 19–22. [Google Scholar]
- Mena, K.D.; Gerba, C.P. Risk assessment of pseudomonas aeruginosa in water. Rev. Environ. Contam. Toxicol. 2009, 201, 71–115. [Google Scholar] [CrossRef]
- Wolf, P.; Elsässer-Beile, U. Pseudomonas exotoxin A: From virulence factor to anti-cancer agent. Int. J. Med. Microbiol. 2009, 299, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Faraji, F.; Mahzounieh, M.; Ebrahimi, A.; Fallah, F.; Teymournejad, O.; Lajevardi, B. Molecular detection of virulence genes in Pseudomonas aeruginosa isolated from children with Cystic Fibrosis and burn wounds in Iran. Microb. Pathog. 2016, 99, 1–4. [Google Scholar] [CrossRef]
- Pindi, P.K.; Yadav, P.R.; Shanker, A.S. Identification of Opportunistic Pathogenic Bacteria in Drinking Water Samples of Different Rural Health Centers and Their Clinical Impacts on Humans. BioMed Res. Int. 2013, 2013, 348250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scales, B.S.; Dickson, R.P.; Lipuma, J.J.; Huffnagle, G.B. Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clin. Microbiol. Rev. 2014, 27, 927–948. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, H.; Rudkin, J.K.; Black, N.S.; Gallagher, L.; O’Neill, E.; O’Gara, J.P. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2015, 5, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria, C.; Vaz-Moreira, I.; Serapicos, E.; Nunes, O.C.; Manaia, C.M. Antibiotic resistance in coagulase negative staphylococci isolated from wastewater and drinking water. Sci. Total Environ. 2009, 407, 3876–3882. [Google Scholar] [CrossRef] [PubMed]
- Gómez, P.; Lozano, C.; Benito, D.; Estepa, V.; Tenorio, C.; Zarazaga, M.; Torres, C. Characterization of staphylococci in urban wastewater treatment plants in Spain, with detection of methicillin resistant Staphylococcus aureus ST398. Environ. Pollut. 2016, 212, 71–76. [Google Scholar] [CrossRef]
- Bowen, A.C.; Carapetis, J.R.; Currie, B.J.; Fowler, V., Jr.; Chambers, H.F.; Tong, S.Y.C. Sulfamethoxazole-Trimethoprim (Cotrimoxazole) for Skin and Soft Tissue Infections Including Impetigo, Cellulitis, and Abscess. Open Forum Infect Dis. 2017, 4, ofx232. [Google Scholar] [CrossRef]
Bacteria | Incubation Temperature | Incubation Period |
---|---|---|
Staphylococcus aureus | 35 °C ± 2 °C | 16–18 h; 24 h (CoNS and cefoxitin) |
Enterococcus faecalis | 35 °C ± 2 °C | 16–18 h |
Pseudomonas aeruginosa | 35 °C ± 2 °C | 16–18 h |
Escherichia coli | 35 °C ± 2 °C | 16–18 h |
Acinetobacter | 35 °C ± 2 °C | 20–24 h |
Stenotrophomonas maltophilia | 35 °C ± 2 °C | 20–24 h |
Enterobacteriaceae | 35 °C ± 2 °C | 16–18 h |
Bacteria | Staphylococcus aureus | Pseudomonas aeruginosa | ||||
---|---|---|---|---|---|---|
Virulence gene | clfA | tsst-1 | mecA | lasB | toxA | |
Amplicon Size | 980 bp | 271 bp | 855 bp | 433 pb | 454 pb | |
Annealing temperature | 57 °C | 50.9 °C | 57 °C | 65 °C | 66.1 °C | |
Primer sequence | F | 5′GGC TTCATGCTTAGG-3′ | 5′CTGGTATAGTAGTGGGTCTG3′ | 5′TGAGTTGAACCTGGTGAAGTT-3′ | 5′ACTGTCGCGGCCGCATTTCGTCAT3′ | 5′TCAGGGCGCACGAGAGCAACGAGA3′ |
R | 5′TTTTCAGGGTCAATATAAGC3′ | 5′AGGTAGTTCTATTGGAGTAGG3′ | 5′TGGTATGTGGAAGTTAGATTGG-3′ | 5′CATCGCCGTGCCGTCCCAGTAGG3′ | 5′GACAGCCGCGCCGCCAGGTAGAGG3′ | |
Reference | [28] | [29] | [29] | [30] | [30] |
Minimum | Maximum | Mean ± SD | % Coefficient of Variation | WHO Guidelines | |
---|---|---|---|---|---|
pH | 7.26 | 8.46 | 7.80 ± 0.27 | 3.44 | 6.5–8.5 |
TDS (mg/L) | 249 | 683 | 531.21 ± 66.55 | 12.97 | 1000 |
Chloride (mg/L) | 28 | 163 | 77.27 ± 39.14 | 50.65 | 250 |
EC (µs/cm) | 383 | 1051 | 817.24 ± 102.38 | 12.53 | - |
