Environmental Monitoring and Risk Assessment of Pharmaceutical Residues Discharged from Large Livestock Complex in the Geum River Basin, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Study Sites and Environmental Sampling
2.2. Quantitative Analysis and Method Validation
2.3. Environmental Risk Assessment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Ebele, A.J.; Abou-Elwafa Abdallah, M.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Jiang, J.; Han, J.; Li, W.; Li, X.; Yee Leung, K.M.; Snyder, S.A.; Alvarez, P.J.J. Which Micropollutants in Water Environments Deserve More Attention Globally? Environ. Sci. Technol. 2022, 56, 13–29. [Google Scholar] [CrossRef]
- Nikolaou, A.; Meric, S.; Fatta, D. Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal. Bioanal. Chem. 2007, 387, 1225–1234. [Google Scholar] [CrossRef] [PubMed]
- Daughton, C.G. Chapter 1. Pharmaceuticals in the environment: Sources and their management. In Comprehensive Analytical Chemistry; Petrović, M., Barceló, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 50, pp. 1–58. [Google Scholar]
- Venkatesan, A.K.; Halden, R.U. Wastewater treatment plants as chemical observatories to forecast ecological and human health risks of manmade chemicals. Sci. Rep. 2014, 4, 3731. [Google Scholar] [CrossRef]
- Andersson, D.I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014, 12, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Gros, M.; Rodríguez-Mozaz, S.; Barceló, D. Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J. Chromatogr. A 2013, 1292, 173–188. [Google Scholar] [CrossRef]
- Jeong, D.-H.; Ham, S.-Y.; Lee, W.; Chung, H.; Kim, H. Study on occurrence and management of organic micropollutants in sewer systems. J. Korean Soc. Water Wastewater 2017, 31, 551–566. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jeon, J.; Kim, S.D. Prioritization of pharmaceuticals and personal care products in the surface waters of Korea: Application of an optimized risk-based methods. Ecotoxicol. Environ. Saf. 2023, 259, 115024. [Google Scholar] [CrossRef] [PubMed]
- Jaffrézic, A.; Jardé, E.; Soulier, A.; Carrera, L.; Marengue, E.; Cailleau, A.; Le Bot, B. Veterinary pharmaceutical contamination in mixed land use watersheds: From agricultural headwater to water monitoring watershed. Sci. Total Environ. 2017, 609, 992–1000. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, L.; Rysz, M.; Wang, Y.; Zhang, H.; Alvarez, P.J. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environ. Sci. Technol. 2011, 45, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Ryu, J.; Oh, J.; Choi, B.-G.; Snyder, S.A. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Sci. Total Environ. 2010, 408, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Park, Y.; Kim, S.; Sim, K.; Chung, I.; Suk, K.; Hwang, S. Analysis of tetracycline antibiotics and their metabolites samples from streams near concentrated livestock operations using LC/MS/MS. J. Korean Soc. Environ. Anal. 2016, 19, 199–208. [Google Scholar]
- Lee, S.-H.; Jung, H.-W.; Jung, J.-Y.; Min, H.-J.; Kim, B.-R.; Park, C.-G.; Oh, J.-E.; Onoda, Y.; Satou, N. Characteristics of occurrence of pharmaceuticals in the Nakdong River. J. Korean Soc. Environ. Eng. 2013, 35, 45–56. [Google Scholar] [CrossRef]
- Vanderford, B.J.; Snyder, S.A. Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry. Environ. Sci. Technol. 2006, 40, 7312–7320. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Ge, F.; Huang, S.; Chen, M.; Wang, R. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere 2011, 82, 1408–1414. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Hong, Y.; Park, J.-e.; Sharma, V.K.; Cho, S.-i. Sulfonamides and tetracyclines in livestock wastewater. Chemosphere 2013, 91, 888–894. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency (EPA). EPA Method: 1694, Pharmaceuticals and Personal Care Products in Water, Soil, Sediment and Biosolids by HPLC/M/M; EPA-821-R-08-002; USEPA: Washington, DC, USA, 2007.
- NIER. Water Emission Management System. Available online: https//wems.nier.go.kr (accessed on 17 October 2018).
- Moermond, C.T.; Kase, R.; Korkaric, M.; Ågerstrand, M. CRED: Criteria for reporting and evaluating ecotoxicity data. Environ. Toxicol. Chem. 2016, 35, 1297–1309. [Google Scholar] [CrossRef]
- Olker, J.H.; Elonen, C.M.; Pilli, A.; Anderson, A.; Kinziger, B.; Erickson, S.; Skopinski, M.; Pomplun, A.; LaLone, C.A.; Russom, C.L.; et al. The ECOTOXicology Knowledgebase: A Curated Database of Ecologically Relevant Toxicity Tests to Support Environmental Research and Risk Assessment. Environ. Toxicol. Chem. 2022, 41, 1520–1539. [Google Scholar] [CrossRef] [PubMed]
- NIER. Regulations on Specific Methods of Chemical Risk Assessment; NIER: Incheon, Republic of Korea, 2021. [Google Scholar]
- EC. Revised Technical Guidance for Deriving Environmental Quality Standards. Common Implementation Strategy for the Water Framework Directive Guidance Document No. 27; European Commission: Luxembourg, 2018. [Google Scholar]
- Yan, S.; Chen, R.; Wang, M.; Zha, J. Carbamazepine at environmentally relevant concentrations caused DNA damage and apoptosis in the liver of Chinese rare minnows (Gobiocypris rarus) by the Ras/Raf/ERK/p53 signaling pathway. Environ. Pollut. 2021, 270, 116245. [Google Scholar] [CrossRef] [PubMed]
- Offiong, N.; Lema, E.L.; Kang, S.; Inam, E.I.; Kang, S.; Kim, K. Risk evaluation of pharmaceutical residues in waste water from selected treatment plants in Gwangju, South Korea. J. Chem. Soc. Niger. 2019, 44, 504–514. [Google Scholar]
- Im, J.K.; Hwang, M.Y.; Lee, E.H.; Noh, H.R.; Yu, S.J. Pharmaceutical compounds in tributaries of the Han River watershed, South Korea. Environ. Res. 2020, 188, 109758. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulpou, K.; Nannou, C.; Aschonitis, V.G.; Lambropoulou, D.A. Screening of pesticides and emerging contaminants in eighteen Greek lakes by using target and non-target HRMS approaches: Occurrence and ecological risk assessment. Sci. Total Environ. 2022, 849, 157887. [Google Scholar] [CrossRef]
- Gianturco, S.L.; Pavlech, L.L.; Storm, K.D.; Yoon, S.; Yuen, M.V.; Mattingly, A.N. Carbamazepine: Summary Report; University of Maryland: Baltimore, MD, USA, 2020. [Google Scholar]
- Kwon, H.; Sim, W.; Kim, H.; Oh, J.; Choi, S. Distribution of pharmaceuticals and personal care products (PPCPs) in main rivers of Ulsan. Korea. J. Korea Soc. Environ. Anal. 2011, 14, 158–164. [Google Scholar]
