Trace Element Patterns in Shells of Mussels (Bivalvia) Allow to Distinguish between Fresh- and Brackish-Water Coastal Environments of the Subarctic and Boreal Zone
Abstract
:1. Introduction
2. Methods
2.1. Sampling
2.2. Species Determination
2.3. Molecular Analyses
2.4. Preparation of Shells to Chemical Analyses
2.5. X-ray Diffraction Analysis
2.6. Analysis of the Trace Element Composition of Shells, Water, and Bottom Sediment Samples
2.7. Data Treatment
2.7.1. Normality Tests and Comparisons
2.7.2. Pairwise and Multiple Linear Regression
2.7.3. Principal Component Analysis (PCA)
2.7.4. General Linear Model (GLM)
2.7.5. Metal Pollution Index (MPI)
3. Results
3.1. Species Determination
3.1.1. Collected Mollusks’ Samples and Shell Structure
3.1.2. Molecular Analyses
3.2. Mineralogical Composition of Shells
3.3. Elemental Composition of Shells
3.4. Elemental Composition of Water and Bottom Sediments
3.5. Element Distribution Coefficients between the Shell and the Environment
3.6. Statistical Treatment
3.6.1. Comparison of Marine and Freshwater Shell Samples by Elemental Ratios
3.6.2. Comparison of Al-normalized Concentration of Elements in Shells among Localities
3.6.3. PCA Treatment of Trace Element Concentrations and Distribution Coefficients
3.7. Controlling Factors of Accumulation of Trace Elements in Mussels’ Shells
3.7.1. Biological Control (Species Identity)
3.7.2. Environmental (Locality) Control
3.7.3. Distribution Coefficients between Shells and Water in Marine and Freshwater Environment
3.8. Mineralogical Control of Elemental Composition
3.9. Metal Pollution Index
4. Discussion
4.1. Differences in Element Concentrations between Marine and Freshwater Mussels
4.2. Relationships between Mineralogical and Chemical Composition of Bivalve Shells
4.3. Elemental Ratios in Shells (Alkalis, Alkaline-Earth Metals, and Divalent Heavy Metals)
4.4. Lithogenic Elements
4.5. Element Distribution between Shells and Environment
4.6. Biological and Environmental Control of Trace Element Accumulation in Mussels’ Shells
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schöne, B.R. Arctica islandica (Bivalvia): A unique paleoenvironmental archive of the northern North Atlantic Ocean. Glob. Planet. Chang. 2013, 111, 199–225. [Google Scholar] [CrossRef]
- Schöne, B.R.; Page, N.A.; Rodland, D.L.; Fiebig, J.; Baier, S.; Helama, S.O.; Oschmann, W. ENSO-coupled precipitation records (1959–2004) based on shells of freshwater bivalve mollusks (Margaritifera falcata) from British Columbia. Int. J. Earth Sci. 2007, 96, 525–540. [Google Scholar] [CrossRef]
- Bolotov, I.N.; Pokrovsky, O.S.; Auda, Y.; Bespalaya, J.V.; Vikhrev, I.V.; Gofarov, M.Y.; Lyubas, A.A.; Viers, J.; Zouiten, C. Trace element composition of freshwater pearl mussels Margaritifera spp. across Eurasia: Testing the effect of species and geographic location. Chem. Geol. 2015, 402, 125–139. [Google Scholar] [CrossRef]
- Watanabe, T.; Suzuki, M.; Komoto, Y.; Shirai, K.; Yamazaki, A. Daily and annual shell growth in a long-lived freshwater bivalve as a proxy for winter snowpack. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 569, 110346. [Google Scholar] [CrossRef]
- Sklyarov, E.V. Interpretation of Geochemical Data; Intermet Inzhiniring: Moscow, Russia, 2001; p. 288. (In Russian) [Google Scholar]
- Peharda, M.; Schöne, B.R.; Black, B.A.; Corrège, T. Advances of sclerochronology research in the last decade. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 570, 110371. [Google Scholar] [CrossRef]
- Zhao, L.; Walliser, E.O.; Mertz-Kraus, R.; Schöne, B.R. Unionid shells (Hyriopsis cumingii) record manganese cycling at the sediment–water interface in a shallow eutrophic lake in China (Lake Taihu). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 484, 97–108. [Google Scholar] [CrossRef]
- Gillikin, D.P.; Lorrain, A.; Navez, J.; Taylor, J.W.; André, L.; Keppens, E.; Baeyens, W.; Dehairs, F. Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. Geochem. Geophys. Geosystems 2005, 6, 1–15. [Google Scholar] [CrossRef]
