Comprehensive Regulation of Water–Nitrogen Coupling in Hybrid Seed Maize in the Hexi Oasis Irrigation Area Based on the Synergy of Multiple Indicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Methods and Measured Variables
2.3.1. Meteorological Data
2.3.2. Water Use Efficiency
2.3.3. Nitrogen Fertilizer Use Efficiency
2.3.4. Above-Ground Dry Weights
2.3.5. Yield
2.3.6. Seed Vigour
(VI, %) = GI × DW
2.3.7. The Water–Nitrogen Coupling Model
2.4. Statistical Analysis Methods
3. Results
3.1. Effects of Water–Nitrogen Interactions on Seed Vigour of Hybrid Seed Maize
3.2. Effects of Water–Nitrogen Interactions on Hybrid Seed Maize Yield and Its Components
3.3. Effects of Water–Nitrogen Interactions on Water–Nitrogen Use Efficiency in Hybrid Seed Maize
3.4. Establishment of a Comprehensive Growth Evaluation System for Hybrid Seed Maize
3.4.1. Comprehensive Evaluation Hierarchy Model (IHM)
3.4.2. Indicator Weights
- (1)
- Determination of weights based on the AHP method
- (2)
- Determination of weights based on entropy weighting
- (3)
- Based on Game Theory
3.4.3. Comprehensive Evaluation of Hybrid Seed Maize Based on the TOPSIS Method
3.5. Coupled Water–Nitrogen Response Modelling for Comprehensive Growth of Hybrid Seed Maize
3.5.1. Single Factor Effect of Water–Nitrogen
3.5.2. Analysis of the Water–Nitrogen Interaction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.Z.; Zhang, J.; Ge, Z.M.; Xing, L.W.; Han, S.Q.; Shen, C.; Kong, F.T. Impact of climate change on maize yield in China from 1979 to 2016. J. Integr. Agric. 2021, 20, 289–299. [Google Scholar] [CrossRef]
- Shi, R.C.; Wang, J.T.; Tong, L.; Du, T.S.; Shukla, M.K.; Jiang, X.L.; Li, D.H.; Qin, Y.H.; He, L.Y.; Bai, X.R. Optimizing planting density and irrigation depth of hybrid maize seed production under limited water availability. Agric. Water Manag. 2022, 271, 107759. [Google Scholar] [CrossRef]
- He, P.; Ding, X.P.; Bai, J.; Zhang, J.W.; Liu, P.; Ren, B.Z.; Zhao, B. Maize hybrid yield and physiological response to plant density across four decades in China. Agron. J. 2022, 114, 2886–2904. [Google Scholar] [CrossRef]
- Lei, Y.M.; Zheng, T.X.; Xing, H.Q.; Fei, Y.X. Disease evolution of national maize seed production base in Hexi Corridor. Seeds 2019, 38, 142–146. [Google Scholar] [CrossRef]
- Chen, S.C.; Liu, W.F.; Du, T.S. Achieving high-yield and high-efficient management strategy based on optimized irrigation and nitrogen fertilization management and planting structure. Trans. Chin. Soc. Agric. Eng. 2022, 38, 144–152. [Google Scholar] [CrossRef]
- Liu, D.; An, Y.L.; Tao, X.X.; Wang, X.Z.; Lv, D.Q.; Guo, Y.J.; Chen, X.P.; Zhang, W.S. Response of corn yield and nitrogen uptake to nitrogen supply levels in seed production in northwest China. Sci. Agric. Sin. 2023, 56, 441–452. [Google Scholar] [CrossRef]
- Li, L.; Xiao, R.; Zhang, Y.L. The effect of combined application of nitrogen, phosphorus, and potassium on the yield and economic benefit of seed production corn. Crops 2022, 5, 111–117. [Google Scholar] [CrossRef]