- Lee, H.-J.; Kim, H.-Y.; Kim, K.Y.; Yang, D.-S.; Lee, I.; Lim, Y.-K.; Kim, J.-H.; Oh, J.-E. Characteristic occurrence and distributions of pharmaceuticals in the Nakdong River. J. Korean Soc. Environ. Eng. 2017, 39, 403–411. [Google Scholar] [CrossRef]
- Park, S.; Kang, H.; Shin, H.; Ryoo, I.; Choi, K.; Kho, Y.; Park, K.; Kim, K.; Ji, K. Ecological Risk Assessment of Pharmaceuticals in the Surface Water Near a Pharmaceutical Manufacturing Complex in Korea. J. Environ. Health Sci. 2020, 46, 45–64. [Google Scholar]
- Lim, S.-K.; Lee, J.-E.; Lee, H.-S.; Nam, H.-M.; Moon, D.-C.; Jang, G.-C.; Park, Y.-J.; Jung, Y.-G.; Jung, S.-C.; Wee, S.-H. Trends in antimicrobial sales for livestock and fisheries in Korea during 2003–2012. Korean J. Vet. Res. 2014, 54, 81–86. [Google Scholar] [CrossRef]
- David, A.; Pancharatna, K. Effects of acetaminophen (paracetamol) in the embryonic development of zebrafish, Danio rerio. J. Appl. Toxicol. 2009, 29, 597–602. [Google Scholar] [CrossRef]
- Qian, H.; Pan, X.; Chen, J.; Zhou, D.; Chen, Z.; Zhang, L.; Fu, Z. Analyses of gene expression and physiological changes in Microcystis aeruginosa reveal the phytotoxicities of three environmental pollutants. Ecotoxicology 2012, 21, 847–859. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Y.; Yang, L.; Duan, S.; Zhou, F.; Chen, J.; Liu, Y.; Zhang, B. Effects of azithromycin on feeding behavior and nutrition accumulation of Daphnia magna under the different exposure pathways. Ecotoxicol. Environ. Saf. 2020, 197, 110573. [Google Scholar] [CrossRef]
- Lawrence, J.R.; Zhu, B.; Swerhone, G.D.; Roy, J.; Tumber, V.; Waiser, M.J.; Topp, E.; Korber, D.R. Molecular and microscopic assessment of the effects of caffeine, acetaminophen, diclofenac, and their mixtures on river biofilm communities. Environ. Toxicol. Chem. 2012, 31, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Koeypudsa, W.; Yakupitiyage, A.; Tangtrongpiros, J. The fate of chlortetracycline residues in a simulated chicken–fish integrated farming systems. Aquac. Res. 2005, 36, 570–577. [Google Scholar] [CrossRef]
- Watanabe, H.; Tamura, I.; Abe, R.; Takanobu, H.; Nakamura, A.; Suzuki, T.; Hirose, A.; Nishimura, T.; Tatarazako, N. Chronic toxicity of an environmentally relevant mixture of pharmaceuticals to three aquatic organisms (alga, daphnid, and fish). Environ. Toxicol. Chem. 2016, 35, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Meinertz, J.R.; Schreier, T.M.; Bernardy, J.A.; Franz, J.L. Chronic toxicity of diphenhydramine hydrochloride and erythromycin thiocyanate to daphnia, Daphnia magna, in a continuous exposure test system. Bull. Environ. Contam. Toxicol. 2010, 85, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yang, D.; Duan, X.; Zhang, Y.; Chen, D.; Gong, Z.; Liu, C. Perfluorooctane sulfonate promotes doxycycline-induced liver tumor progression in male Krasv12 transgenic zebrafish. Environ. Res. 2021, 196, 110962. [Google Scholar] [CrossRef]
- Robinson, A.A.; Belden, J.B.; Lydy, M.J. Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environ. Toxicol. Chem. Int. J. 2005, 24, 423–430. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Guo, R.; Zhang, Q.; Cao, X.; Suranjana, M.; Liu, Y. Effects of florfenicol on growth, photosynthesis and antioxidant system of the non-target organism Isochrysis galbana. Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2020, 233, 108764. [Google Scholar] [CrossRef] [PubMed]
- Lützhøft, H.-C.H.; Halling-Sørensen, B.; Jørgensen, S. Algal toxicity of antibacterial agents applied in Danish fish farming. Arch. Environ. Contam. Toxicol. 1999, 36, 1–6. [Google Scholar] [CrossRef]
- Chai, T.; Cui, F.; Di, S.; Wu, S.; Zhang, Y.; Wang, X. New insights into cardiotoxicity induced by chiral fluoxetine at environmental-level: Enantioselective arrhythmia in developmental zebrafish (Danio rerio). Environ. Pollut. 2021, 270, 116182. [Google Scholar] [CrossRef]
- Kergaravat, S.V.; Hernandez, S.R.; Gagneten, A.M. Second-, third-and fourth-generation quinolones: Ecotoxicity effects on Daphnia and Ceriodaphnia species. Chemosphere 2021, 262, 127823. [Google Scholar] [CrossRef]
- Meng, H.; Liang, J.; Zheng, X.; Zhang, K.; Zhao, Y. Using a high-throughput zebrafish embryo screening approach to support environmental hazard ranking for cardiovascular agents. Sci. Total Environ. 2020, 702, 134703. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R.J.; Kane, A.S.; Petullo, D.; Reimschuessel, R. Localization of Oxytetracycline in Chlamydomonas Reinhardtii (Chlorophyceae)1. J. Phycol. 2008, 44, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Bai, Y.; Chen, Z.; Mo, J.; Li, Q.; Sun, H.; Zhang, Q. Transcriptomic analysis suggests the inhibition of DNA damage repair in green alga Raphidocelis subcapitata exposed to roxithromycin. Ecotoxicol. Environ. Saf. 2020, 201, 110737. [Google Scholar] [CrossRef] [PubMed]
- Białk-Bielińska, A.; Stolte, S.; Arning, J.; Uebers, U.; Böschen, A.; Stepnowski, P.; Matzke, M. Ecotoxicity evaluation of selected sulfonamides. Chemosphere 2011, 85, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Bundschuh, M.; Hahn, T.; Ehrlich, B.; Höltge, S.; Kreuzig, R.; Schulz, R. Acute toxicity and environmental risks of five veterinary pharmaceuticals for aquatic macroinvertebrates. Bull. Environ. Contam. Toxicol. 2016, 96, 139–143. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, K.; Jung, J.; Park, S.; Kim, P.-G.; Park, J. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ. Int. 2007, 33, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Li, Z.; Liu, J. Effects of selected pharmaceuticals on growth, reproduction and feeding of Daphnia Magna. Fresenius Environ. Bull. 2013, 22, 2588–2594. [Google Scholar]
- De Liguoro, M.; Fioretto, B.; Poltronieri, C.; Gallina, G. The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim. Chemosphere 2009, 75, 1519–1524. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Choi, K. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology 2008, 17, 526–538. [Google Scholar] [CrossRef]
- Yang, W.; Tang, Z.; Zhou, F.; Zhang, W.; Song, L. Toxicity studies of tetracycline on Microcystis aeruginosa and Selenastrum capricornutum. Environ. Toxicol. Pharmacol. 2013, 35, 320–324. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (EPA). Framework for Ecological Risk Assessment; EPA/630/R-92/001; US Environmental Protection Agency (EPA): Washington, DC, USA, 1992.