- Carré, M.; Bentaleb, I.; Bruguier, O.; Ordinola, E.; Barrett, N.T.; Fontugne, M. Calcification rate influence on trace element concentrations in aragonitic bivalve shells: Evidences and mechanisms. Geochim. Et Cosmochim. Acta 2006, 70, 4906–4920. [Google Scholar] [CrossRef]
- Chamberlayne, B.K.; Tyler, J.J.; Gillanders, B.M. Elemental concentrations of waters and bivalves in the fresh to hypersaline Coorong Lagoons, South Australia: Implications for palaeoenvironmental studies. Estuar. Coast. Shelf Sci. 2021, 255, 107354. [Google Scholar] [CrossRef]
- Geeza, T.J.; Gillikin, D.P.; Goodwin, D.H.; Evans, S.D.; Watters, T.; Warner, N.R. Controls on magnesium, manganese, strontium, and barium concentrations recorded in freshwater mussel shells from Ohio. Chem. Geol. 2019, 526, 142–152. [Google Scholar] [CrossRef]
- Schleinkofer, N.; Raddatz, J.; Evans, D.; Gerdes, A.; Flögel, S.; Voigt, S.; Büscher, J.V.; Wisshak, M. Compositional variability of Mg/Ca, Sr/Ca, and Na/Ca in the deep-sea bivalve Acesta excavata (Fabricius, 1779). PLoS ONE 2021, 16, e0245605. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Schöne, B.R.; Mertz-Kraus, R. Controls on strontium and barium incorporation into freshwater bivalve shells (Corbicula fluminea). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 465, 386–394. [Google Scholar] [CrossRef]
- Marali, S.; Schöne, B.R.; Mertz-Kraus, R.; Griffin, S.M.; Wanamaker, A.D.; Matras, U.; Butler, P.G. Ba/Ca ratios in shells of Arctica islandica–potential environmental proxy and crossdating tool. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 465, 347–361. [Google Scholar] [CrossRef]
- Takesue, R.K.; Bacon, C.R.; Thompson, J.K. Influences of organic matter and calcification rate on trace elements in aragonitic estuarine bivalve shells. Geochim. Et Cosmochim. Acta 2008, 72, 5431–5445. [Google Scholar] [CrossRef]
- Bailey, T.R.; Lear, C.H. Testing the effect of carbonate saturation on the Sr/Ca of biogenic aragonite: A case study from the River Ehen, Cumbria, UK. Geochem. Geophys. Geosystems 2006, 7, Q03019. [Google Scholar] [CrossRef]
- Lorrain, A.; Gillikin, D.P.; Paulet, Y.-M.; Chauvaud, L.; Mercier, A.L.; Navez, J.; André, L. Strong kinetic effects on Sr/Ca ratios in the calcitic bivalve Pecten maximus. Geology 2005, 33, 965–968. [Google Scholar] [CrossRef]
- Lazareth, C.E.; Le Cornec, F.; Candaudap, F.; Freydier, R. Trace element heterogeneity along isochronous growth layers in bivalve shell: Consequences for environmental reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 373, 39–49. [Google Scholar] [CrossRef]
- Freitas, P.S.; Clarke, L.J.; Kennedy, H.; Richardson, C.A.; Abrantes, F. Environmental and biological controls on elemental (Mg/Ca, Sr/Ca and Mn/Ca) ratios in shells of the king scallop Pecten Maximus. Geochim. Et Cosmochim. Acta 2006, 70, 5119–5133. [Google Scholar] [CrossRef]
- Brown, R.J.; Severin, K.P. Otolith chemistry analyses indicate that water Sr:Ca is the primary factor influencing otolith Sr: Ca for freshwater and diadromous fish but not for marine fish. Can. J. Fish. Aquat. Sci. 2009, 66, 1790–1808. [Google Scholar] [CrossRef]
- Izumida, H.; Yoshimura, T.; Suzuki, A.; Nakashima, R.; Ishimura, T.; Yasuhara, M.; Inamura, A.; Shikazono, N.; Kawahata, H. Biological and water chemistry controls on Sr/Ca, Ba/Ca, Mg/Ca and δ18O profiles in freshwater pearl mussel Hyriopsis sp. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 309, 298–308. [Google Scholar] [CrossRef]
- Fröhlich, L.; Siebert, V.; Huang, Q.; Thébault, J.; Jochum, K.P.; Schöne, B.R. Deciphering the potential of Ba/Ca, Mo/Ca and Li/Ca profiles in the bivalve shell Pecten maximus as proxies for the reconstruction of phytoplankton dynamics. Ecol. Indic. 2022, 141, 109121. [Google Scholar] [CrossRef]
- Freitas, P.S.; Clarke, L.J.; Kennedy, H.; Richardson, C.A. Manganese in the shell of the bivalve Mytilus edulis: Seawater Mn or physiological control? Geochim. Et Cosmochim. Acta 2016, 194, 266–278. [Google Scholar] [CrossRef]
