Control of Bromate Formation in Desalinated Seawater Production and Transmission with Ammoniation
Abstract
:1. Introduction
2. Mechanisms and Kinetics
- (i)
- Reducing the amount of HOCl available for the oxidation of bromide [26]:
- (ii)
- Reacting with HOBr so it is unavailable for oxidation to bromate [27]:
3. Materials and Methods
- (0)
- Addition of sufficient seawater to bring the TDS up to 82–94 ppm, which should have given bromide concentrations in the range 49–72 ppb if there was no selective rejection or permeation of bromide (14–16 April 2022);
- (1)
- Addition of 120 ppb NH3 along with sufficient seawater to bring the TDS up to 81–89 ppm, which should have given bromide concentrations in the range 47–64 ppb (17–19 April 2022);
- (2)
- Addition of 120 ppb NH3 along with sufficient seawater to bring the TDS up to 106–115 ppm, (96–113 ppb Br−) (20–25 April 2022);
- (3)
- Addition of 200 ppb NH3, along with sufficient seawater to bring the TDS up to 110–132 ppm (104–132 ppb Br−) (26 April–3 May 2022);
- (4)
- Addition of 200 ppb NH3 and sufficient sodium hydroxide to adjust the pH to 8.7, along with sufficient seawater to give a TDS of 114 ppm (112 ppb bromide) (4–5 May 2022).
- (1)
- Addition of 100 ppb NH3 only (23 April–5 May 2023);
- (2)
- Addition of 100 ppb NH3 along with sufficient seawater to bring the TDS up to 119–242 ppm, which should have given bromide concentrations in the range 116–325 ppb. (4–14 May 2023);
- (3)
- Addition of 100 ppb NH3, along with sufficient seawater to bring the TDS up to 130–230 ppm, (134–305 ppb Br−) (15 May–17 June 2023);
- (4)
- Addition of 100 ppb NH3 along with sufficient seawater to bring the TDS up to 82–125 ppm (52–126 ppb Br−) (19 June–12 July 2023);
- (5)
- Addition of 90 ppb NH3 along with sufficient seawater to bring the TDS up to 82–129 ppm (52–133 ppb Br−) (13 July–7 Aug 2023).
4. Results and Discussion
4.1. 2022 Trials
4.2. 2023 Trials
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boorman, G.A. Drinking water disinfection byproducts: Review and approach to toxicity evaluation. Environ. Health Perspect. 1999, 107, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-F.; Mitch, W.A. Drinking water disinfection byproducts (DBPs) and human health Effects: Multidisciplinary challenges and opportunities. Environ. Sci. Technol. 2018, 52, 1681–1689. [Google Scholar] [CrossRef] [PubMed]
- Benítez, J.S.; Rodríguez, C.M.; Casas, A.F. Disinfection byproducts (DBPs) in drinking water supply systems: A systematic review. Phys. Chem. Earth A/B/C 2021, 123, 102987. [Google Scholar] [CrossRef]
- Agus, E.; Sedlak, D.L. Formation and fate of chlorination by-products in reverse osmosis desalination systems. Water Res. 2010, 44, 1616–1626. [Google Scholar] [CrossRef]
- Sharma, V.K.; Zboril, R.; McDonald, T.J. Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water: A review. J. Environ. Sci. Health B 2014, 49, 212–228. [Google Scholar] [CrossRef]
- Agus, E.; Voutchkov, N.; Sedlak, D.L. Disinfection by-products and their potential impact on the quality of water produced by desalination systems: A literature review. Desalination 2009, 237, 214–237. [Google Scholar] [CrossRef]