- Madureira, T.V.; Rocha, M.J.; Cruzeiro, C.; Rodrigues, I.; Monteiro, R.A.; Rocha, E. The toxicity potential of pharmaceuticals found in the Douro River estuary (Portugal): Evaluation of impacts on fish liver, by histopathology, stereology, vitellogenin and CYP1A immunohistochemistry, after sub-acute exposures of the zebrafish model. Environ. Toxicol. Pharmacol. 2012, 34, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Luo, Y.; Xu, W.; Zhou, Q.; Tang, B.; Wang, Y. Ecotoxic effects of tetracycline and chlortetracycline on aquatic organisms. J. Agro-Environ. Sci. 2008, 27, 1536–1539. [Google Scholar]
- Kim, B.; Ji, K.; Kim, C.; Kang, H.; Lee, S.; Kwon, B.; Kho, Y.; Park, K.; Kim, K.; Choi, K. Pharmaceutical residues in streams near concentrated animal feeding operations of Korea—Occurrences and associated ecological risks. Sci. Total Environ. 2019, 655, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Park, N.; Kang, D.; Jeon, J. Occurrence and Concentration of Micropollutants in the Middle-and Down-stream of Nakdong River. J. Environ. Anal. Health Toxicol. 2021, 24, 1–12. [Google Scholar] [CrossRef]
Group | Pharmaceuticals | CAS No. | Usage | Chemical Formula | MW * | logKow |
---|---|---|---|---|---|---|
Tetracyclines | 4-Epichlortetracycline | 14297-93-9 | Antibacterial | C22H23ClN2O8 | 478.90 | - |
Tetracyclines | 4-epi-Oxytetracycline | 14206-58-7 | Antibiotic | C22H24N2O9 | 460.40 | - |
Tetracyclines | 4-Epianhydrotetracycline | 7518-17-4 | Antibiotic | C22H22N2O7 | 426.40 | - |
Anilines | Acetaminophen | 103-90-2 | Anti-inflammatory | C8H9NO2 | 151.16 | 0.46 |
Phenicillines | Ampicillin | 69-53-4 | Antibacterial | C16H19N3O4S | 349.11 | 1.35 |
Tetracyclines | Anhydrotetracycline | 1665-56-1 | Antibiotic | C22H22N2O7 | 426.40 | - |
Macrolides | Azithromycin | 83905-01-5 | Antibacterial | C38H72N2O12 | 748.51 | 4.02 |
Methylxanthines | Caffeine | 58-08-2 | Neuropsychiatric agent | C8H10N4O2 | 194.19 | −0.07 |
Carboxamides | Carbamazepine | 298-46-4 | Neuropsychiatric agent | C15H12N2O | 236.27 | 2.45 |
Tetracyclines | Chlortetracycline | 57-62-5 | Antibacterial | C22H23ClN2O8 | 478.90 | - |
Macrolides | Clarithromycin | 81103-11-9 | Antibacterial | C38H69NO13 | 747.48 | 3.16 |
Fluoroquinolones | Clinafloxacin | 105956-97-6 | Antibacterial | C17H17ClFN3O3 | 365.80 | - |
Dihydropyridnes | Dehydronifedipine | 67035-22-7 | Nifedipine metabolite | C17H16N2O6 | 344.32 | - |
Digitalis glycosides | Digoxigenin | 1672-46-4 | Digoxin metabolite | C23H34O5 | 390.50 | 1.10 |
Diphenhydramines | Diphenhydramine | 58-73-1 | Anti-allergic agent | C17H21NO | 255.16 | 3.27 |
Tetracyclines | Doxycycline | 564-25-0 | Antibacterial | C22H24N2O8 | 444.40 | −0.02 |
Fluoroquinolones | Enrofloxacin | 93106-60-6 | Antibacterial | C19H22FN3O3 | 359.40 | - |
Amphenicols | Florfenicol | 73231-34-2 | Antibacterial | C12H14Cl2FNO4S | 358.20 | - |
Quinolones | Flumequine | 42835-25-6 | Antibacterial | C14H12FNO3 | 261.08 | 1.6 |
Others | Fluoxetine | 54910-89-3 | Neuropsychiatric agent | C17H18F3NO | 309.33 | 4.05 |
Fluoroquinolones | Lomefloxacin | 98079-51-7 | Antibacterial | C17H19F2N3O3 | 351.14 | 2.8 |
Fluoroquinolones | Marbofloxacin | 115550-35-1 | Antibacterial | C17H19FN4O4 | 362.14 | - |
Quinolones | Nalidixic acid | 389-08-2 | Antibacterial | C12H12N2O3 | 232.09 | 1.41 |
Dihydropyridnes | Nifedipine | 21829-25-4 | Cardiovascular agent | C17H18N2O6 | 346.12 | 2.2 |
Progesterones | Norgestimate | 35189-28-7 | Progesterone | C23H31NO3 | 369.23 | 4.98 |
Fluoroquinolones | Ofloxacin | 82419-36-1 | Antibacterial | C18H20FN3O4 | 361.40 | −0.39 |
Others | Ormetoprim | 6981-18-6 | Antibacterial | C14H18N4O2 | 274.14 | - |
Tetracyclines | Oxytetracycline | 79-57-2 | Antibacterial | C22H24N2O9 | 460.15 | −0.9 |
Macrolides | Roxithromycin | 80214-83-1 | Antibacterial | C41H76N2O15 | 837.00 | 1.7 |
Sulfonamides | Sulfachloropyridazine | 80-32-0 | Antibacterial | C10H9ClN4O2S | 284.72 | - |
Sulfonamides | Sulfaclozine | 102-65-8 | Antibacterial | C10H9ClN4O2S | 284.72 | - |
Sulfonamides | Sulfadiazine | 68-35-9 | Antibacterial | C10H10N4O2S | 250.28 | −0.09 |
Sulfonamides | Sulfadimethoxine | 122-11-2 | Antibacterial | C12H14N4O4S | 310.33 | 1.63 |
Sulfonamides | Sulfadoxine | 2447-57-6 | Antibacterial | C12H14N4O4S | 310.07 | 0.7 |
Sulfonamides | Sulfaethoxypyridazine | 963-14-4 | Antibacterial | C12H14N4O3S | 294.33 | - |
Sulfonamides | Sulfamerazine | 127-79-7 | Antibacterial | C11H12N4O2S | 264.31 | 0.14 |