- Wang, S.J.; Liu, H.; Yu, Y.; Zhao, W.Z.; Yang, Q.Y.; Liu, J.T. Evaluation of groundwater sustainability in the arid Hexi Corridor of Northwestern China, using GRACE, GLDAS and measured groundwater data products. Sci. Total Environ. 2020, 705, 135829. [Google Scholar] [CrossRef]
- Wang, Y.F.; Kang, S.Z.; Li, F.S.; Zhang, X.T. Modified water-nitrogen productivity function based on response of water sensitive index to nitrogen for hybrid maize under drip fertigation. Agric. Water Manag. 2021, 245, 106566. [Google Scholar] [CrossRef]
- Li, Y.X.; Chen, J.; Tian, L.B.; Shen, Z.Y.; Amby, D.B.; Liu, F.L.; Gao, Q.; Wang, Y. Seedling-Stage deficit irrigation with nitrogen application in three-year field study provides guidance for improving maize yield, water and nitrogen use efficiencies. Plants 2022, 11, 3007. [Google Scholar] [CrossRef]
- Hou, Y.P.; Xu, X.P.; Kong, L.L.; Zhang, Y.T.; Zhang, L.; Wang, L.C. Film-mulched drip irrigation achieves high maize yield and low N losses in semi-arid areas of northeastern China. Eur. J. Agron. 2023, 146, 126819. [Google Scholar] [CrossRef]
- Cai, S.B.; Zheng, B.Y.; Zhao, Z.Y.; Zheng, Z.X.; Yang, N.; Zhai, B.N. Precision nitrogen fertilizer and irrigation management for apple cultivation based on a multilevel comprehensive evaluation method of yield, quality, and profit indices. Water 2023, 15, 468. [Google Scholar] [CrossRef]
- Prajapati, H.S.; Malve, S.H.; Vala, Y.B. Optimization of irrigation and nitrogen levels in chickpea (Cicer arietinum L.) under loamy sand soil of north Gujarat. Indian J. Ecol. 2022, 49, 2071–2075. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Huang, D.H.; Sun, K.X.; Shen, H.Z.; Xing, X.G.; Liu, X.; Ma, X.Y. Multiobjective optimization of regional irrigation and nitrogen schedules by using the CERES-Maize model with crop parameters determined from the remotely sensed leaf area index. Agric. Water Manag. 2023, 286, 108386. [Google Scholar] [CrossRef]
- Gao, R.P.; Pan, Z.H.; Zhang, J.; Chen, X.; Qi, Y.L.; Zhang, Z.Y.; Chen, S.Q.; Jiang, K.; Ma, S.Q.; Wang, J.L. Optimal cooperative application solutions of irrigation and nitrogen fertilization for high crop yield and friendly environment in the semi-arid region of North China. Agric. Water Manag. 2023, 283, 108326. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Ma, P.; Wang, Z.Q.; Yang, Z.Y.; Sun, Y.J.; Ma, J. Water-nitrogen coupling influence on rhizosphere environment and root morphology of rice under wheat straw return. Chin. J. Eco-Agric. 2022, 30, 924–936. [Google Scholar] [CrossRef]
- Shi, R.C.; Tong, L.; Du, T.S.; Shukla, M.K. Response and modeling of hybrid maize seed vigor to water deficit at different growth stages. Water 2020, 12, 3289. [Google Scholar] [CrossRef]
- Liu, X.X.; He, Z.; Xia, D.D.; Zhang, Z. Impact of temperature and soil moisture on seed vitality of maize and transport of storage materials within it. J. Irrig. Drain. 2017, 36, 18–21. [Google Scholar] [CrossRef]
- Hao, N.; Bi, W.B.; Li, Y.M.; Sun, N.; Ma, Y.X. Effect of nitrogen levels on yield and quality of maize seed production. Liaoning Agric. Sci. 2017, 46–49. [Google Scholar] [CrossRef]
- Assis, G.S.D.; Santos, M.D.; Basilio, M.P. Use of the waspas method to select suitable helicopters for aerial activity carried out by the military police of the state of rio de janeiro. Axioms 2023, 12, 77. [Google Scholar] [CrossRef]
