Drought Priming and Subsequent Irrigation Water Regimes Enhanced Grain Yield and Water Productivity of Wheat Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treatment and Experimental Setup
2.2. Irrigation Plan and Measurements
2.3. Data Collection and Analysis
2.4. Statistical Analysis
3. Results
3.1. Soil Moisture Content (SMC)
3.2. Plant Height
3.3. Spike Length, Grains per Spike−1 and Grain Weight per Spike−1
3.4. Yield Components of Wheat
3.5. Root Development and Relative Yield
3.6. Water Productivity
4. Discussion
4.1. Soil Moisture Dynamics in the Root Zone of Wheat Crop
4.2. Effect of Various Treatments on Wheat Crop Plant Development and Yield
4.3. Effect of Different Treatments on Water Productivity of Wheat Crop
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vorosmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Davies, P.M. Global Threats to Human Water Security and River Biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Yu, C.Y.; Li, X.X.; Zhang, P.; Tang, J.; Yang, Q.; Zhu, F. Therapeutic Target Database Enriched Resource for Facilitating Bench-To-Clinic Research of Targeted Therapeutics. Nucleic Acids Res. 2018, 46, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Siyal, A.A.; Mashori, A.S.; Bristow, K.L.; Van-Genuchten, M.T. Alternate Furrow Irrigation Can Radically Improve Water Productivity of Okra. Agric. Water Manag. 2016, 173, 55–60. [Google Scholar] [CrossRef]
- Gan, Y.; Siddique, K.H.M.; Turner, N.C.; Li, X.G.; Niu, J.Y.; Yang, C.; Liu, L.; Chai, Q. Ridge-Furrow Mulching Systems-An Innovative Technique for Boosting Crop Productivity in Semiarid Rain-Fed Environments. Adv. Agron. 2013, 118, 429–476. [Google Scholar]
- Government of Pakistan. Pakistan Economic Survey (2013–14); Ministry of Finance, Government of Pakistan: Islamabad, Pakistan, 2014.
- Ahmed, M.; Farooq, S. Growth and Physiological Responses of Wheat Cultivars Under Various Planting Windows. J. Anim. Plant Sci. 2014, 23, 1407–1414. [Google Scholar]
- Rahut, D.B.; Ali, A.; Imtiaz, M.; Mottaleb, K.A.; Erenstein, O. Impact of Irrigation Water Scarcity on Rural Household Food Security and Income in Pakistan. Water Sci. Technol. Water Supply 2016, 16, 675–683. [Google Scholar] [CrossRef]
- Laghari, K.Q.; Lashari, B.K.; Memon, H.M. Perceptive Research on Wheat Evapotranspiration in Pakistan. Irrig. Drain. 2016, 57, 571–584. [Google Scholar] [CrossRef]
- Pereira, J.M.M. Modernization, the Fight Against Poverty, and Land Markets an Analysis of the World Bank’s Agriculture And Rural Development Policies (1944–2003). Varia Hist. 2016, 32, 225–258. [Google Scholar] [CrossRef]
- Farooq, O.; Payaud, M.; Merunka, D.; Valette-Florence, P. The Impact of Corporate Social Responsibility on Organizational Commitment: Exploring Multiple Mediation Mechanisms. J. Bus. Ethics 2014, 125, 563–580. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Zhong, J.; Zhou, Q.; Wang, X.; Cia, J.; Dai, T.; Cao, W.; Jiang, D. Drought Priming Induces Thermo-Tolerance io Post-Anthesis High Temperature in Offspring of Winter Wheat. Environ. Exp. Bot. 2016, 127, 26–36. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Chen, J.; Wang, X.; Cai, J.; Zhou, Q.; Dai, T.; Cao, W.; Jiang, D. Parental Drought-Priming Enhances Tolerance to Post-Anthesis Drought in Offspring of Wheat. Front. Plant Sci. 2018, 9, 261. [Google Scholar] [CrossRef]
- Isayenkov, S.V.; Maathuis, F.J. Plant Salinity Stress in Many Unanswered Questions Remain. Front. Plant Sci. 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Backhaus, S.; Kreyling, J.; Grant, K.; Beierkuhnlein, C.; Walter, J.; Jentsch, A. Recurrent Mild Drought Events Increase Resistance Toward Extreme Drought Stress. Ecosystems 2014, 17, 1068–1081. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global Synthesis of Drought Effects on Cereal, Legume, Tuber And Root Crops Production: A Review. Agric. Water Manag. 2017, 179, 18–33. [Google Scholar] [CrossRef]
- Cook, B.I.; Smerdon, J.E.; Seager, R.; Coats, S. Global Warming and 21st Century Drying. Clim. Dyn. 2014, 43, 2607–2627. [Google Scholar] [CrossRef]
- Wang, X.; Vignjevic, M.; Jiang, D.; Jacobsen, S.; Wollenweber, B. Improved Tolerance to Drought Stress after Anthesis due to Priming before Anthesis in Wheat (Triticum aestivum L.) var. Vinjett. J. Exp. Bot. 2014, 65, 22–38. [Google Scholar] [CrossRef]
- Saeedipour, S.; Moradi, F. Effect of Drought at the Post-Anthesis Stage on Remobilization of Carbon Reserves and Some Physiological Changes in the Flag Leaf of Two Wheat Cultivars Differing in Drought Resistance. J. Agric. Sci. 2011, 3, 23–117. [Google Scholar] [CrossRef]