Sulfonamides | Sulfamethazine | 57-68-1 | Antibacterial | C12H14N4O2S | 278.33 | 0.14 |
Sulfonamides | Sulfamethizole | 144-82-1 | Antibacterial | C9H10N4O2S2 | 270.03 | 0.54 |
Sulfonamides | Sulfamethoxazole | 723-46-6 | Antibacterial | C10H11N3O3S | 253.28 | 0.89 |
Sulfonamides | Sulfamethoxypyridazine | 80-35-3 | Antibacterial | C11H12N4O3S | 280.06 | - |
Sulfonamides | Sulfamonomethoxine | 1220-83-3 | Antibacterial | C11H12N4O3S | 280.06 | −0.037 |
Sulfonamides | Sulfaquinoxaline | 59-40-5 | Antibacterial | C14H12N4O2S | 300.34 | 1.68 |
Sulfonamides | Sulfathiazole | 72-14-0 | Antibacterial | C9H9N3O2S2 | 255.30 | 0.05 |
Sulfonamides | Sulfisoxazole | 127-69-5 | Antibacterial | C11H13N3O3S | 267.07 | 1.01 |
Tetracyclines | Tetracycline | 60-54-8 | Antibiotic | C22H24N2O8 | 444.40 | −1.37 |
Benzimidazoles | Thiabendazole | 148-79-8 | Antibiotic | C10H7N3S | 201.25 | 2.47 |
Others | Trimethoprim | 738-70-5 | Antibacterial | C14H18N4O3 | 290.32 | 0.91 |
Others | Virginiamycin M1 | 21411-53-0 | Antibiotic | C28H35N3O7 | 525.6 | - |
Others | Virginiamycin S1 | 23152-29-6 | Antibiotic | C43H49N7O10 | 823.9 | - |
No. | Name | Concentration of Stock Solution (mg/L) | Solvent for Stock Solution | Retention Time (min) | Precursor Ion (Fragmentor, V) | Product Ion (CE, V) |
---|---|---|---|---|---|---|
1 | 4-Epianhydrotetracycline (HCl) | 1000 | Methanol | 5.167 | 427.2 (126) | 410.1 (17), 98.1 (45) |
2 | 4-Epichlortetracycline | 1000 | Methanol | 4.875 | 479.1 (134) | 444.1 (21), 462.1 (17), 98.1 (41) |
3 | 4-Epioxytetracycline | 1000 | Methanol | 4.586 | 461.2 (132) | 426.1 (21), 444.1 (17), 201 (45) |
4 | Acetaminophen | 1000 | Methanol | 3.954 | 152.1 (112) | 110.1 (17), 93.1 (25), 65.1 (33) |
5 | Ampicillin | 1000 | Methanol | 4.417 | 350.1 (120) | 106.1 (21), 160 (13), 114 (33) |
6 | Anhydrotetracycline (HCl) | 1000 | Methanol | 5.423 | 427.2 (122) | 410.1 (17), 97.9 (49), 154 (21) |
7 | Azithromycin | 1000 | Methanol | 4.81 | 749.5 (165) | 591.4 (29), 158.1 (45), 116.1 (45) |
8 | Caffeine | 1000 | 20% Methanol | 4.472 | 195.1 (130) | 138 (21), 110.1 (25), 83.1 (33) |
9 | Carbamazepine | 1000 | Methanol | 5.974 | 237.1 (132) | 194 (21), 193 (41), 165 (57) |
10 | Chlortetracycline (HCl) | 1000 | Methanol | 5.052 | 479 (85) | 444.1 (20), 426 (25), 154 (30) |
11 | Clarithromycin | 1000 | Methanol | 5.803 | 748.5 (167) | 158.1 (29), 590.4 (17), 83.2 (77) |
12 | Clinafloxacin | 200 | 50% Methanol | 4.653 | 366.1 (173) | 322.1 (17), 279 (25) |
13 | Dehydronifedipine | 200 | Methanol | 6.576 | 345.1 (175) | 283.8 (29), 151.9 (80), 267.8 (33) |
14 | Digoxigenin | 1000 | Methanol | 5.184 | 391.3 (134) | 355.2 (13), 105.1 (57), 91.1 (77) |
15 | Diphenhydramine (HCl) | 1000 | Methanol | 5.448 | 256.2 (81) | 167 (17), 165 (49), 152 (45) |
16 | Doxycycline (HCl) | 1000 | Methanol | 5.134 | 445 (130) | 428.1 (20), 321.1 (29), 267 (35) |
17 | Enrofloxacin | 1000 | Methanol | 4.671 | 360.2 (83) | 342.2 (25), 316.2 (17), 245 (29) |
18 | Florfenicol | 1000 | Methanol | 5.418 | 355.9 (150) | 336 (7), 185 (19) |
19 | Flumequine | 200 | Methanol | 6.147 | 262.1 (120) | 244 (17), 202 (37), 174 (48) |
20 | Fluoxetine | 500 | Methanol | 5.809 | 310.1 (79) | 148.1 (5), 91.1 (80), 117.1 (65) |
21 | Lomefloxacin (HCl) | 1000 | Methanol | 4.608 | 352.2 (122) | 265 (25), 334.1 (21), 308.1 (17) |
22 | Marbofloxacin | 1000 | Dimethyl sulfoxide | 4.477 | 362.8 (140) | 72 (25), 344.9 (21), 319.8 (15) |
23 | Nalidixic acid | 200 | Methanol:acetone (1:1) | 6.087 | 232.8 (110) | 214.8 (12), 158.9 (36), 186.8 (27) |
24 | Nifedipine | 1000 | Methanol | 6.603 | 347.1 (79) | 314.8 (5), 253.8 (17), 167.1 (65) |
25 | Norgestimate | 1000 | Methanol | 7.644 | 370.2 (179) | 124 (37), 77.1 (77), 91.1 (61) |
26 | Ofloxacin | 200 | Methanol | 4.526 | 362.2 (134) | 318.1 (21), 261 (29), 205 (45) |
27 | Ormetoprim | 1000 | Methanol | 4.596 | 275.2 (169) | 259.1 (29), 123 (25), 81.1 (53) |
28 | Oxytetracycline (HCl) | 1000 | Methanol | 4.57 | 461 (130) | 426 (20), 321.1 (29), 267 (35) |
29 | Roxithromycin | 1000 | Methanol | 5.817 | 837.5 (155) | 679.5 (21), 116 (41), 158.2 (37) |
30 | Sulfachloropyridazine | 1000 | Methanol | 5.267 | 285 (110) | 156 (13), 92.1 (33), 108 (29) |
31 | Sulfaclozine sodium | 1000 | Dimethyl sulfoxide | 5.668 | 285 (120) | 92.1 (33), 108 (25), 156 (17) |
32 | Sulfadiazine | 200 | Methanol | 4.389 | 251.1 (118) | 156 (15), 65.1 (53), 92.1 (29) |
33 | Sulfadimethoxine | 1000 | Methanol | 5.697 | 311.1 (126) | 156 (21), 92.1 (41), 65.1 (61) |