- Baczkiewicz, A.; Kizielewicz, B.; Shekhovtsov, A.; Yelmikheiev, M.; Kozlov, V.; Sałabun, W. comparative analysis of solar panels with determination of local significance levels of criteria using the mcdm methods resistant to the rank reversal phenomenon. Energies 2021, 14, 5727. [Google Scholar] [CrossRef]
- Dezert, J.; Tchamova, A.; Han, D.Q.; Tacnet, J.M. The SPOTIS Rank Reversal Free Method for Multi-Criteria Decision-Making Support. In Proceedings of the 2020 IEEE 23rd International Conference on Information Fusion (FUSION), Rustenburg, South Africa, 6–9 July 2020; pp. 1–8. [Google Scholar]
- Ho, W. Integrated analytic hierarchy process and its applications—A literature review. Eur. J. Oper. Res. 2008, 186, 211–228. [Google Scholar] [CrossRef]
- Li, X.M. Overview of integrated multi-indicator evaluation methods. Stat. Manag. 2022, 37, 45–48. [Google Scholar] [CrossRef]
- Cheng, M.H.; Wang, H.D.; Fan, J.L.; Zhang, F.C.; Wang, X.K. Effects of soil water deficit at different growth stages on maize growth, yield, and water use efficiency under alternate partial root-zone irrigation. Water 2021, 13, 148. [Google Scholar] [CrossRef]
- Yu, X.M.; Zhang, J.W.; Zhang, Y.H.; Ma, L.L.; Jiao, X.C.; Zhao, M.F.; Li, J.M. Identification of optimal irrigation and fertilizer rates to balance yield, water and fertilizer productivity, and fruit quality in greenhouse tomatoes using TOPSIS. Sci. Hortic. 2023, 311, 111829. [Google Scholar] [CrossRef]
- Tong, C.H.; Zhou, W.Z.; Mo, B.T.; Lu, L.C.; Deng, S.C. Evaluation of different silage maize varieties in karst regions. Pratac. Sci. 2023, 40, 482–490. [Google Scholar] [CrossRef]
- Chao Liang, C.; Yu, S.C.; Zhang, H.J.; Wang, Z.Y.; Li, F.Q. Economic evaluation of drought resistance measures for maize seed production based on TOPSIS model and combination weighting optimization. Water 2022, 14, 3262. [Google Scholar] [CrossRef]
- Zheng, J.; Qi, X.Y.; Yang, S.H.; Shi, C.; Feng, Z.J. Effects and evaluation of biogas slurry/water integrated irrigation technology on the growth, yield and quality of tomatoes. Int. J. Agric. Biol. Eng. 2022, 15, 123–131. [Google Scholar] [CrossRef]
- Liu, Q. TOPSIS Model for evaluating the corporate environmental performance under intuitionistic fuzzy environment. Int. J. Knowl. Based Intell. Eng. Syst. 2022, 26, 149–157. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, M.R.; Xing, Y.Y.; Dang, F.F.; Li, Y.; Wang, X.K. Optimization of fertilizer and drip irrigation levels for efficient potato production based on entropy weight method and TOPSIS. J. Plant Nutr. Fertil. 2023, 29, 732–744. [Google Scholar] [CrossRef]
- Xiao, R.; Zhang, Y.L.; Zhao, Y.C.; Guo, S.Q.; Cui, Z.T.; Shi, W.J.; Wu, K.Q.; Yu, H.Y. Effects of different drought resistance measures combined with microbial fertilizer on soil amelioration and yield of seed maize in Hexi Corridor. J. Soil Water Conserv. 2021, 35, 341–349. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Panda, R.K.; Chakraborty, A.; Halder, D. Quantitative estimation of water use efficiency and evapotranspiration under varying nitrogen levels and sowing dates for rainfed and irrigated maize. Theor. Appl. Climatol. 2020, 139, 1385–1400. [Google Scholar] [CrossRef]