- Antoniou, M.G.; Sichel, C.; Andre, K.; Andersen, H.R. Novel pre-treatments to control bromate formation during ozonation. J. Hazard. Mater. 2017, 323, 452–459. [Google Scholar] [CrossRef]
- Bonacquisti, T.P. A drinking water utility’s perspective on bromide, bromate, and ozonation. Toxicology 2006, 221, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Galey, C.; Gatel, D.; Amy, G.; Cavard, J. Comparative assessment of bromate control options. Ozone Sci. Eng. 2000, 22, 267–278. [Google Scholar] [CrossRef]
- Gregov, M.; Jurinjak Tušek, A.; Valinger, D.; Benković, M.; Jurina, T.; Surać, L.; Kurajica, L.; Matošić, M.; Gajdoš Kljusurić, J.; Ujević Bošnjak, M.; et al. Linear and non-linear modelling of bromate formation during ozonation of surface water in drinking water production. Water 2023, 15, 1516. [Google Scholar] [CrossRef]
- Ikehata, K.; Wang, L.; Nessl, M.B.; Komor, A.T.; Cooper, W.J.; McVicker, R.R. Effect of ammonia and chloramine pretreatment during the ozonation of a colored groundwater with elevated bromide. Ozone Sci. Eng. 2013, 35, 438–447. [Google Scholar] [CrossRef]
- Ozekin, K.; Westerhoof, P.; Amy, G.L.; Siddiqui, M. Molecular ozone and radical pathways of bromate formation during ozonation. J. Environ. Eng. 1998, 124, 456–462. [Google Scholar] [CrossRef]
- Pinkernell, U.; Von Gunten, U. Bromate minimization during ozonation: Mechanistic considerations. Environ. Sci. Technol. 2001, 35, 2525–2531. [Google Scholar] [CrossRef]
- Soltermann, F.; Abegglen, C.; Tschui, M.; Stahel, S.; Von Gunten, U. Options and limitations for bromate control during ozonation of wastewater. Water Res. 2017, 116, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Von Gunten, U. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 2003, 37, 1469–1487. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environment, Water and Agriculture. Standards and Specifications for Water Types; Ministry of Environment, Water and Agriculture: Riyadh, Saudi Arabia, 1442. [Google Scholar]
- Ministry of Environment, Water and Agriculture. Guide to Monitoring Unbottled Drinking Water Quality Standards in the Water Service Delivery Chain; Ministry of Environment, Water and Agriculture: Riyadh, Saudi Arabia, 1444. [Google Scholar]
- Morris, J.C. The acid ionization constant of HOCl from 5 to 35°. J. Phys. Chem. 1966, 70, 3798–3805. [Google Scholar] [CrossRef]
- Achmit, M.; Machkor, M.; Nawdali, M.; Sbai, G.; Karim, S.; Aouniti, A.; Loukili, M. Study of the influence of the operating parameters on the fractions in HOCl and OCl– during the disinfection phase. J. Chem. Pharm. Res. 2018, 10, 122–127. [Google Scholar]
- Kumar, K.; Margerum, D.W. Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid. Inorg. Chem. 1987, 26, 2706–2711. [Google Scholar] [CrossRef]
- Beckwith, R.C.; Margerum, D.W. Kinetics of hypobromous acid disproportionation. Inorg. Chem. 1997, 36, 3754–3760. [Google Scholar] [CrossRef]
- Al-Hamzah, A.A.; Mahmoodur Rahman, M.; Kurup, P.; Barnawi, A.; Ghannam, B.; Musharraf, I.; Al-Najjar, F.; Obeidallah, A.; Palmer, N. Use of chlorine dioxide as alternative to chlorination in reverse osmosis product water. Desalin. Water Treat. 2019, 163, 57–66. [Google Scholar] [CrossRef]