34 | Sulfadoxine | 1000 | Methanol | 5.377 | 310.8 (140) | 156 (18), 107.9 (30), 92 (36) |
35 | Sulfaethoxypyridazine | 1000 | Methanol | 5.378 | 294.8 (140) | 155.8 (17), 139.9 (19), 107.9 (30) |
36 | Sulfamerazine | 1000 | Methanol | 4.727 | 265.1 (122) | 92.1 (33), 65.1 (61), 156 (17) |
37 | Sulfamethazine | 1000 | Methanol | 4.95 | 279.1 (128) | 186 (17), 92.1 (33), 156 (19) |
38 | Sulfamethizole | 1000 | Methanol | 4.904 | 271 (79) | 156 (13), 92.1 (29), 65.1 (57) |
39 | Sulfamethoxazole | 1000 | Methanol | 5.385 | 254.1 (110) | 156 (15), 65.1 (53), 92.1 (29) |
40 | Sulfamethoxypyridazine | 1000 | Dimethyl sulfoxide | 4.949 | 281 (130) | 156 (17), 108 (27), 92.1 (31) |
41 | Sulfamonomethoxine | 1000 | Methanol | 5.141 | 280.8 (80) | 156 (19), 107.9 (28), 92 (31) |
42 | Sulfaquinoxaline | 1000 | Acetone | 5.684 | 300.8 (80) | 155.8 (17), 107.9 (25), 91.9 (31) |
43 | Sulfathiazole | 1000 | Methanol | 4.501 | 256 (112) | 155.9 (13), 92.1 (25), 65.1 (53) |
44 | Sulfisoxazole | 1000 | Methanol | 5.478 | 267.8 (70) | 155.8 (11), 112.9 (15), 92 (29) |
45 | Tetracycline (HCl) | 1000 | Methanol | 4.701 | 445 (95) | 410 (15), 154 (30) |
46 | Thiabendazole | 1000 | Methanol | 4.423 | 202 (167) | 175 (29), 131 (37), 65.1 (53) |
47 | Trimethoprim | 1000 | Methanol | 4.498 | 291.2 (169) | 230 (25), 261 (29), 123 (29) |
48 | Virginiamycin M1 | 1000 | Methanol | 6.247 | 526.3 (116) | 354.9 (15), 507.8 (11), 108.9 (37) |
49 | Virginiamycin S1 | 500 | Methanol | 6.82 | 823.8 (230) | 204.9 (54), 289.9 (36), 565.7 (32) |
- | 13C3-Trimethoprim | 50 | Methanol | 4.497 | 293.8 (170) | 125.9 (27), 232.8 (29), 263.9 (29) |
- | 13C6 Sulfamethazine | 100 | Acetonitrile | 4.948 | 285.1 (132) | 185.8 (16), 161.8 (18), 113.9 (29) |
- | 13C6-Sulfamethoxazole | 100 | Acetonitrile | 5.383 | 260.1 (122) | 98 (29), 113.9 (25), 161.8 (14) |
- | Thiabendazole (ring-13C6) | 100 | Acetonitrile | 4.422 | 208 (171) | 180.8 (29), 70 (53), 136.9 (41) |
- | Atrazine-d5 | 1000 | Methanol | - | 221.1 (124) | 179 (21), 69.1 (45), 101.1 (29) |
No. | Name | Regression Equation | r2 | Linear Range (ng/mL) | MDL (ng/L) | LOQ (ng/L) |
---|---|---|---|---|---|---|
1 | 4-Epianhydrotetracycline | y = 0.001121x − 0.001526 | 0.9970 | 2–50 | 6.25 | 19.90 |
2 | 4-Epichlortetracycline | y = 1.558725−4x − 2.440391−4 | 0.9989 | 5–50 | 9.77 | 31.12 |
3 | 4-Epioxytetracycline | y = 0.001002x − 0.001425 | 0.9998 | 2–75 | 9.72 | 30.95 |
4 | Acetaminophen | y = 1.749150−4x + 1.243825−4 | 0.9984 | 5–100 | 4.78 | 15.21 |
5 | Ampicillin | y = 2.354800−4x − 0.001163 | 0.9945 | 5–75 | 5.29 | 16.85 |
6 | Anhydrotetracycline | y = 0.002668x − 0.001453 | 0.9926 | 5–50 | 10.45 | 33.29 |
7 | Azithromycin | y = 0.002338x − 0.007140 | 0.9988 | 5–75 | 3.68 | 11.71 |
8 | Caffeine | y = 4.009872−4x + 4.980610−4 | 0.9980 | 5–100 | 4.85 | 15.44 |
9 | Carbamazepine | y = 0.002668x − 3.984711−4 | 0.9991 | 0.5–10 | 7.76 | 24.71 |
10 | Chlortetracycline | y = 3.231145−4x − 0.001658 | 0.9919 | 5–50 | 5.60 | 17.82 |
11 | Clarithromycin | y = 0.018081x − 5.018711−4 | 0.9995 | 0.5–10 | 3.96 | 12.61 |
12 | Clinafloxacin | y = 6.727147−4x − 0.010709 | 0.9995 | 20–100 | 14.53 | 46.27 |
13 | Dehydro nifedipine | y = 0.006114x + 9.052315−5 | 0.9997 | 0.5–25 | 3.85 | 12.27 |
14 | Digoxigenin | y = 2.547734−4x + 2.013892−4 | 0.9982 | 5–75 | 5.06 | 16.10 |
15 | Diphenhydramine | y = 0.062808x − 0.007092 | 0.9993 | 0.5–10 | 3.16 | 10.05 |
16 | Doxycycline | y = 6.306953−4x − 0.001976 | 0.9918 | 5–50 | 8.95 | 28.52 |
17 | Enrofloxacin | y = 8.330491−4x − 0.001309 | 0.9975 | 2–50 | 7.69 | 24.47 |
18 | Florfenicol | y = 3.093383−4x − 1.114011−4 | 0.9919 | 2–20 | 7.19 | 22.89 |
19 | Flumequine | y = 0.002215x + 4.140469−5 | 0.9998 | 0.5–50 | 2.72 | 8.67 |
20 | Fluoxetine | y = 0.001533x + 3.075431−4 | 0.9971 | 0.5–10 | 5.57 | 17.73 |
21 | Lomefloxacin | y = 0.001862x − 0.007739 | 0.9965 | 5–50 | 14.34 | 45.66 |
22 | Marbofloxacin | y = 7.051740−4x − 0.002732 | 0.9931 | 5–75 | 14.54 | 46.32 |
23 | Nalidixic acid | y = 0.002525x − 1.533324−4 | 0.9979 | 0.5–20 | 2.67 | 8.49 |
24 | Nifedipine | y = 7.860068−4x − 4.214378−6 | 0.9987 | 0.5–20 | 7.88 | 25.11 |
25 | Norgestimate | y = 0.001300x − 9.673252−5 | 0.9996 | 0.5–20 | 3.44 | 10.94 |
26 | Ofloxacin | y = 0.001558x − 0.006164 | 0.9976 | 5–50 | 11.66 | 37.14 |
27 | Ormetoprim | y = 0.012046x + 0.001497 | 0.9969 | 0.5–10 | 4.76 | 15.17 |
28 | Oxytetracycline | y = 4.831707−4x − 0.001026 | 0.9962 | 5–50 | 8.19 | 26.07 |