- Pranay, G.; Shashibhushan, D.; Rani, K.J.; Bhadru, D.; Kumar, C.V.S. Correlation and Path Analysis in Elite Maize (Zea mays L.) Lines. Int. J. Plant Soil Sci. 2022, 34, 414–422. [Google Scholar] [CrossRef]
- Pantović, J.G.; Jovičić, D.; Lekić, S.; Sečanski, M. Counter Agronomic Systems and Maize Seed Vigour. Contemp. Agric. 2022, 71, 172–178. [Google Scholar] [CrossRef]
- Lian, C.Y.; Ma, Z.M. Effects of coupling of irrigation and nitrogen application as well as planting density on yield and seed vigor of seed maize under ridge mulching-furrow irrigation pattern. Water Sav. Irrig. 2022, 1, 31–35. [Google Scholar]
- Zhou, C.M.; Li, Y.N.; Gu, X.B.; Yin, M.H.; Zhao, X. Effects of biodegradable film mulching planting patterns on soil nutrient and nitrogen use efficiency of summer maize. Trans. Chin. Soc. Agric. Eng. Mach. 2016, 47, 133–142+112. [Google Scholar] [CrossRef]
- Ran, J.J.; Ran, H.; Ma, L.F.; Jennings, S.A.; Yu, T.G.; Deng, X.; Yao, N.; Hu, X.T. Quantifying water productivity and nitrogen uptake of maize under water and nitrogen stress in arid Northwest China. Agric. Water Manag. 2023, 285, 108370. [Google Scholar] [CrossRef]
- Qu, J.S.; Hong, M.; Chang, H.; Yu, Q.Y.; Zhang, X.L. Effects of water and nitrogen supply on yield, water-nitrogen utilization and quality of spring maize in Northern Xinjiang. J. Maize Sci. 2023, 31, 125–135. [Google Scholar] [CrossRef]
- Gao, F.; Wang, G.Y.; Muhammad, I.; Tung, S.A.; Zhou, X.B. Interactive effect of water and nitrogen fertilization improve chlorophyll fluorescence and yield of maize. Agron. J. 2022, 115, 325–339. [Google Scholar] [CrossRef]
- Eissa, M.A.; Roshdy, N.M.K. Effect of nitrogen rates on drip irrigated maize grown under deficit irrigation. J. Plant Nutr. 2018, 42, 127–136. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Xiao, R.; Bu, Y.F.; Kong, W.K.; Ran, Z.W.; Qiao, A.X.; Liu, Y.L. Effect of water and nitrogen coupling on growth and yield of seed production maize. Agric. Eng. 2023, 13, 72–76. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, F.X.; Zhao, Y.; Yang, K.J.; Zhang, Y.L. Influence of water and nitrogen management and planting density on seed maize growth under drip irrigation with mulch in arid region of Northwest China. Chin. Agric. Sci. Bull. 2016, 32, 166–173. [Google Scholar]
- Lakshmi, Y.S.; Pradeep, T.; Sreelatha, D. Performance evaluation of sweetcorn with different levels of irrigation and nitrogen through drip during post monsoon season at rajendranagar, hyderabad, India. Int. J. Environ. Clim. Chang. 2020, 10, 362–372. [Google Scholar] [CrossRef]
- Qi, D.L.; Hu, T.T.; Song, X. Effects of nitrogen application rates and irrigation regimes on grain yield and water use efficiency of maize under alternate partial root-zone irrigation. J. Integr. Agric. 2020, 19, 2792–2806. [Google Scholar] [CrossRef]
- Wu, X.Y.; Cai, X.; Li, Q.Q.; Ren, B.Z.; Bi, Y.P.; Zhang, J.P.; Wang, D. Effects of nitrogen application rate on summer maize (Zea mays L.) yield and water–nitrogen use efficiency under micro–sprinkling irrigation in the Huang–Huai–Hai Plain of China. Arch. Agron. Soil Sci. 2022, 68, 1915–1929. [Google Scholar] [CrossRef]