- Margerum, D.W.; Huff Hartz, K.E. Role of halogen(I) cation-transfer mechanisms in water chlorination in the presence of bromide ion. J. Environ. Monit. 2002, 4, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Deng, Z.; Fang, J.; Shang, C. Bromate control during ozonation by ammonia-chlorine and chlorine-ammonia pretreatment: Roles of bromine-containing haloamines. Chem. Eng. J. 2020, 389, 123447. [Google Scholar] [CrossRef]
- Bratsch, S.G. Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 1989, 18, 1–21. [Google Scholar] [CrossRef]
- Jafvert, C.T.; Valentine, R.L. Reaction scheme for the chlorination of ammoniacal water. Environ. Sci. Technol. 1992, 26, 577–586. [Google Scholar] [CrossRef]
- Wajon, J.E.; Morris, J.C. Rates of formation of N-bromo amines in aqueous solution. Inorg. Chem. 1982, 21, 4258–4263. [Google Scholar] [CrossRef]
- Qiang, Z.; Adams, C.D. Determination ofmonochloramine formation rateconstants with stopped-flow spectrophotometry. Environ. Sci. Technol. 2004, 38, 1435–1444. [Google Scholar] [CrossRef]
- Sugam, R.; Helz, G.R. Chlorine speciation in seawater; a metastable equilibrium model for ClI and BrI species. Chemosphere 1981, 10, 41–57. [Google Scholar] [CrossRef]
- Gazda, M.; Margerum, D.W. Reactions of Monochloramine with Br2, Br3, HOBr, OBr–: Formation of Bromochloramines. Inorg. Chem. 1994, 33, 118–123. [Google Scholar] [CrossRef]
- Lei, H.; Mariñas, B.J.; Minear, R.A. Bromamine decomposition kinetics in aqueous solutions. Environ. Sci. Technol. 2004, 38, 2111–2119. [Google Scholar] [CrossRef]
- Gazda, M.; Dejarme, L.E.; Choudhury, T.K.; Cooks, R.G.; Margerum, D.W. Mass-spectrometric evidence for the formation of bromochloramine and N-bromo-N-chloromethylamine in aqueous solution. Environ. Sci. Technol. 1993, 27, 557–561. [Google Scholar] [CrossRef]
- Trofe, T.W.; Inman, G.W.; Johnson, J.D. Kinetics of monochloramine decomposition in the presence of bromide. Environ. Sci. Technol. 1980, 14, 544–549. [Google Scholar] [CrossRef]
- Heeb, M.B.; Criquet, J.; Zimmermann-Steffens, S.G.; Von Gunten, U. Oxidative treatment of bromide-containing waters: Formation of bromine and its reactions with inorganic and organic compounds—A critical review. Water Res. 2014, 48, 15–42. [Google Scholar] [CrossRef] [PubMed]
- Luh, J.; Mariñas, B.J. Kinetics of bromochloramine formation and decomposition. Environ. Sci. Technol. 2014, 48, 2843–2852. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, X. Modeling the formation of TOCl, TOBr and TOI during chlor(am)ination of drinking water. Water Res. 2016, 96, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Brodfuehrer, S.H.; Goodman, J.B.; Wahman, D.G.; Speiteland, G.E.; Katz, L.E. Apparent reactivity of bromine in bromochloramine depends on synthesis method: Implicating bromine chloride and molecular bromine as important bromine species. J. Environ. Eng. 2022, 148, 06022006. [Google Scholar] [CrossRef]
- Valentine, R.L. Bromochloramine oxidation of N,N-diethyl-p-phenylenediamine in the presence of monochloramine. Environ. Sci. Technol. 1986, 20, 166–170. [Google Scholar] [CrossRef]
- Gilbert, R.G.; (University of Sydney, Sydney, Australia). Personal communication, 1999.