- Naumov, A.D. Bivalves of the White Sea. Experience of Ecologic-Faunistic Analysis; ZIN, Russian Academy of Sciences: St. Petersburg, Russia, 2006; p. 499. (In Russian) [Google Scholar]
- Bolotov, I.N.; Kondakov, A.V.; Konopleva, E.S.; Vikhrev, I.V.; Aksenova, O.V.; Aksenov, A.S.; Bespalaya, Y.V.; Borovskoy, A.V.; Danilov, P.P.; Dvoryankin, G.A.; et al. Integrative taxonomy, biogeography and conservation of freshwater mussels (Unionidae) in Russia. Sci. Rep. 2020, 10, 3072. [Google Scholar] [CrossRef]
- Konopleva, E.S.; Bolotov, I.N.; Vikhrev, I.V.; Gofarov, M.Y.; Kondakov, A.V. An integrative approach underscores the taxonomic status of Lamellidens exolescens, a freshwater mussel from the Oriental tropics (Bivalvia: Unionidae). Syst. Biodivers. 2017, 15, 204–217. [Google Scholar] [CrossRef]
- Konopleva, E.S.; Pfeiffer, J.M.; Vikhrev, I.V.; Kondakov, A.V.; Gofarov, M.Y.; Aksenova, O.V.; Lunn, Z.; Chan, N.; Bolotov, I.N. A new genus and two new species of freshwater mussels (Unionidae) from western Indochina. Sci. Rep. 2019, 9, 4106. [Google Scholar] [CrossRef] [PubMed]
- Bolotov, I.N.; Makhrov, A.A.; Gofarov, M.Y.; Aksenova, O.V.; Aspholm, P.E.; Bespalaya, Y.V.; Kabakov, M.B.; Kolosova, Y.S.; Kondakov, A.V.; Ofenböck, T.; et al. Climate Warming as a Possible Trigger of Keystone Mussel Population Decline in Oligotrophic Rivers at the Continental Scale. Sci. Rep. 2018, 8, 35. [Google Scholar] [CrossRef]
- Tomilova, A.A.; Lyubas, A.A.; Kondakov, A.V.; Vikhrev, I.V.; Gofarov, M.Y.; Kolosova, Y.S.; Vinarski, M.V.; Palatov, D.M.; Bolotov, I.N. Evidence for Plio-Pleistocene Duck Mussel Refugia in the Azov Sea River Basins. Diversity 2020, 12, 118. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A better web interface. Nucleic Acids Res. 2008, 36, W5–W9. [Google Scholar] [CrossRef]
- Lyubas, A.A.; Tomilova, A.A.; Chupakov, A.V.; Vikhrev, I.V.; Travina, O.V.; Orlov, A.S.; Zubrii, N.A.; Kondakov, A.V.; Bolotov, I.N.; Pokrovsky, O.S. Iron, Phosphorus and Trace Elements in Mussels’ Shells, Water, and Bottom Sediments from the Severnaya Dvina and the Onega river basins (North western Russia). Water 2021, 13, 3227. [Google Scholar] [CrossRef]
- Usero, J.; Gonzalez-Regalado, E.; Gracia, I. Trace metals in the bivalve molluscs Ruditapes decussatus and Ruditapes philippinarum from the Atlantic coast of southern Spain. Environ. Int. 1997, 23, 291–298. [Google Scholar] [CrossRef]
- Sedeño-Díaz, J.E.; López-López, E.; Mendoza-Martínez, E.; Rodríguez-Romero, A.J.; Morales-García, S.S. Distribution coefficient and metal pollution index in water and sediments: Proposal of a new index for ecological risk assessment of metals. Water 2020, 12, 29. [Google Scholar] [CrossRef]
- Ravera, O.; Cenci, R.; Beone, G.M.; Dantas, M.; Lodigiani, P. Trace element concentrations in freshwater mussels and macrophytes as related to those in their environment. J. Limnol. 2003, 62, 61–70. [Google Scholar] [CrossRef]
- Markich, S.J.; Jeffree, R.A.; Burke, P.T. Freshwater bivalve shells as archival indicators of metal pollution from a copper-uranium mine in tropical Northern Australia. Environ. Sci. Technol. 2002, 36, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Chupakov, A.V.; Pokrovsky, O.S.; Moreva, O.Y.; Shirokova, L.S.; Neverova, N.V.; Chupakova, A.A.; Kotova, E.I.; Vorobyeva, T.Y. High resolution multi-annual riverine fluxes of organic carbon, nutrient and trace element from the largest European Arctic river, Severnaya Dvina. Chem. Geol. 2020, 538, 119491. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Viers, J.; Shirokova, L.S.; Shevchenko, V.P.; Filipov, A.S.; Dupré, B. Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in Severnaya Dvina River and its tributary. Chem. Geol. 2010, 273, 136–149. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Shirokova, L.S.; Viers, J.; Gordeev, V.V.; Shevchenko, V.P.; Chupakov, A.V.; Vorobieva, T.Y.; Candaudap, F.; Causserand, C.; Lanzanova, A.; et al. Fate of colloids during estuarine mixing in the Arctic. Ocean Sci. 2014, 10, 107–125. [Google Scholar] [CrossRef]