- Guo, J.J.; Fan, J.L.; Zhang, F.C.; Yan, S.C.; Wu, Y.; Zheng, J.; Xiang, Y.Z. Growth, grain yield, water and nitrogen use efficiency of rainfed maize in response to straw mulching and urea blended with slow-release nitrogen fertilizer: A two-year field study. Arch. Agron. Soil Sci. 2021, 68, 1554–1567. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Shi, H.B.; Jia, Y.H.; Li, R.P.; Miao, Q.F.; Jia, Q. Multi-Objective optimization water–nitrogen coupling zones of maize under mulched drip irrigation: A case study of west Liaohe Plain, China. Agronomy 2023, 13, 486. [Google Scholar] [CrossRef]
- Liao, Q.; Ding, R.S.; Du, T.S.; Kang, S.Z.; Tong, L.; Li, S.E. Stomatal conductance drives variations of yield and water use of maize under water and nitrogen stress. Agric. Water Manag. 2022, 268, 107651. [Google Scholar] [CrossRef]
- Rudnick, D.R.; Irmak, S. Impact of water and nitrogen management strategies on maize yield and water productivity indices under linear-move sprinkler irrigation. Am. Soc. Agric. Biol. Eng. 2013, 56, 1769–1783. [Google Scholar] [CrossRef]
- Yang, M.D.; Ma, S.C.; Mei, F.J.; Wei, L.; Wang, T.C.; Guan, X.K. Adjusting nitrogen application in accordance with soil water availability enhances yield and water use by regulating physiological traits of maize under drip fertigation. Phyton 2021, 90, 417–435. [Google Scholar] [CrossRef]
- Momen, A.; Koocheki, A.; Mahallati, M.N. Analysis of the variations in dry matter yield and resource use efficiency of maize under different rates of nitrogen, phosphorous and water supply. J Plant Nutr. 2020, 43, 1306–1319. [Google Scholar] [CrossRef]
- Li, Y.; Cui, S.; Zhang, Z.X.; Zhuang, K.Z.; Wang, Z.N.; Zhang, Q.P. Determining effects of water and nitrogen input on maize (Zea mays) yield, water and nitrogen use efficiency: A global synthesis. Sci. Rep. 2020, 10, 9699. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, X.M.; Liu, M.; Liu, P.Z.; Li, Q.L.; Wang, X.L.; Wang, R.; Li, J. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize. Acta Agron. Sin. 2023, 49, 1292–1304. [Google Scholar] [CrossRef]
- Li, R.F.; Ma, J.J.; Sun, X.; Guo, X.H.; Duan, Y.; Ren, Q. Comprehensive evaluation of water and nitrogen utilization of waxy corn based on entropy weight TOPSIS model under different water and fertilizer treatments. Agric. Res. Arid Areas 2020, 38, 111–120. [Google Scholar] [CrossRef]
- Mahbod, M.; Zand-Parsa, S.; Sepaskhah, A.R. Modification of maize simulation model for predicting growth and yield of winter wheat under different applied water and nitrogen. Agric. Water Manag. 2015, 150, 18–34. [Google Scholar] [CrossRef]
- Wang, S.J.; Yin, G.H.; Li, Z.; Gu, J.; Ma, N.N.; Feng, H.Y.; Liu, Y.Q. Effects of water-fertilizer coupling on the yield of spring maize under shallow-buried drip irrigation in semi-arid region of western Liaoning Province. Chin. J. Appl. Ecol. 2020, 31, 139–147. [Google Scholar] [CrossRef]
Year | Treatment | Seedling Stage | Jointing Stage | Early Whorl Stage | Late Whorl Stage | Tasseling Stage | Silking Stage | Grouting Stage | Milking Stage | Wax Ripening Stage | Irrigation Quota |