- Trogolo, D.; Arey, J.S. Equilibria and speciation of chloramines, bromamines, and bromochloramines in water. Environ. Sci. Technol. 2017, 51, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Pope, P.G.; Speitel, G.E. Reactivity of bromine-substituted haloamines in forming haloacetic acids. In Disinfection By-Products in Drinking Water; Karanfil, T., Krasner, S.W., Westerhoff, P., Xie, Y., Eds.; American Chemical Society: Washington, DC, USA, 2008; pp. 182–197. [Google Scholar] [CrossRef]
- Simon, V.; Berne, F.; Gallard, H. Chloramination and bromamination of amino acids. In Disinfection By-Products in Drinking Water; Thompson, K.C., Gillespie, S., Goslan, E., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2015; pp. 70–80. [Google Scholar] [CrossRef]
- Alsulaili, A.; Speitel, G.E.; Katz, L.E. Monochloramine and total haloamine decay after a short prechlorination time in the presence of bromide. Water Supply 2010, 10, 512–516. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Wu, Q.-Y.; Hu, H.-Y.; Tian, J. Effect of ammonia on the formation of THMs and HAAs in secondary effluent chlorination. Chemosphere 2009, 76, 631–637. [Google Scholar] [CrossRef]
- Hu, W.; Croué, J.-P.; Allard, S. Effect of copper oxide on monochloramine decomposition in bromide-containing waters. Sci. Total Environ. 2021, 765, 142519. [Google Scholar] [CrossRef]
- Standard Methods Committee of the American Public Health Association; American Water Works Association; Water Environment Federation. 4500-H+ pH. In Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Lipps, W.C., Baxter, T.E., Braun-Howland, E., Eds.; APHA Press: Washington, DC, USA, 2017. [Google Scholar]
- Standard Methods Committee of the American Public Health Association; American Water Works Association; Water Environment Federation. 4110 Determination of anions by ion chromatography. In Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Lipps, W.C., Baxter, T.E., Braun-Howland, E., Eds.; APHA Press: Washington, DC, USA, 2017. [Google Scholar]
- Pearce, R.; Hogard, S.; Buehlmann, P.; Salazar-Benites, G.; Wilson, C.; Bott, C. Evaluation of preformed monochloramine for bromate control in ozonation for potable reuse. Water Res. 2022, 211, 118049. [Google Scholar] [CrossRef]
- Morrison, C.M.; Hogard, S.; Pearce, R.; Mohan, A.; Pisarenko, A.N.; Dickenson, E.R.V.; Von Gunten, U.; Wert, E.C. Critical review on bromate formation during ozonation and control options for its minimization. Environ. Sci. Technol 2023. online ahead of print. [Google Scholar] [CrossRef]
Stage | Control | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|
Line B after chlorination, before ammoniation | 72 ± 4 | |||||
Header 1 | 58 ± 22 | 8 ± 4 | ||||
Header 2 | 18 ± 22 | 6 ± 6 | ||||
Tank 4 | 70 ± 2 | 53 ± 10 | 21 ± 23 | 8 ± 4 | 0 | |
Tank 5 | 53 ± 12 | 61 ± 9 | 54 ± 20 | 43 ± 21 | 63 ± 3 | |
Tank 13 | 73 ± 5 | 74 ± 2 | 37 ± 28 | 48 ± 22 | 5 ± 2 | 2 ± 4 |
Tank 14 | 67 ± 6 | 44 ± 29 | 46 ± 26 | 5 ± 5 | 0 | |
PS (Pumping Station) 1A | 0 | 4 | 7 ± 4 | 6 ± 1 | 3 | 0 |
PS1B | 61 ± 4 | 43 | 68 ± 7 | 55 ± 12 | 8 ± 10 | 0 |
Jeddah PS | 63 ± 1 | 44 | 61 ± 17 | 59 ± 17 | 56 ± 13 | 49 |