- Dessert, C.; Gaillardet, J.; Dupre, B.; Schott, J.; Pokrovsky, O.S. Fluxes of high- versus low-temperature water-rock interactions in aerial volcanic areas: The example of the Kamchatka Peninsula, Russia. Geochim. Cosmochim. Acta 2009, 73, 148–169. [Google Scholar] [CrossRef]
- Van Plantinga, A.A.; Grossman, E.L. Trace elements in mussel shells from the Brazos River, Texas: Environmental and biological control. Biogeosciences Discuss. 2019, 1–27. [Google Scholar] [CrossRef]
- Krickov, I.V.; Pokrovsky, O.S.; Manasypov, R.M.; Lim, A.G.; Shirokova, L.S.; Viers, J. Colloidal transport of carbon and metals by western Siberian rivers during different seasons across a permafrost gradient. Geochim. Et Cosmochim. Acta 2019, 265, 221–241. [Google Scholar] [CrossRef]
- Krickov, I.V.; Lim, A.G.; Manasypov, R.M.; Loiko, S.V.; Vorobyev, S.N.; Shevchenko, V.P.; Dara, O.M.; Gordeev, V.V.; Pokrovsky, O.S. Major and trace elements in suspended matter of western Siberian rivers: First assessment across permafrost zones and landscape parameters of watersheds. Geochim. Et Cosmochim. Acta 2020, 269, 429–450. [Google Scholar] [CrossRef]
- Piwoni-Piórewicz, A.; Kukliński, P.; Strekopytov, S.; Humphreys-Williams, E.; Najorka, J.; Iglikowska, A. Size effect on the mineralogy and chemistry of Mytilus trossulus shells from the southern Baltic Sea: Implications for environmental monitoring. Environ. Monit. Assess. 2017, 189, 197. [Google Scholar] [CrossRef]
- Spann, N.; Harper, E.M.; Aldridge, D.C. The unusual mineral vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK. Naturwissenschaften 2010, 97, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Frenzel, M.; Harper, E.M. Micro-structure and chemical composition of vateritic deformities occurring in the bivalve Corbicula fluminea (Müller, 1774). J. Struct. Biol. 2011, 174, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Mavromatis, V.; Goetschl, K.E.; Grengg, C.; Konrad, F.; Purgstaller, B.; Dietzel, M. Barium partitioning in calcite and aragonite as a function of growth rate. Geochim. Cosmochim. Acta 2018, 237, 65–78. [Google Scholar] [CrossRef]
- Füger, A.; Konrad, F.; Leis, A.; Dietzel, M.; Mavromatis, V. Effect of growth rate and pH on lithium incorporation in calcite. Geochim. Cosmochim. Acta 2019, 248, 14–24. [Google Scholar] [CrossRef]
- Brazier, J.M.; Blanchard, M.; Meheut, M.; Schmitt, A.D.; Schott, J.; Mavromatis, V. Experimental and theoretical investigations of stable Sr isotope fractionation during its incorporation in aragonite. Geochim. Cosmochim. Acta 2023, 358, 134–147. [Google Scholar] [CrossRef]
- Mavromatis, V.; Brazier, J.M.; Goetschl, K.E. Controls of temperature and mineral growth rate on Mg incorporation in aragonite. Geochim. Cosmochim. Acta 2022, 317, 53–64. [Google Scholar] [CrossRef]
- Böttcher, M.E.; Dietzel, M. Metal-ion partitioning during low-temperature precipitation and dissolution of anhydrous carbonates and sulphates. Eur. Mineral. Union Notes Mineral. 2010, 10, 139–187. [Google Scholar] [CrossRef]
- Iglikowska, A.; Bełdowski, J.; Chełchowski, M.; Chierici, M.; Kędra, M.; Przytarska, J.; Sowa, A.; Kukliński, P. Chemical composition of two mineralogically contrasting Arctic bivalves’ shells and their relationships to environmental variables. Mar. Pollut. Bull. 2017, 114, 903–916. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, D.D.; Gillikin, D.P. Do freshwater mussel shells record road-salt pollution? Sci. Rep. 2014, 4, 7168. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Shirokova, L.S.; Zabelina, S.A.; Vorobieva, T.Y.; Moreva, O.Y.; Klimov, S.I.; Chupakov, A.V.; Shorina, N.V.; Kokryatskaya, N.M.; Audry, S.; et al. Size fractionation of trace elements in a seasonally stratified boreal lake: Control of organic matter and iron colloids. Aquat. Geochem. 2012, 18, 115–139. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Viers, J.; Dupré, B.; Chabaux, F.; Gaillardet, J.; Audry, S.; Prokushkin, A.S.; Shirokova, L.S.; Kirpotin, S.N.; Lapitsky, S.A.; et al. Biogeochemistry of carbon, major and trace elements in watersheds of northern Eurasia drained to the Arctic Ocean: The change of fluxes, sources and mechanisms under the climate warming prospective. Comptes Rendus Geosci. 2012, 344, 663–677. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Manasypov, R.M.; Chupakov, A.V.; Kopysov, S. Element transport in the Taz River, western Siberia. Chem. Geol. 2022, 614, 121180. [Google Scholar] [CrossRef]