- Huseynova, I.M.; Rustamova, S.M.; Suleymanov, S.Y.; Aliyeva, D.R.; Mammadov, A.C.; Aliyev, J.A. Drought-Induced Changes in Photosynthetic Apparatus and Antioxidant Components of Wheat (Triticum aestivum L.) varieties. Photosynth. Res. 2016, 130, 215–223. [Google Scholar] [CrossRef]
- Abid, M.; Tian, Z.; Ata-Ul-Karim, S.; Liu, Y.; Cui, Y.; Zahoor, R.; Jiang, D.; Li, X. Improved Tolerance to Post-Anthesis Drought Stress by Pre-Drought Priming at Vegetative Stages in Drought-Tolerant and -Sensitive Wheat Cultivars. Plant Physiol. Biochem. 2016, 106, 267–301. [Google Scholar] [CrossRef]
- Israelson, J. I’m Special Too—A Classroom Program Promotes Understanding and Acceptance of Handicaps. Teach. Except. Child. 1980, 13, 35–37. [Google Scholar] [CrossRef]
- Soothar, R.K.; Singha, A.; Soomro, S.A.; Chachar, A.; Kalhoro, F.; Rahaman, M.A. Effect of Different Soil Moisture Regimes on Plant Growth and Water Use Efficiency of Sunflower: Experimental Study and Modeling. Bull. Natl. Res. Cent. 2021, 45, 121. [Google Scholar] [CrossRef]
- Soothar, R.; Zhang, W.; Zhang, Y.; Moussa, T.; Mirjat, U.; Wang, Y. Evaluating the Performance of SALTMED Model under Alternate Irrigation using Saline and Fresh Water Strategies to Winter Wheat in the North China Plain. Environ. Sci. Pollut. Res. 2019, 26, 34499–34509. [Google Scholar] [CrossRef] [PubMed]
- Tankari, M.; Wang, C.; Ma, H.; Li, X.; Li, L.; Soothar, R.K.; Cui, N.; Zaman-Allah, M.; Hao, W.; Liu, F.; et al. Drought Priming Improved Water Status, Photosynthesis and Water Productivity of Cowpea During Post-Anthesis Drought Stress. Agric. Water Manag. 2021, 245, 106565. [Google Scholar] [CrossRef]
- Mirbahar, A.A.; Markhand, G.S.; Mahar, A.R.; Abro, S.A.; Kanhar, N.A. Effect of Water Stress on Yield and Yield Components of Wheat (Triticum aestivum L.) Varieties. Pak. J. Bot. 2009, 41, 1303–1310. [Google Scholar]
- Abid, M.; Shao, Y.; Liu, S.; Wang, F.; Gao, J.; Jiang, D.; Tian, Z.; Dai, T. Pre-Drought Priming Sustains Grain Development under Post-Anthesis Drought Stress by Regulating the Growth Hormones in Winter Wheat (Triticum aestivum L.). Planta 2017, 246, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, T.; Farooq, M.; Ahmad, R.; Zohaib, A.; Wahid, A.; Shahid, M. Terminal Drought and Seed Priming Improves Drought Tolerance in Wheat. Physiol. Mol. Bio. Plants 2018, 24, 103. [Google Scholar] [CrossRef]
- Mekonen, A. Deficit Irrigation Practices as Alternative Means of Improving Water Use Efficiencies in Irrigated Agriculture: Case Study of Maize Crop at Arba Minch, Ethiopia. Afr. J. Agric. Res. 2011, 6, 226–235. [Google Scholar]
- Singha, A.; Soothar, R.K.; Wang, C.; Marín, E.E.T.; Tankari, M.; Hao, W.; Wang, Y. Drought Priming Alleviated Salinity Stress and Improved Water Use Efficiency of Wheat Plants. Plant Growth Regul. 2022, 96, 357–368. [Google Scholar] [CrossRef]
Treatment | Irrigation (mm) | Total Water Consumed | ||
---|---|---|---|---|
(mm) | (m3 ha−1) | |||
DPP-40 | 1 | 292 | 292 | 2920 |
DPP-50 | 2 | 294 | 294 | 2940 |
DPP-60 | 3 | 296 | 296 | 2960 |
CTP-40 | 4 | 358 | 358 | 3580 |
CTP-50 | 5 | 360 | 360 | 3600 |
CTP-60 | 6 | 362 | 362 | 3620 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katohar, I.; Soothar, R.K.; Chandio, F.A.; Talpur, M.A.; Soomro, S.A.; Singha, A.; Bin, L.; Mirjat, M.U. Drought Priming and Subsequent Irrigation Water Regimes Enhanced Grain Yield and Water Productivity of Wheat Crop. Water 2023, 15, 3704. https://doi.org/10.3390/w15203704
Katohar I, Soothar RK, Chandio FA, Talpur MA, Soomro SA, Singha A, Bin L, Mirjat MU. Drought Priming and Subsequent Irrigation Water Regimes Enhanced Grain Yield and Water Productivity of Wheat Crop. Water. 2023; 15(20):3704. https://doi.org/10.3390/w15203704
Chicago/Turabian StyleKatohar, Inayatullah, Rajesh Kumar Soothar, Farman Ali Chandio, Mashooque Ali Talpur, Shakeel Ahmed Soomro, Ashutus Singha, Li Bin, and Muhammad Uris Mirjat. 2023. "Drought Priming and Subsequent Irrigation Water Regimes Enhanced Grain Yield and Water Productivity of Wheat Crop" Water 15, no. 20: 3704. https://doi.org/10.3390/w15203704
APA StyleKatohar, I., Soothar, R. K., Chandio, F. A., Talpur, M. A., Soomro, S. A., Singha, A., Bin, L., & Mirjat, M. U. (2023). Drought Priming and Subsequent Irrigation Water Regimes Enhanced Grain Yield and Water Productivity of Wheat Crop. Water, 15(20), 3704. https://doi.org/10.3390/w15203704