Total alkalinity (mg/L) | 120 | 286 | 195.24 ± 36.52 | 18.71 | - |
Calcium hardness (mg/L) | 88 | 244 | 181.52 ± 37.29 | 20.54 | 0–17: soft 17–60: slightly hard 60–120: moderately hard 120–180: hard >180: very hard |
Total Coliform (CFU/100 mL) | Fecal Coliform (CFU/100 mL) | E. coli (CFU/100 mL) | Enterococcus (CFU/50 mL) | Staphylococcus (CFU/100 mL) | Pseudomonas (CFU/250 mL) | |
---|---|---|---|---|---|---|
Mean | 10.14 | 1.90 | 0.28 | 14.12 | 8.50 | 4.78 |
SD | 17.24 | 5.25 | 0.78 | 32.20 | 16.85 | 15.69 |
%Coefficient of variation | 170 | 276 | 280 | 229 | 198 | 329 |
Antibiotic Agent | % If Resistant | % If Sensitive | % If Intermediate | |
---|---|---|---|---|
Enterococcus faecalis (n = 35) | Ampicillin | 40% | 60% | 0% |
E. coli (n = 8) | CEFEPIME (FEP) | 0% | 100% | 0% |
CEFOXITIN (FOX) | 14% | 86% | 0% | |
AMPICILLIN (AMP) | 29% | 43% | 29% | |
CEFTAZIDIME (CAZ) | 14% | 86% | 0% | |
AZTREONAM (ATM) | 14% | 86% | 0% | |
TETRACYCLINE (TET) | 0% | 86% | 14% | |
CEFPODXIME (CPD) | 0% | 86% | 14% | |
MEROPENEM (MEM) | 0% | 100% | 0% | |
CEFTRIAXONE (CRO) | 0% | 100% | 0% | |
GENTAMICIN (GMN) | 0% | 100% | 0% | |
CEFOTAXIME (CTX) | 0% | 100% | 0% | |
TRIMETHOPRIM-SULFAMETHOXAZOLE (SXT) | 0% | 86% | 14% | |
Staphylococcus spp.: S. aureus + S. pasteuri + S. equorum (n = 31) | CEFOXITIN (FOX) | 29% | 71% | 0% |
TETRACYCLINE (TET) | 4% | 61% | 36% | |
GENTAMYCIN (GMN) | 4% | 82% | 14% | |
TRIMEYHOPRIM-SULFAMETHOXAZOLE (SXT) | 50% | 36% | 14% | |
Pseudomonas aeruginosa (n = 11) | CEFEPIME (FEP) | 9% | 82% | 0% |
CEFTAZIDIME (CAZ) | 9% | 73% | 18% | |
AZTREONAM (ATM) | 18% | 73% | 9% | |
GENTAMICIN (GMN) | 0% | 91% | 9% | |
Acinetobacter johnsonii (n = 11) | CEFEPIME (FEP) | 29% | 36% | 36% |
CEFTAZIDIME (CAZ) | 36% | 21% | 43% | |
TETRACYCLINE (TET) | 0% | 86% | 14% | |
MEROPENEM (MEM) | 0% | 93% | 7% | |
CEFTRIAXONE (CRO) | 7% | 57% | 36% | |
GENTAMICIN (GMN) | 0% | 93% | 7% | |
CEFOTAXIME (CTX) | 21% | 36% | 43% | |
TRIMEYHOPRIM-SULFAMETHOXAZOLE (SXT) | 50% | 43% | 7% | |
Other Enterobacteriaceae (n = 5) | CEFEPIME (FEP) | 20% | 60% | 20% |
CEFOXITIN (FOX) | 100% | 0% | 0% | |
AMPICILLIN (AMP) | 60% | 40% | 0% | |
CEFTAZIDIME (CAZ) | 40% | 40% | 20% | |
AZTREONAM (ATM) | 20% | 60% | 20% | |
TETRACYCLINE (TET) | 0% | 80% | 20% | |
CEFPODXIME (CPD) | 80% | 20% | 0% | |
MEROPENEM (MEM) | 0% | 100% | 0% | |
CEFTRIAXONE (CRO) | 60% | 40% | 0% | |
GENTAMICIN (GMN) | 0% | 80% | 20% | |
CEFOTAXIME (CTX) | 20% | 40% | 40% | |
TRIMEYHOPRIM-SULFAMETHOXAZOLE (SXT) | 40% | 40% | 20% | |
Stenotrophomonas maltophilia (n = 1) | TRIMEYHOPRIM-SULFAMETHOXAZOLE (SXT) | 100% | 0% | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borjac, J.; Zeino, W.; Matar, A.; Khawaja, S.; Merheb, M.; Matar, R. Prevalence of Antibiotic-Resistant Bacteria in Domestic Water Storage Tanks in Sidon, Lebanon. Water 2023, 15, 335. https://doi.org/10.3390/w15020335
Borjac J, Zeino W, Matar A, Khawaja S, Merheb M, Matar R. Prevalence of Antibiotic-Resistant Bacteria in Domestic Water Storage Tanks in Sidon, Lebanon. Water. 2023; 15(2):335. https://doi.org/10.3390/w15020335
Chicago/Turabian StyleBorjac, Jamilah, Wafaa Zeino, Alaa Matar, Salwa Khawaja, Maxime Merheb, and Rachel Matar. 2023. "Prevalence of Antibiotic-Resistant Bacteria in Domestic Water Storage Tanks in Sidon, Lebanon" Water 15, no. 2: 335. https://doi.org/10.3390/w15020335
APA StyleBorjac, J., Zeino, W., Matar, A., Khawaja, S., Merheb, M., & Matar, R. (2023). Prevalence of Antibiotic-Resistant Bacteria in Domestic Water Storage Tanks in Sidon, Lebanon. Water, 15(2), 335. https://doi.org/10.3390/w15020335