29 | Roxithromycin | y = 0.005459x − 1.874623−4 | 0.9991 | 0.5–10 | 2.69 | 8.55 |
30 | Sulfachloropyridazine | y = 0.002094x + 9.687999−4 | 0.9995 | 0.5–100 | 6.44 | 20.52 |
31 | Sulfaclozine | y = 3.860528−4x − 8.547179−6 | 0.9928 | 1–25 | 4.71 | 15.00 |
32 | Sulfadiazine | y = 6.807058−4x − 6.161956−5 | 0.9994 | 1–100 | 5.06 | 16.11 |
33 | Sulfadimethoxine | y = 0.002052x + 7.023815−4 | 0.9989 | 0.5–50 | 5.45 | 17.37 |
34 | Sulfadoxine | y = 0.001233x + 1.072618−4 | 0.9988 | 1–20 | 5.26 | 16.76 |
35 | Sulfaethoxypyridazine | y = 0.001003x − 6.420953−5 | 0.9992 | 1–50 | 5.07 | 16.16 |
36 | Sulfamerazine | y = 7.798603−4x + 5.484095−5 | 0.9989 | 0.5–25 | 6.05 | 19.28 |
37 | Sulfamethazine | y = 0.001340x − 2.742459−6 | 0.9995 | 0.5–20 | 6.08 | 19.35 |
38 | Sulfamethizole | y = 0.001298x − 1.781222−4 | 0.9996 | 0.5–10 | 3.63 | 11.56 |
39 | Sulfamethoxazole | y = 8.795675−4x − 1.933642−4 | 0.9977 | 1–20 | 3.90 | 12.42 |
40 | Sulfamethoxypyridazine | y = 0.001079x + 3.132912−4 | 0.9996 | 2–50 | 4.41 | 14.04 |
41 | Sulfamonomethoxine | y = 4.505160−4x − 9.963152−5 | 0.9963 | 2–75 | 5.64 | 17.95 |
42 | Sulfaquinoxaline | y = 6.615775−4x + 1.406531−4 | 0.9982 | 0.5–50 | 3.40 | 10.82 |
43 | Sulfathiazole | y = 9.418226−4x + 6.183180−5 | 0.9997 | 0.5–20 | 4.23 | 13.46 |
44 | Sulfisoxazole | y = 7.569998−4x − 9.792676−5 | 0.9983 | 1–20 | 4.64 | 14.77 |
45 | Tetracycline | y = 2.871229−4x − 0.001264 | 0.9923 | 5–50 | 6.38 | 20.31 |
46 | Thiabendazole | y = 0.005822x + 4.603184−4 | 0.9967 | 0.5–10 | 2.39 | 7.60 |
47 | Trimethoprim | y = 0.005269x + 0.001399 | 0.9988 | 0.5–10 | 5.69 | 18.12 |
48 | Virginiamycin M1 | y = 1.333264−4x + 5.226565−5 | 0.9998 | 2–75 | 10.14 | 32.29 |
49 | Virginiamycin S1 | y = 1.754436−5x − 2.779775−5 | 0.9937 | 10–75 | 3.68 | 11.72 |
Group | Pharmaceuticals | CAS no. | N (Total) | N (Detected) | Detection Frequency (%) | AM * (μg/L) | SD * | Median (μg/L) | Min (μg/L) | Max (μg/L) |
---|---|---|---|---|---|---|---|---|---|---|
Total | 2315 | 591 | 25.5 | 0.017 | 0.738 | 0.020 | 0.001 | 9.212 | ||
Tetracyclines | 4-Epichlortetracycline | 14297-93-9 | 51 | 12 | 23.5 | 0.271 | 0.453 | 0.041 | 0.023 | 1.591 |
Tetracyclines | 4-epi-Oxytetracycline | 14206-58-7 | 48 | 5 | 10.4 | 0.140 | 0.275 | 0.012 | 0.005 | 0.632 |
Tetracyclines | 4-Epianhydrotetracycline | 7518-17-4 | 48 | 3 | 6.3 | 0.106 | 0.141 | 0.029 | 0.021 | 0.269 |
Anilines | Acetaminophen | 103-90-2 | 49 | 44 | 89.8 | 0.527 | 1.335 | 0.098 | 0.013 | 8.479 |
Phenicillines | Ampicillin | 69-53-4 | 47 | 4 | 8.5 | 0.032 | 0.035 | 0.017 | 0.011 | 0.085 |
Tetracyclines | Anhydrotetracycline | 1665-56-1 | 47 | 6 | 12.8 | 0.029 | 0.023 | 0.024 | 0.010 | 0.073 |
Macrolides | Azithromycin | 83905-01-5 | 48 | 29 | 60.4 | 0.040 | 0.053 | 0.016 | 0.001 | 0.188 |
Methylxanthines | Caffeine | 58-08-2 | 51 | 51 | 100.0 | 0.100 | 0.131 | 0.060 | 0.010 | 0.781 |
Carboxamides | Carbamazepine | 298-46-4 | 47 | 36 | 76.6 | 0.022 | 0.019 | 0.013 | 0.002 | 0.065 |
Tetracyclines | Chlortetracycline | 57-62-5 | 51 | 14 | 27.5 | 0.275 | 0.409 | 0.048 | 0.027 | 1.487 |
Macrolides | Clarithromycin | 81103-11-9 | 47 | 31 | 66.0 | 0.037 | 0.053 | 0.014 | 0.001 | 0.193 |
Fluoroquinolones | Clinafloxacin | 105956-97-6 | 47 | 5 | 10.6 | 0.042 | 0.021 | 0.032 | 0.026 | 0.078 |
Dihydropyridnes | Dehydronifedipine | 67035-22-7 | 47 | 3 | 6.4 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 |
Digitalis glycosides | Digoxigenin | 1672-46-4 | 48 | 3 | 6.3 | 0.078 | 0.046 | 0.058 | 0.045 | 0.131 |
Diphenhydramines | Diphenhydramine | 58-73-1 | 47 | 21 | 44.7 | 0.010 | 0.021 | 0.003 | 0.001 | 0.095 |
Tetracyclines | Doxycycline | 564-25-0 | 47 | 3 | 6.4 | 0.049 | 0.038 | 0.029 | 0.026 | 0.093 |
Fluoroquinolones | Enrofloxacin | 93106-60-6 | 49 | 17 | 34.7 | 0.086 | 0.137 | 0.022 | 0.005 | 0.478 |
Amphenicols | Florfenicol | 73231-34-2 | 50 | 41 | 82.0 | 0.633 | 1.311 | 0.102 | 0.004 | 5.885 |
Quinolones | Flumequine | 42835-25-6 | 51 | 8 | 15.7 | 0.025 | 0.044 | 0.008 | 0.002 | 0.131 |
Others | Fluoxetine | 54910-89-3 | 47 | 1 | 2.1 | 0.021 | - | - | - | - |
Fluoroquinolones | Lomefloxacin | 98079-51-7 | 47 | 0 | 0.0 | - | - | - | - | - |
Fluoroquinolones | Marbofloxacin | 115550-35-1 | 49 | 8 | 16.3 | 1.082 | 2.811 | 0.057 | 0.010 | 8.036 |
Quinolones | Nalidixic acid | 389-08-2 | 47 | 0 | 0.0 | - | - | - | - | - |
Dihydropyridnes | Nifedipine | 21829-25-4 | 47 | 0 | 0.0 | - | - | - | - | - |
Progesterones | Norgestimate | 35189-28-7 | 47 | 0 | 0.0 | - | - | - | - | - |