---|---|---|---|---|---|---|---|---|---|---|---|
2020 | W1 | 180 | 270 | 270 | 315 | 330 | 330 | 315 | 219 | 180 | 2409 |
W2 | 240 | 360 | 360 | 420 | 440 | 440 | 420 | 292 | 240 | 3212 | |
W3 | 300 | 450 | 450 | 525 | 550 | 550 | 525 | 365 | 300 | 4015 | |
2021 | W1 | 180 | 270 | 270 | 330 | 330 | 330 | 300 | 192 | 180 | 2382 |
W2 | 240 | 360 | 360 | 440 | 440 | 440 | 400 | 256 | 240 | 3176 | |
W3 | 300 | 450 | 450 | 550 | 550 | 550 | 500 | 320 | 300 | 3970 |
Treatment | Irrigation Quota (mm) | Total Nitrogen Application (kg·hm−2) | Factor Code Value | ||
---|---|---|---|---|---|
2020 Year | 2021 Year | Irrigation Amount x1 | Nitrogen Application Amount x2 | ||
N0W1 | 240.9 | 238.2 | 0 | - | - |
N0W2 | 321.2 | 317.6 | 0 | - | - |
N0W3 | 401.5 | 397.0 | 0 | - | - |
N1W1 | 240.9 | 238.2 | 160 | 0.0 | 0.0 |
N1W2 | 321.2 | 317.6 | 160 | 0.5 | 0.0 |
N1W3 | 401.5 | 397.0 | 160 | 1.0 | 0.0 |
N2W1 | 240.9 | 238.2 | 280 | 0.0 | 0.5 |
N2W2 | 321.2 | 317.6 | 280 | 0.5 | 0.5 |
N2W3 | 401.5 | 397.0 | 280 | 1.0 | 0.5 |
N3W1 | 240.9 | 238.2 | 400 | 0.0 | 1.0 |
N3W2 | 321.2 | 317.6 | 400 | 0.5 | 1.0 |
N3W3 | 401.5 | 397.0 | 400 | 1.0 | 1.0 |
Treatment | 2020 | 2021 | ||||
---|---|---|---|---|---|---|
GP/(%) | GI | VI | GP/(%) | GI | VI | |
N0W1 | 91.94 ± 1.27 d | 47.23 ± 0.46 g | 1.18 ± 0.08 d | 89.17 ± 3.00 c | 44.66 ± 1.09 d | 1.02 ± 0.06 c |
N0W2 | 94.17 ± 2.50 abcd | 53.65 ± 1.74 e | 1.37 ± 0.23 bcd | 92.22 ± 2.41 abc | 51.52 ± 0.07 bc | 1.24 ± 0.18 abc |
N0W3 | 93.06 ± 2.92 bcd | 50.39 ± 1.41 f | 1.28 ± 0.18 cd | 91.39 ± 2.68 abc | 49.45 ± 1.13 c | 1.22 ± 0.09 abc |
N1W1 | 92.22 ± 2.68 cd | 48.98 ± 0.41 fg | 1.27 ± 0.07 cd | 90.83 ± 3.34 bc | 46.49 ± 1.31 d | 1.12 ± 0.04 bc |
N1W2 | 95.28 ± 1.27 abcd | 56.99 ± 1.13 c | 1.48 ± 0.12 abc | 94.44 ± 3.76 abc | 54.30 ± 2.02 ab | 1.39 ± 0.19 ab |
N1W3 | 94.72 ± 2.55 abcd | 52.93 ± 0.40 e | 1.31 ± 0.15 cd | 93.06 ± 2.10 abc | 50.58 ± 0.53 c | 1.24 ± 0.19 abc |
N2W1 | 95.00 ± 2.89 abcd | 54.70 ± 0.51 de | 1.34 ± 0.11 bcd | 93.89 ± 4.19 abc | 50.24 ± 2.38 c | 1.11 ± 0.17 bc |
N2W2 | 96.39 ± 2.55 abc | 57.96 ± 1.70 bc | 1.49 ± 0.02 abc | 95.56 ± 2.10 ab | 55.64 ± 3.33 a | 1.35 ± 0.03 ab |
N2W3 | 97.50 ± 1.44 a | 60.86 ± 0.97 a | 1.61 ± 0.10 a | 96.94 ± 1.73 a | 56.96 ± 1.27 a | 1.49 ± 0.20 a |
N3W1 | 94.44 ± 2.10 abcd | 54.10 ± 1.91 e | 1.45 ± 0.05 abc | 92.78 ± 2.68 abc | 50.22 ± 0.90 c | 1.29 ± 0.16 abc |
N3W2 | 96.11 ± 1.27 abcd | 56.52 ± 0.71 cd | 1.48 ± 0.07 abc | 95.00 ± 3.00 ab | 51.45 ± 1.60 bc | 1.31 ± 0.22 ab |
N3W3 | 96.67 ± 1.67 ab | 59.48 ± 1.82 ab | 1.56 ± 0.04 ab | 95.83 ± 2.50 ab | 56.29 ± 0.87 a | 1.39 ± 0.15 ab |
Irrigation (I) | * | *** | ** | ns | *** | ** |
Fertilization (F) | * | *** | * | * | *** | ns |
I × F | ns | *** | ns | ns | ** | ns |
Year | Treatment | Ear Longitudinal Diameter /(cm) | Ear Diameter /(mm) | Kernel Number per Ear /(a) | Ear Weight /(g) | 100-Grain Weight /(g) | Yield /(kg·hm−2) | Above-Ground Dry Matter Accumulation /(g·Plant−1) |
---|---|---|---|---|---|---|---|---|
2020 | N0W1 | 11.65 ± 0.72 d | 33.50 ± 1.03 c | 226 ± 7.00 g | 55.17 ± 2.67 g | 21.65 ± 0.95 g | 4038.52 ± 179.83 g | 134.81 ± 6.87 g |