Quiza PS | 47 ± 14 | 58 | 65 ± 13 | 70 ± 10 | 66 ± 11 | 23 |
Mina A PS | 47 ± 27 | 53 | 49 ± 36 | 66 ± 12 | 35 ± 8 | 60 |
Mina B PS | 46 ± 26 | 72 | 54 ± 12 | 61 ± 15 | 55 ± 17 | 78 |
Stage | Control | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|
Line B after chlorination, before ammoniation | 0 | |||||
Header 1 | 0 | 0 | ||||
Header 2 | 0 | 0 | ||||
Tank 4 | 7 ± 1 | 5 ± 2 | 4 | 1 ± 1 | 0 | |
Tank 5 | 12 ± 4 | 7 ± 2 | 9 ± 2 | 14 ± 2 | 16 ± 1 | |
Tank 13 | 2 ± 1 | 2 ± 1 | 2 ± 1 | 2 ± 1 | 0 | 0 |
Tank 14 | 2 ± 1 | 2 ± 1 | 1 ± 1 | 0 | 0 | |
PS (Pumping Station) 1A | 0 | 2 | 2 | 1 ± 1 | 0 | 0 |
PS1B | 2 | 2 | 2 | 1 ± 1 | 0 | 0 |
Jeddah PS | 3 ± 1 | 3 | 2 | 2 | 1 | 3 ± 1 |
Quiza PS | 6 ± 1 | 4 | 6 ± 1 | 5 ± 2 | 5 | 4 |
Mina A PS | 6 ± 1 | 4 | 5 ± 1 | 4 ± 1 | 6 | 6 ± 1 |
Mina B PS | 5 ± 1 | 4 | 4 ± 1 | 2 ± 1 | 4 ± 1 | 5 ± 1 |
Stage | Control | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|
Line B after chlorination, before ammoniation | 0 | |||||
Header 1 | 14 ± 23 | 0 | ||||
Header 2 | 282 ± 118 | 403 ± 107 | ||||
Tank 4 | 0 | 0 | 0 | 162 ± 73 | 306 ± 10 | |
Tank 5 | 0 | 0 | 0 | 12 ± 31 | 0 | |
Tank 13 | 0 | 0 | 36 ± 29 | 6 ± 14 | 123 ± 58 | 180 ± 31 |
Tank 14 | 0 | 40 ± 32 | 24 ± 26 | 140 ± 60 | 200 ± 28 | |
PS (Pumping Station) 1A | 0 | 0 | 0 | 0 | 0 | 62 |
PS1B | 0 | 0 | 0 | 16 ± 23 | 0 | 0 |
Jeddah PS | 20 ± 21 | 0 | 0 | 0 | 0 | 0 |
Quiza PS | 0 | 0 | 0 | 0 | 0 | 0 |
Mina A PS | 0 | 0 | 20 ± 30 | 0 | 0 | 0 |
Mina B PS | 0 | 0 | 0 | 0 | 0 | 0 |
Stage | Control | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|
Line B after chlorination, before ammoniation | 29 ± 4 | |||||
Header 1 | 32 ± 5 | 28 | ||||
Header 2 | 32 ± 4 | 25 | ||||
Tank 4 | 27 ± 1 | 34 ± 4 | 40 ± 7 | 44 ± 5 | 39 ± 1 | |
Tank 5 | 16 ± 2 | 31 ± 14 | 24 ± 6 | 26 ± 6 | 31 | |
Tank 13 | 35 ± 1 | 20 ± 4 | 32 ± 10 | 39 ± 5 | 38 ± 3 | 28 ± 2 |
Tank 14 | 25 ± 3 | 35 ± 6 | 41 ± 11 | 39 ± 4 | 28 ± 1 | |
PS (Pumping Station) 1A | 53 ± 29 | 14 | 38 ± 13 | 35 ± 3 | 42 ± 4 | 32 |
PS1B | 29 ± 3 | 53 | 27 ± 4 | 32 ± 5 | 37 ± 4 | 53 |
Jeddah PS | 31 ± 1 | 33 | 25 ± 1 | 34 ± 6 | 36 ± 4 | 30 |
Quiza PS | 33 | 29 | 28 ± 1 | 29 ± 2 | 34 ± 1 | 33 |
Mina A PS | 45 ± 14 | 30 | 34 ± 8 | 30 ± 1 | 35 ± 2 | 26 |
Mina B PS | 9 ± 5 | 16 | 21 ± 5 | 15 ± 5 | 15 ± 3 | 19 |
Stage | CHCl3 | CHCl2Br | CHClBr2 | CHBr3 |
---|---|---|---|---|
Line B before chlorination | <1 | <1 | <1 | <1 |
Line B after chlorination, before ammoniation | 3 | 9 | 18 | 13 |
Header 1 | <1 | <1 | <1 | <1 |
Tank 13 | <1 | <1 | <1 | <1 |
Tank 14 | <1 | <1 | <1 | <1 |
Stage | Control | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
Phase 1–Tank 2 | 18 ± 31 | 15 ± 21 | 11 ± 13 | ||
Phase 1–Tank 3 | 43 ± 11 | 0 ± 11 | 0 ± 7 | 8 ± 8 | |
Tank 4 | 36 ± 10 | 3 ± 13 | 26 ± 19 | 35 ± 18 | |
Tank 13 | 50 ± 13 | 11 ± 9 | 7 ± 27 | 23 ± 25 | |
Tank 14 | 42 ± 14 | 3 ± 15 | 13 ± 19 | 30 ± 13 | |
PS 1 | 49 | 18 ± 14 | 24 ± 13 | 27 ± 16 | 8 ± 35 |
Jeddah PS | 25 | 39 ± 9 | 33 ± 23 | 34 ± 26 | |
Quiza PS | 42 | 31 ± 9 | 28 ± 8 | 40 ± 23 | |
Mina A PS | 50 | 54 ± 11 | 55 ± 12 | 61 ± 9 | |
Mina B PS | 96 | 33 ± 6 | 28 ± 7 | 56 ± 5 | |
Arafa Tank Outlet | 52 ± 17 | 11 ± 7 | 12 ± 10 | 30 ± 26 | 36 ± 22 |