- Gordeev, V.V.; Kochenkova, A.I.; Starodymova, D.P.; Shevchenko, V.P.; Belorukov, S.K.; Lokhov, A.S.; Yakovlev, A.E.; Chernov, V.A.; Pokrovsky, O.S. Major and Trace Elements in Water and Suspended Matter of the Northern Dvina River and Their Annual Discharge into the White Sea. Oceanology 2021, 61, 994–1005. [Google Scholar] [CrossRef]
- Kelemen, Z.; Gillikin, D.P.; Bouillon, S. Relationship between river water chemistry and shell chemistry of two tropical African freshwater bivalve species. Chem. Geol. 2019, 526, 130–141. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Shirokova, L.S. Diurnal variations of dissolved and colloidal organic carbon and trace metals in a boreal lake during summer bloom. Water Res. 2013, 47, 922–932. [Google Scholar] [CrossRef]
- Vander Putten, E.; Dehairs, F.; Keppens, E.; Baeyens, W. High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: Environmental and biological controls. Geochim. Et Cosmochim. Acta 2000, 64, 997–1011. [Google Scholar] [CrossRef]
- Lazareth, C.E.; Vander Putten, E.; André, L.; Dehairs, F. High-resolution trace element profiles in shells of the mangrove bivalve Isognomon ephippium: A record of environmental spatio-temporal variations? Estuar. Coast. Shelf Sci. 2003, 57, 1103–1114. [Google Scholar] [CrossRef]
- Langlet, D.; Alleman, L.Y.; Plisnier, P.-D.; Hughes, H.; André, L. Manganese content records seasonal upwelling in Lake Tanganyika mussels. Biogeosciences 2007, 4, 195–203. [Google Scholar] [CrossRef]
- Manasypov, R.M.; Pokrovsky, O.S.; Shirokova, L.S.; Auda, Y.; Zinner, N.S.; Kirpotin, S.N. Biogeochemistry of macrophytes, sediments and porewaters in lakes of permafrost peatlands, western Siberia. Sci. Total Environ. 2021, 763, 144201. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Wang, Z.; Liu, J.; Xu, N.; Li, H. The Sr/Ba ratio response to salinity in clastic sediments of the Yangtze River Delta. Chem. Geol. 2021, 559, 119923. [Google Scholar] [CrossRef]
- Hatch, M.B.A.; Schellenberg, S.A.; Carter, M.L. Ba/Ca variations in the modern intertidal bean clam Donax gouldii: An upwelling proxy? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 373, 98–107. [Google Scholar] [CrossRef]
- Komagoe, T.; Watanabe, T.; Shirai, K.; Yamazaki, A.; Uematu, M. Geochemical and microstructural signals in giant clam Tridacna maxima recorded typhoon events at Okinotori Island, Japan. J. Geophys. Res. Biogeosci. 2018, 123, 1460–1474. [Google Scholar] [CrossRef]
- Church, T.M.; Bernat, M.; Sharma, P. Distribution of natural uranium, thorium, lead, and polonium radionuclides in tidal phases of a Delaware salt marsh. Estuaries 1986, 9, 2–8. [Google Scholar] [CrossRef]
- Kim, G.; Alleman, L.Y.; Church, T.M. Accumulation records of radionuclides and trace metals in two contrasting Delaware salt marshes. Mar. Chem. 2004, 87, 87–96. [Google Scholar] [CrossRef]
- Gillikin, D.P.; Dehairs, F.; Baeyens, W.; Navez, J.; Lorrain, A.; André, L. Inter-and intra-annual variations of Pb/Ca ratios in clam shells (Mercenaria mercenaria): A record of anthropogenic lead pollution? Mar. Pollut. Bull. 2005, 50, 1530–1540. [Google Scholar] [CrossRef]
- Savenko, V.S. On the relationship between biogenic and terrigenous suspended particulate matter in the ocean. Dokl. Acad. Sci. 1999, 364, 251–254. Available online: https://scholar.google.com/scholar_lookup?title=On+the+relationship+between+biogenic+and+terrigenous+suspended+particulate+matter+in+the+ocean&author=Savenko,+V.S.&publication_year=1999&journal=Dokl.+Acad.+Sci.&volume=364&pages=251%E2%80%93254 (accessed on 23 July 2023).