Fluoroquinolones | Ofloxacin | 82419-36-1 | 48 | 15 | 31.3 | 0.045 | 0.078 | 0.013 | 0.003 | 0.277 |
Others | Ormetoprim | 6981-18-6 | 47 | 0 | 0.0 | - | - | - | - | - |
Tetracyclines | Oxytetracycline | 79-57-2 | 48 | 9 | 18.8 | 0.062 | 0.139 | 0.016 | 0.004 | 0.431 |
Macrolides | Roxithromycin | 80214-83-1 | 48 | 23 | 47.9 | 0.011 | 0.014 | 0.003 | 0.001 | 0.052 |
Sulfonamides | Sulfachloropyridazine | 80-32-0 | 47 | 0 | 0.0 | - | - | - | - | - |
Sulfonamides | Sulfaclozine | 102-65-8 | 47 | 2 | 4.3 | 0.014 | 0.008 | 0.014 | 0.008 | 0.019 |
Sulfonamides | Sulfadiazine | 68-35-9 | 47 | 1 | 2.1 | 0.011 | - | - | - | - |
Sulfonamides | Sulfadimethoxine | 122-11-2 | 47 | 0 | 0.0 | - | - | - | - | - |
Sulfonamides | Sulfadoxine | 2447-57-6 | 47 | 0 | 0.0 | - | - | - | - | - |
Sulfonamides | Sulfaethoxypyridazine | 963-14-4 | 47 | 0 | 0.0 | - | - | - | - | - |
Sulfonamides | Sulfamerazine | 127-79-7 | 47 | 31 | 66.0 | 0.015 | 0.028 | 0.005 | 0.001 | 0.133 |
Sulfonamides | Sulfamethazine | 57-68-1 | 49 | 38 | 77.6 | 0.053 | 0.095 | 0.013 | 0.001 | 0.385 |
Sulfonamides | Sulfamethizole | 144-82-1 | 47 | 1 | 2.1 | 0.008 | - | - | - | - |
Sulfonamides | Sulfamethoxazole | 723-46-6 | 47 | 32 | 68.1 | 0.023 | 0.040 | 0.012 | 0.002 | 0.167 |
Sulfonamides | Sulfamethoxypyridazine | 80-35-3 | 47 | 1 | 2.1 | 0.005 | - | - | - | - |
Sulfonamides | Sulfamonomethoxine | 1220-83-3 | 47 | 1 | 2.1 | 0.013 | - | - | - | - |
Sulfonamides | Sulfaquinoxaline | 59-40-5 | 47 | 2 | 4.3 | 0.007 | 0.005 | 0.007 | 0.004 | 0.011 |
Sulfonamides | Sulfathiazole | 72-14-0 | 50 | 30 | 60.0 | 0.476 | 1.683 | 0.024 | 0.002 | 9.212 |
Sulfonamides | Sulfisoxazole | 127-69-5 | 47 | 0 | 0.0 | - | - | - | - | - |
Tetracyclines | Tetracycline | 60-54-8 | 50 | 9 | 18.0 | 0.071 | 0.095 | 0.028 | 0.005 | 0.310 |
Benzimidazoles | Thiabendazole | 148-79-8 | 49 | 22 | 44.9 | 0.023 | 0.018 | 0.022 | 0.001 | 0.098 |
Others | Trimethoprim | 738-70-5 | 47 | 28 | 59.6 | 0.037 | 0.111 | 0.010 | 0.001 | 0.593 |
Peptides | Virginiamycin M1 | 21411-53-0 | 32 | 0 | 0.0 | - | - | - | - | - |
Peptides | Virginiamycin S1 | 23152-29-6 | 32 | 1 | 3.1 | 0.005 | - | - | - | - |
Pharmaceuticals | Species | Class | Effect | Test Type | Duration (Days) | Endpoint | Concentration(μg/L) | AF | PNEC (μg/L) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Acetaminophen | Danio rerio | Fish | Mortality | Chronic | 7 | NOEC | 1.00 | 10 | 0.10 | David and Pancharatna [34] |
Ampicillin | Microcystis aeruginosa | Algae | Genetics | Chronic | 4 | NOEC | 10.00 | 100 | 0.10 | Qian et al. [35] |
Azithromycin | Daphnia magna | Crustaceans | Behavior | Chronic | 4 | LOEC | 48.00 | 50 | 0.96 | Li et al. [36] |
Caffeine | Raphidocelis subcapitata | Algae | Population | Chronic | 56 | LOEC | 5.00 | 10 | 0.50 | Lawrence and Zhu [37] |
Carbamazepine | Gobiocypris rarus | Fish | Biochemistry | Chronic | 28 | NOEC | 0.91 | 10 | 0.09 | Yan et al. [25] |
Chlortetracycline | Oreochromis niloticus | Fish | Growth | Chronic | 48 | NOEC | 12.00 | 50 | 0.24 | Koeypudsa et al. [38] |
Clarithromycin | Pseudokirchneriella subcapitata | Algae | Growth | Chronic | 3 | NOEC | 2.45 | 10 | 0.25 | Watanabe et al. [39] |
Diphenhydramine | Ceriodaphnia dubia | Crustaceans | Reproduction | Chronic | 21 | NOEC | 0.12 | 10 | 0.01 | Meinertz et al. [40] |
Doxycycline | Danio rerio | Fish | Genetics | Chronic | 10 | NOEC | 20000.0 | 100 | 200.0 | Zhu et al. [41] |
Enrofloxacin | Microcystis aeruginosa | Algae | Population | Chronic | 5 | NOEC | 49.00 | 10 | 4.90 | Robinson et al. [42] |
Florfenicol | Isochrysis galbana | Algae | Biochemistry | Chronic | 3 | NOEC | 1.00 | 10 | 0.10 | Zhang et al. [43] |
Flumequine | Microcystis aeruginosa | Algae | Population | Acute | 7 | EC50 | 159.0 | 10 | 15.90 | Lützhøft et al. [44] |
Fluoxetine | Danio rerio | Fish | Genetics | Chronic | 9 | LOEC | 0.09 | 10 | 0.01 | Chai et al. [45] |
Lomefloxacin | Microcystis aeruginosa | Algae | Population | Acute | 7 | EC50 | 186.0 | 50 | 3.72 | Robinson et al. [42] |
Marbofloxacin | Ceriodaphnia dubia | Crustaceans | Mortality | Chronic | 21 | NOEC | 2500.0 | 100 | 25.00 | Kergaravat et al. [46] |
Nifedipine | Danio rerio | Fish | Physiology | Chronic | 2 | NOEC | 346.3 | 100 | 3.46 | Meng et al. [47] |
Ofloxacin | Microcystis aeruginosa | Algae | Population | Acute | 5 | EC50 | 21.00 | 50 | 0.42 | Robinson et al. [42] |
Oxytetracycline | Chlamydomonas reinhardtii | Algae | Population | Chronic | 7 | NOEC | 100.00 | 50 | 2.00 | Garcia et al. [48] |