Taif Tank Outlet | 38 ± 9 | 19 ± 3 | 20 ± 15 | 20 ± 15 |
Stage | Control | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
Header–Phase 2 | 0 | 0.17 ± 0.37 | ||||
Phase 1–Tank 2 | 1 ± 1 | 1 ± 3 | 0 | |||
Phase 1–Tank 3 | 1 ± 1 | 0 | 0 | 0 | 0 | 0 |
Tank 4 | 3 ± 2 | 0 | 0 | 0 | ||
Tank 13 | 2 ± 1 | 0 | 0 | 0 | ||
Tank 14 | 1 ± 1 | 0 | 0 | 0 | 0 | 0 |
PS 1 | 0 | 0 | 0 | 0 | 0.4 ± 0.7 0.17 ± 0.37 | 1.4 ± 2.0 |
Jeddah PS | 0 | 1 ± 1 | 0 | 3 ± 3 | ||
Quiza PS | 3 | 4 ± 1 | 1 ± 1 | 2 ± 2 | ||
Mina A PS | 4 | 6 ± 1 | 5 ± 1 | 3 ± 1 | ||
Mina B PS | 2 | 2 ± 2 | 0 | 2 ± 2 | ||
Arafa Tank Outlet | 8 ± 1 | 1 ± 1 | 0 | 0 | 2.5 ± 1.8 | |
Taif Tank Outlet | 8 ± 1 | 2 ± 2 | 0 | 0 |
Stage | Control | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
Header–Phase 2 | 121 ± 62 | 35 ± 59 | ||||
Phase 1–Tank 2 | 0 | 92 ± 52 | 29 ± 30 | |||
Phase 1–Tank 3 | 0 | 93 ± 32 | 74 ± 6 | 38 ± 52 | 21 ± 21 | 0 |
Tank 4 | 0 | 333 ± 58 | 337 ± 70 | 136 ± 136 | ||
Tank 13 | 0 | 127 ± 76 | 150 ± 41 | 101 ± 59 | ||
Tank 14 | 0 | 140 ± 77 | 156 ± 41 | 104 ± 36 | 86 ± 44 | 14 ± 23 |
PS 1 | 0 | 111 ± 46 | 44 ± 42 | 24 ± 24 | 46 ± 43 404 ± 5 | 0 |
Jeddah PS | 0 | 77 ± 41 | 38 ± 32 | 0 | ||
Quiza PS | 0 | 103 ± 40 | 32 ± 18 | 0 | ||
Mina A PS | 0 | 51 ± 55 | 37 ± 31 | 0 | ||
Mina B PS | 0 | 78 ± 66 | 21 ± 28 | 49 ± 10 | ||
Arafa Tank Outlet | 100 ± 141 | 150 ± 265 | 10 ± 12 | 10 ± 15 | ||
Taif Tank Outlet | 0 | 60 ± 7 | 30 ± 32 | 0 | 0 |
Stage | Control | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
Header–Phase 2 | 8 ± 8 | 7 ± 12 | ||||
Phase 1–Tank 2 | 5 ± 3 | 18 ± 15 | 40 ± 34 | |||
Phase 1–Tank 3 | 5 ± 3 | 19 ± 8 | 27 ± 12 | 14 ± 11 | 37 ± 14 | 15 ± 15 |
Tank 4 | 18 ± 10 | 44 ± 17 | 57 ± 26 | 84 ± 7 | ||
Tank 13 | 19 ± 6 | 23 ± 9 | 39 ± 28 | 68 ± 9 | ||
Tank 14 | 11 ± 7 | 34 ± 14 | 30 ± 6 | 30 ± 6 | 19 ± 5 | 19 ± 28 |
PS 1 | 21 | 24 ± 12 | 31 ± 11 | 26 ± 6 | 19 ± 15 22 ± 13 | 14 ± 22 |
Jeddah PS | 11 | 44 ± 13 | 34 ± 18 | 38 ± 14 | ||
Quiza PS | 15 | 20 ± 10 | 39 ± 20 | 74 ± 11 | ||
Mina A PS | 18 | 23 ± 11 | 29 ± 16 | 41 ± 23 | ||
Mina B PS | 8 | 16 ± 13 | 15 ± 7 | 9 ± 1 | ||
Arafa Tank Outlet | 14 ± 8 | 17 ± 11 | 40 ± 11 | 67 ± 24 | ||
Taif Tank Outlet | 11 ± 3 | 34 ± 9 | 32 ± 14 | 29 ± 15 | 19 ± 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhamzah, A.A.; Alofi, A.S.; Abid, A.A.; Fellows, C.M. Control of Bromate Formation in Desalinated Seawater Production and Transmission with Ammoniation. Water 2023, 15, 3858. https://doi.org/10.3390/w15213858
Alhamzah AA, Alofi AS, Abid AA, Fellows CM. Control of Bromate Formation in Desalinated Seawater Production and Transmission with Ammoniation. Water. 2023; 15(21):3858. https://doi.org/10.3390/w15213858
Chicago/Turabian StyleAlhamzah, Ali A., Abdulrahman S. Alofi, Abdulrahman A. Abid, and Christopher M. Fellows. 2023. "Control of Bromate Formation in Desalinated Seawater Production and Transmission with Ammoniation" Water 15, no. 21: 3858. https://doi.org/10.3390/w15213858
APA StyleAlhamzah, A. A., Alofi, A. S., Abid, A. A., & Fellows, C. M. (2023). Control of Bromate Formation in Desalinated Seawater Production and Transmission with Ammoniation. Water, 15(21), 3858. https://doi.org/10.3390/w15213858