N0W2 | 13.28 ± 0.76 c | 36.22 ± 2.18 bc | 242 ± 4.58 g | 76.64 ± 4.61 f | 25.01 ± 1.27 f | 5542.79 ± 229.63 ef | 153.13 ± 6.15 fg | |
N0W3 | 14.49 ± 0.64 ab | 37.14 ± 1.11 ab | 278 ± 12.12 e | 84.41 ± 5.01 f | 26.19 ± 0.88 ef | 5974.41 ± 253.64 e | 164.86 ± 8.92 ef | |
N1W1 | 14.15 ± 0.38 bc | 36.03 ± 1.66 bc | 260 ± 7.23 f | 78.09 ± 3.59 f | 24.44 ± 0.51 f | 5389.27 ± 173.67 f | 157.62 ± 9.51 f | |
N1W2 | 14.71 ± 0.66 ab | 37.86 ± 2.28 ab | 322 ± 10.82 d | 101.53 ± 6.10 de | 27.61 ± 1.43 de | 7120.90 ± 316.68 d | 187.98 ± 11.54 d | |
N1W3 | 15.02 ± 0.92 ab | 38.28 ± 0.41 ab | 354 ± 7.09 c | 119.18 ± 5.35 c | 28.79 ± 0.95 cd | 7839.85 ± 239.16 c | 209.53 ± 6.59 c | |
N2W1 | 14.84 ± 0.55 ab | 37.69 ± 0.39 ab | 318 ± 13.32 d | 97.79 ± 4.01 e | 27.13 ± 0.98 de | 7002.66 ± 308.88 d | 180.91 ± 11.99 de | |
N2W2 | 15.33 ± 0.49 ab | 39.03 ± 0.89 ab | 376 ± 15.59 b | 123.25 ± 5.11 c | 30.16 ± 1.08 bc | 8627.19 ± 210.33 b | 223.55 ± 15.02 bc | |
N2W3 | 15.49 ± 0.60 a | 39.94 ± 2.60 a | 416 ± 7.00 a | 144.94 ± 6.46 a | 31.96 ± 1.60 ab | 9162.43 ± 267.70 a | 253.14 ± 17.11 a | |
N3W1 | 15.17 ± 0.52 ab | 37.27 ± 1.74 ab | 328 ± 5.69 d | 108.51 ± 4.10 d | 27.40 ± 0.55 de | 7203.38 ± 270.99 d | 188.17 ± 12.49 d | |
N3W2 | 15.68 ± 0.81 a | 38.75 ± 0.61 ab | 402 ± 8.89 a | 132.28 ± 6.63 b | 30.57 ± 0.95 bc | 8744.75 ± 329.33 ab | 240.09 ± 13.04 ab | |
N3W3 | 15.73 ± 0.51 a | 39.42 ± 2.25 a | 414 ± 17.35 a | 139.37 ± 4.95 ab | 32.89 ± 1.44 a | 9012.50 ± 282.92 ab | 259.61 ± 11.78 a | |
Irrigation (I) | *** | ** | *** | *** | *** | *** | ** | |
Fertilization (F) | *** | ** | *** | *** | *** | *** | *** | |
I × F | ns | ns | ** | * | ns | ns | * | |
2021 | N0W1 | 11.25 ± 0.35 f | 33.13 ± 1.23 d | 212 ± 11.53 f | 50.09 ± 3.05 g | 20.14 ± 0.67 g | 3753.81 ± 176.04 h | 114.27 ± 8.07 h |
N0W2 | 12.92 ± 0.51 e | 35.28 ± 0.57 cd | 230 ± 13.11 ef | 71.65 ± 3.89 f | 24.14 ± 1.34 f | 5180.37 ± 262.93 g | 139.58 ± 4.06 g | |
N0W3 | 14.54 ± 0.28 cd | 36.62 ± 0.37 bc | 268 ± 14.11 d | 79.19 ± 4.64 f | 25.37 ± 0.91 ef | 6149.22 ± 207.47 f | 157.77 ± 5.57 f | |
N1W1 | 14.09 ± 0.47 d | 35.64 ± 1.60 c | 248 ± 15.04 de | 74.53 ± 4.47 f | 23.46 ± 0.54 f | 5572.94 ± 117.16 g | 145.36 ± 4.87 fg | |
N1W2 | 15.11 ± 0.29 bc | 37.10 ± 1.65 bc | 314 ± 17.00 c | 97.96 ± 5.49 de | 26.92 ± 1.23 de | 6754.88 ± 307.87 e | 177.15 ± 7.76 e | |
N1W3 | 15.73 ± 0.20 ab | 37.47 ± 1.69 bc | 346 ± 15.50 b | 112.75 ± 3.00 c | 28.04 ± 0.56 cd | 7991.36 ± 262.22 d | 200.84 ± 10.68 d | |
N2W1 | 14.93 ± 0.33 c | 36.99 ± 1.51 bc | 308 ± 10.97 c | 92.38 ± 5.68 e | 26.35 ± 1.89 de | 7248.52 ± 309.55 e | 183.66 ± 12.25 de | |
N2W2 | 15.86 ± 0.19 ab | 38.56 ± 0.97 ab | 368 ± 10.58 b | 118.12 ± 7.33 c | 29.51 ± 0.80 bc | 8730.10 ± 312.44 bc | 219.08 ± 8.05 c | |
N2W3 | 16.19 ± 0.70 a | 40.34 ± 1.73 a | 412 ± 15.52 a | 140.64 ± 4.66 a | 31.09 ± 1.59 ab | 9255.79 ± 319.94 a | 258.37 ± 15.22 ab | |
N3W1 | 15.23 ± 0.41 bc | 37.35 ± 1.22 bc | 316 ± 18.58 c | 101.58 ± 3.48 d | 26.72 ± 1.26 de | 6812.90 ± 393.42 e | 185.30 ± 9.75 de | |
N3W2 | 16.01 ± 0.60 a | 39.02 ± 0.41 ab | 396 ± 15.72 a | 129.17 ± 4.99 b | 29.83 ± 1.23 bc | 8413.85 ± 260.92 cd | 246.78 ± 14.67 b | |