- Bubb, J.M.; Rudd, T.; Lester, J.N. Distribution of heavy metals in the River Yare and its associated broads III. Lead and zinc. Sci. Total Environ. 1991, 102, 189–208. [Google Scholar] [CrossRef]
- Birch, G.F. An assessment of aluminum and iron in normalisation and enrichment procedures for environmental assessment of marine sediment. Sci. Total Environ. 2020, 727, 138123. [Google Scholar] [CrossRef] [PubMed]
- Ponnurangam, A.; Bau, M.; Brenner, M.; Koschinsky, A. Mussel shells of Mytilus edulis as bioarchives of the distribution of rare earth elements and yttrium in seawater and the potential impact of pH and temperature on their partitioning behavior. Biogeosciences 2016, 13, 751–760. [Google Scholar] [CrossRef]
- Faure, G.; Crocket, J.H.; Hueley, P.M. Some aspects of the geochemistry of strontium and calcium in the Hudson Bay and the Great Lakes. Geochim. Et Cosmochim. Acta 1967, 31, 451–461. [Google Scholar] [CrossRef]
- Liu, C.; Shao, S.; Zhang, L.; Du, Y.; Chen, K.; Fan, C.; Yu, Y. Sulfur development in the water-sediment system of the algae accumulation embay area in Lake Taihu. Water 2019, 11, 1817. [Google Scholar] [CrossRef]
- Vodyanitskii, Y.N. Chemical aspects of uranium behavior in soils: A review. Eurasian Soil Sci. 2011, 44, 862–873. [Google Scholar] [CrossRef]
- Kriauciunas, V.V.; Iglovsky, S.A.; Lyubas, A.A.; Kuznetsova, I.A.; Kotova, E.I.; Shakhova, E.V.; Mironenko, K.A. New data on the paleogeography of the eastern coast of the Grönfjord Bay (western Spitsbergen Island) based on the study of Holocene deposits at Cape Finniset using isotope-geochemical methods. Bull. Tomsk Polytech. Univ. Eng. Georesources 2020, 331, 171–183. [Google Scholar] [CrossRef]
- Pavlov, D.F.; Bezuidenhout, J.; Frontasyeva, M.V.; Goryainova, Z.I. Differences in trace element content between non-indigenous farmed and invasive bivalve mollusks of the South African Coast. Am. J. Anal. Chem. 2015, 6, 886–897. [Google Scholar] [CrossRef]
Environment | Locality | Species | Salinity (Marine Biotopes)/TDS (Freshwater Biotopes), g/L | Coordinates | |
---|---|---|---|---|---|
Latitude | Longitude | ||||
Marine | Jagry Island, Dvina Bay | Mytilus edulis | 6.13 | 64.643775 N | 39.826407 E |
Onega Bay near Tamica River mouth | Mytilus edulis | 7.01 | 64.134958 N | 38.002934 E | |
Avacha Bay in Petropavlovsk-Kamchatckiy | Mytilus trossulus | 11.3 | 53.027181 N | 158.640503 E | |
Freshwater | Severnaya Dvina River near Kholmogory village | Unio pictorum, Anodonta anatina | 0.09 | 64.244167 N | 41.608056 E |
Onega River near Porog village | Unio tumidus, Anodonta anatina | 0.07 | 63.828889 N | 38.475556 E | |
Khakaktyrskoe Lake, Khalaktyrka River Basin | Beringiana beringiana | 0.04 | 53.027363 N | 158.736206 E |