Roxithromycin | Raphidocelis subcapitata | Algae | Population | Chronic | 7 | NOEC | 6.60 | 50 | 0.13 | Guo et al. [49] |
Sulfachloropyridazine | Chlorella fusca var. vacuolata | Algae | Population | Acute | 1 | EC50 | 32250.0 | 100 | 322.5 | Bialk-Bielinska et al. [50] |
Sulfadiazine | Daphnia magna | Crustaceans | Mortality | Chronic | 4 | NOEC | 50.00 | 50 | 1.00 | Bundschuh et al. [51] |
Sulfadimethoxine | Oryzias latipes | Fish | Mortality | Acute | 4 | LC50 | 100000.0 | 100 | 1000.0 | Kim et al. [52] |
Sulfamerazine | Chlorella fusca var. vacuolata | Algae | Population | Acute | 2 | EC50 | 11900.0 | 100 | 119.0 | Bialk-Bielinska et al. [50] |
Sulfamethazine | Gammarus pulex | Crustaceans | Mortality | Chronic | 4 | NOEC | 100.0 | 10 | 10.00 | Bundschuh et al. [51] |
Sulfamethoxazole | Daphnia magna | Crustaceans | Growth | Chronic | 21 | NOEC | 120.0 | 10 | 12.00 | Lu et al. [53] |
Sulfaquinoxaline | Daphnia magna | Crustaceans | Intoxication | Acute | 2 | EC50 | 131000.0 | 1000 | 131.0 | De Liguoro et al. [54] |
Sulfathiazole | Daphnia magna | Crustaceans | Reproduction | Chronic | 21 | NOEC | 11000.0 | 100 | 110.0 | Park and Choi [55] |
Tetracycline | Microcystis aeruginosa | Algae | Population | Chronic | 7 | NOEC | 50.00 | 10 | 5.00 | Yang et al. [56] |
Thiabendazole | Oncorhynchus mykiss | Fish | Growth | Chronic | 21 | NOEC | 12.00 | 50 | 0.24 | U.S. EPA [57] |
Trimethoprim | Danio rerio | Fish | Mortality | Chronic | 21 | NOEC | 157.0 | 100 | 1.57 | Madureira et al. [58] |
Group | Pharmaceuticals | CAS No. | RQ * | Risk Category | ||
---|---|---|---|---|---|---|
AM | Min | Max | ||||
Anilines | Acetaminophen | 103-90-2 | 5.27 | 0.13 | 84.79 | High |
Phenicillines | Ampicillin | 69-53-4 | 0.32 | 0.11 | 0.85 | Moderate |
Macrolides | Azithromycin | 83905-01-5 | 0.04 | 0.00 | 0.20 | Low |
Methylxanthines | Caffeine | 58-08-2 | 0.20 | 0.02 | 1.56 | Moderate |
Carboxamides | Carbamazepine | 298-46-4 | 0.24 | 0.02 | 0.71 | Moderate |
Tetracyclines | Chlortetracycline | 57-62-5 | 1.15 | 0.11 | 6.20 | High |
Macrolides | Clarithromycin | 81103-11-9 | 0.15 | 0.00 | 0.79 | Moderate |
Diphenhydramines | Diphenhydramine | 58-73-1 | 0.83 | 0.08 | 7.92 | Moderate |
Tetracyclines | Doxycycline | 564-25-0 | 0.00 | 0.00 | 0.00 | Low |
Fluoroquinolones | Enrofloxacin | 93106-60-6 | 0.02 | 0.00 | 0.10 | Low |
Amphenicols | Florfenicol | 73231-34-2 | 6.33 | 0.04 | 58.85 | High |
Quinolones | Flumequine | 42835-25-6 | 0.00 | 0.00 | 0.01 | Low |
Others | Fluoxetine | 54910-89-3 | 2.22 ** | - | - | High |
Fluoroquinolones | Marbofloxacin | 115550-35-1 | 0.04 | 0.00 | 0.32 | Low |
Fluoroquinolones | Ofloxacin | 82419-36-1 | 0.11 | 0.01 | 0.66 | Moderate |
Tetracyclines | Oxytetracycline | 79-57-2 | 0.03 | 0.00 | 0.22 | Low |
Macrolides | Roxithromycin | 80214-83-1 | 0.08 | 0.01 | 0.39 | Low |
Sulfonamides | Sulfadiazine | 68-35-9 | 0.01 ** | - | - | Low |
Sulfonamides | Sulfamerazine | 127-79-7 | 0.00 | 0.00 | 0.00 | Low |
Sulfonamides | Sulfamethazine | 57-68-1 | 0.01 | 0.00 | 0.04 | Low |
Sulfonamides | Sulfamethoxazole | 723-46-6 | 0.00 | 0.00 | 0.01 | Low |
Sulfonamides | Sulfaquinoxaline | 59-40-5 | 0.00 | 0.00 | 0.00 | Low |
Sulfonamides | Sulfathiazole | 72-14-0 | 0.00 | 0.00 | 0.08 | Low |
Tetracyclines | Tetracycline | 60-54-8 | 0.01 | 0.00 | 0.06 | Low |
Benzimidazoles | Thiabendazole | 148-79-8 | 0.10 | 0.00 | 0.41 | Moderate |
Others | Trimethoprim | 738-70-5 | 0.02 | 0.00 | 0.38 | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Chae, M.; Lee, S. Environmental Monitoring and Risk Assessment of Pharmaceutical Residues Discharged from Large Livestock Complex in the Geum River Basin, South Korea. Water 2023, 15, 3913. https://doi.org/10.3390/w15223913
Lee H, Chae M, Lee S. Environmental Monitoring and Risk Assessment of Pharmaceutical Residues Discharged from Large Livestock Complex in the Geum River Basin, South Korea. Water. 2023; 15(22):3913. https://doi.org/10.3390/w15223913
Chicago/Turabian StyleLee, Hyeri, Minhee Chae, and Seokwon Lee. 2023. "Environmental Monitoring and Risk Assessment of Pharmaceutical Residues Discharged from Large Livestock Complex in the Geum River Basin, South Korea" Water 15, no. 22: 3913. https://doi.org/10.3390/w15223913
APA StyleLee, H., Chae, M., & Lee, S. (2023). Environmental Monitoring and Risk Assessment of Pharmaceutical Residues Discharged from Large Livestock Complex in the Geum River Basin, South Korea. Water, 15(22), 3913. https://doi.org/10.3390/w15223913