Species (Marine/Freshwater) | N | Calcite, % | Aragonite, % | Vaterite, % |
---|---|---|---|---|
Mytilus edulis (marine) | 9 | 57.9 ± 3.1 | 39.1 ± 3.0 | 3.10 ± 0.15 |
Mytilus trossulus (marine) | 5 | 67.0 ± 3.4 | 30.5 ± 3.0 | 2.46 ± 0.43 |
Beringiana beringiana (freshwater) | 5 | 0.23 ± 0.11 | 95.6 ± 0.2 | 4.14 ± 0.14 |
Anodonta anatina (freshwater) | 5 | 0.19 ± 0.07 | 95.5 ± 0.2 | 4.28 ± 0.18 |
Unio sp. (freshwater) | 4 | 0.52 ± 0.28 | 95.6 ± 0.1 | 4.17 ± 0.10 |
Element | Anodonta anatina, Severnaya Dvina River near Kholmogory Village, Mean ± SE, ppm (n = 2) | Unio sp., Severnaya Dvina River near Kholmogory Village, Mean ± SE, ppm (n = 2) | Anodonta anatina, Onega River near Porog Village, Mean ± SE, ppm (n = 2) | Unio sp., Onega River near Porog Village, Mean ± SE, ppm (n = 2) | Beringiana beringiana, Khakaktyrskoe Lake, Khalaktyrka River Basin, Mean ± SE, ppm (n = 5) | Mytilus edulis, Jagry Island, Dvina Bay Mean ± SE, ppm (n = 4) | Mytilus edulis, Onega Bay near Tamica River Mouth Mean ± SE, ppm (n = 5) | Mytilus trossulus, Avacha Bay in Petropavlovsk-Kamchatckiy Mean ± SE, ppm (n = 5) |
---|---|---|---|---|---|---|---|---|
Li | 0.25 ± 0.14 | 0.15 ± 0.01 | 0.36 ± 0.10 | 0.35 ± 0.07 | n.d. | 0.38 ± 0.02 | 0.41 ± 0.05 | 0.90 ± 0.05 |
Na | 2540 ± 127 | 2400 ± 76 | 2380 ± 67 | 2010 ± 41 | 2140 ± 43 | 3450 ± 191 | 3100 ± 235 | 3520 ± 92 |
Mg | 114 ± 59 | 78.2 ± 2.8 | 161 ± 46 | 84.8 ± 17.9 | 85.6 ± 12.2 | 1020 ± 65 | 1210 ± 90 | 700 ± 14 |
Al | 368 ± 211 | 139 ± 8.8 | 428 ± 161 | 241 ± 73 | 121 ± 26 | 34.5 ± 9.1 | 36.3 ± 9.5 | n.d. |
P | 203 ± 121 | 202 ± 120 | 72.2 ± 10.6 | 109 ± 16.3 | 150 ± 26 | 154 ± 12 | 153 ± 7.1 | 167 ± 13 |
S | 332 ± 133 | 227 ± 51 | 223 ± 59 | 231 ± 22 | 478 ± 44 | 737 ± 30 | 892 ± 83 | 1010 ± 71 |
K | 149 ± 97 | 56.9 ± 1.5 | 148 ± 54 | 78.2 ± 23.8 | 12.6 ± 2.4 | 31.8 ± 11.3 | 36.1 ± 6.6 | 19.1 ± 3.73 |
Ca | 399,000 ± 6000 | 376,000 ± 10,000 | 394,000 ± 2600 | 384,000 ± 1270 | 397,000 ± 6930 | 406,000 ± 9400 | 423,000 ± 4310 | 385,000 ± 10,800 |
Ti | 43.3 ± 13.3 | 17.9 ± 0.53 | 31.9 ± 11.2 | 16.3 ± 3.9 | 14.6 ± 2.4 | 2.41 ± 0.74 | 2.97 ± 0.89 | n.d. |
Mn | 594 ± 79 | 327 ± 10 | 390 ± 33 | 459 ± 97 | 685 ± 75 | 154 ± 71 | 41.7 ± 12.3 | 12.2 ± 1.3 |
Fe | 1780 ± 1310 | 1470 ± 946 | 557 ± 157 | 1130 ± 451 | 655 ± 191 | 337 ± 100 | 105 ± 37 | 51.5 ± 9.4 |
Cu | 2.90 ± 0.32 | 2.05 ± 0.11 | 3.54 ± 0.32 | 3.48 ± 0.68 | 9.22 ± 0.34 | 0.96 ± 0.23 | 0.92 ± 0.23 | 1.96 ± 0.25 |
Zn | 2.38 ± 2.14 | 3.63 ± 0.89 | 9.99 ± 1.76 | 10.3 ± 1.27 | 7.9 ± 0.68 | 17.3 ± 2.13 | 16.0 ± 2.1 | 14 ± 1.4 |
Sr | 774 ± 41 | 671 ± 49 | 370 ± 3.8 | 399 ± 19 | 263 ± 9.6 | 1600 ± 37 | 1340 ± 19 | 1210 ± 35 |
Zr | 1.83 ± 0.70 | 0.54 ± 0.11 | 1.91 ± 0.61 | 1.08 ± 0.11 | 0.59 ± 0.03 | 0.42 ± 0.14 | 0.4 ± 0.1 | 0.34 ± 0.14 |
Ba | 54.5 ± 14.9 | 38.0 ± 13.3 | 28.1 ± 1.82 | 28.4 ± 3.92 | 15.5 ± 1.53 | 12.2 ± 1.01 | 4.44 ± 0.32 | 2.69 ± 0.13 |
La | 0.68 ± 0.42 | 0.42 ± 0.18 | 0.29 ± 0.09 | 0.29 ± 0.11 | 0.02 ± 0.01 | 0.11 ± 0.02 | 0.38 ± 0.06 | 0.031 ± 0.003 |
Ce | 1.39 ± 0.90 | 0.73 ± 0.33 | 0.58 ± 0.19 | 0.64 ± 0.26 | 0.03 ± 0.01 | 0.15 ± 0.04 | 0.39 ± 0.04 | n.d. |
Pr | 0.17 ± 0.09 | 0.09 ± 0.03 | 0.07 ± 0.02 | 0.07 ± 0.02 | 0.006 ± 0.001 | 0.02 ± 0.01 | 0.011 ± 0.002 | 0.009 ± 0.004 |
Nd | 0.62 ± 0.39 | 0.33 ± 0.15 | 0.26 ± 0.09 | 0.27 ± 0.11 | 0.03 ± 0.01 | 0.08 ± 0.02 | 0.05 ± 0.01 | 0.013 ± 0.004 |
Gd | 0.10 ± 0.06 | 0.06 ± 0.04 | 0.04 ± 0.02 | 0.04 ± 0.02 | 0.013 ± 0.002 | 0.018 ± 0.002 | 0.010 ± 0.001 | 0.005 ± 0.001 |
Pb | 0.54 ± 0.10 | 0.40 ± 0.05 | 0.25 ± 0.08 | 0.55 ± 0.22 | 0.20 ± 0.02 | 0.11 ± 0.01 | 0.12 ± 0.01 | 0.165 ± 0.009 |
U | 0.04 ± 0.02 | 0.013 ± 0.004 | 0.02 ± 0.01 | 0.02 ± 0.01 | n.d. | 0.008 ± 0.004 | 0.012 ± 0.003 | 0.04 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyubas, A.A.; Kuznetsova, I.A.; Bovykina, G.V.; Eliseeva, T.A.; Gofarov, M.Y.; Khrebtova, I.S.; Kondakov, A.V.; Malkov, A.V.; Mavromatis, V.; Shevchenko, A.R.; et al. Trace Element Patterns in Shells of Mussels (Bivalvia) Allow to Distinguish between Fresh- and Brackish-Water Coastal Environments of the Subarctic and Boreal Zone. Water 2023, 15, 3625. https://doi.org/10.3390/w15203625
Lyubas AA, Kuznetsova IA, Bovykina GV, Eliseeva TA, Gofarov MY, Khrebtova IS, Kondakov AV, Malkov AV, Mavromatis V, Shevchenko AR, et al. Trace Element Patterns in Shells of Mussels (Bivalvia) Allow to Distinguish between Fresh- and Brackish-Water Coastal Environments of the Subarctic and Boreal Zone. Water. 2023; 15(20):3625. https://doi.org/10.3390/w15203625
Chicago/Turabian StyleLyubas, Artem A., Irina A. Kuznetsova, Galina V. Bovykina, Tatyana A. Eliseeva, Mikhail Yu. Gofarov, Irina S. Khrebtova, Alexander V. Kondakov, Alexey V. Malkov, Vasileios Mavromatis, Alexander R. Shevchenko, and et al. 2023. "Trace Element Patterns in Shells of Mussels (Bivalvia) Allow to Distinguish between Fresh- and Brackish-Water Coastal Environments of the Subarctic and Boreal Zone" Water 15, no. 20: 3625. https://doi.org/10.3390/w15203625
APA StyleLyubas, A. A., Kuznetsova, I. A., Bovykina, G. V., Eliseeva, T. A., Gofarov, M. Y., Khrebtova, I. S., Kondakov, A. V., Malkov, A. V., Mavromatis, V., Shevchenko, A. R., Soboleva, A. A., Pokrovsky, O. S., & Bolotov, I. N. (2023). Trace Element Patterns in Shells of Mussels (Bivalvia) Allow to Distinguish between Fresh- and Brackish-Water Coastal Environments of the Subarctic and Boreal Zone. Water, 15(20), 3625. https://doi.org/10.3390/w15203625