N3W3 | 16.30 ± 0.31 a | 40.11 ± 1.50 a | 408 ± 19.16 a | 135.06 ± 7.17 ab | 32.06 ± 1.38 a | 9085.36 ± 401.21 ab | 264.93 ± 13.50 a | |
Irrigation (I) | *** | *** | *** | *** | *** | *** | *** | |
Fertilization (F) | *** | *** | *** | *** | *** | *** | *** | |
I × F | ** | ns | * | * | ns | ns | * |
Year | Treatment | ET /(mm) | WUE /(kg·m−3) | IUE /(kg·m−3) | NFP /(kg·kg−1) | NFA /(kg·kg−1) |
---|---|---|---|---|---|---|
2020 | N0W1 | 323.02 ± 15.64 h | 1.25 ± 0.01 h | 1.68 ± 0.07 e | — | — |
N0W2 | 386.24 ± 9.07 ef | 1.43 ± 0.04 fg | 1.73 ± 0.08 e | — | — | |
N0W3 | 434.61 ± 10.59 c | 1.37 ± 0.03 g | 1.49 ± 0.06 f | — | — | |
N1W1 | 358.06 ± 5.66 g | 1.51 ± 0.06 f | 2.24 ± 0.07 c | 28.36 ± 0.92 e | 7.11 ± 0.96 c | |
N1W2 | 420.95 ± 17.81 cd | 1.69 ± 0.09 de | 2.22 ± 0.10 c | 37.48 ± 1.67 b | 8.31 ± 1.95 bc | |
N1W3 | 474.60 ± 13.68 b | 1.65 ± 0.08 e | 1.95 ± 0.06 d | 41.26 ± 1.26 a | 9.82 ± 1.27 ab | |
N2W1 | 368.76 ± 17.42 fg | 1.90 ± 0.01 ab | 2.91 ± 0.13 a | 24.57 ± 1.08 f | 10.40 ± 0.89 a | |
N2W2 | 440.19 ± 16.93 c | 1.96 ± 0.06 a | 2.69 ± 0.07 b | 30.27 ± 0.74 d | 10.82 ± 0.30 a | |
N2W3 | 535.97 ± 12.93 a | 1.71 ± 0.03 de | 2.28 ± 0.07 c | 32.15 ± 0.94 c | 11.19 ± 0.49 a | |
N3W1 | 407.62 ± 15.92 de | 1.77 ± 0.04 cd | 2.99 ± 0.11 a | 18.96 ± 0.72 g | 8.33 ± 0.38 bc | |
N3W2 | 474.58 ± 22.01 b | 1.84 ± 0.02 bc | 2.72 ± 0.10 b | 23.01 ± 0.87 f | 8.43 ± 0.51 bc | |
N3W3 | 547.25 ± 17.28 a | 1.65 ± 0.09 e | 2.24 ± 0.07 c | 23.72 ± 0.74 f | 7.99 ± 0.56 c | |
Irrigation (I) | *** | *** | *** | *** | ns | |
Fertilization (F) | *** | *** | *** | *** | *** | |
I × F | ns | *** | *** | *** | ns | |
2021 | N0W1 | 331.64 ± 12.98 f | 1.13 ± 0.06 i | 1.58 ± 0.07 g | — | — |
N0W2 | 408.61 ± 11.88 d | 1.27 ± 0.07 h | 1.63 ± 0.09 g | — | — | |
N0W3 | 436.55 ± 6.49 c | 1.41 ± 0.07 g | 1.55 ± 0.05 g | — | — | |
N1W1 | 358.73 ± 12.94 e | 1.55 ± 0.03 f | 2.34 ± 0.05 d | 29.33 ± 0.61 d | 9.57 ± 0.39 bcd | |
N1W2 | 414.85 ± 10.56 cd | 1.63 ± 0.11 ef | 2.13 ± 0.10 ef | 35.55 ± 1.62 b | 8.29 ± 0.50 de | |
N1W3 | 477.22 ± 8.73 b | 1.67 ± 0.03 de | 2.01 ± 0.06 f | 42.06 ± 1.38 a | 9.70 ± 0.96 bc | |
N2W1 | 393.48 ± 5.99 d | 1.84 ± 0.07 abc | 3.04 ± 0.13 a | 25.43 ± 1.09 e | 12.26 ± 1.02 a | |
N2W2 | 461.36 ± 20.27 b | 1.89 ± 0.06 ab | 2.75 ± 0.10 bc | 30.63 ± 1.10 cd | 12.46 ± 0.74 a | |
N2W3 | 483.99 ± 17.65 b | 1.90 ± 0.06 a | 2.33 ± 0.08 d | 32.48 ± 1.13 c | 10.90 ± 0.56 b | |
N3W1 | 404.72 ± 15.47 d | 1.68 ± 0.09 de | 2.86 ± 0.17 b | 17.93 ± 1.03 g | 8.05 ± 0.63 e | |
N3W2 | 472.59 ± 19.34 b | 1.78 ± 0.03 bcd | 2.65 ± 0.08 c | 22.14 ± 0.68 f | 8.51 ± 0.67 cde | |
N3W3 | 515.98 ± 13.89 a | 1.76 ± 0.04 cd | 2.29 ± 0.10 de | 23.91 ± 1.06 ef | 7.73 ± 0.97 e | |
Irrigation (I) | *** | *** | *** | *** | ns | |
Fertilization (F) | *** | *** | *** | *** | *** | |
I × F | ns | ns | *** | *** | * |
Hierarchical Structure | Local Weight | Final Weight | Consistency Test Parameter |
---|---|---|---|
Target layer C | 0.4806 | 0.4806 | CR = 0.0279 < 0.1 λmax = 3.0291 |
0.4054 | 0.4054 | ||
0.1140 | 0.1140 | ||
Criterion layer C1 | 0.2583 | 0.3062 | CR = 0.0370 < 0.1 λmax = 3.0385 |
0.1047 | 0.2382 | ||
0.6370 | 0.1311 | ||
Criterion layer C2 | 0.3234 | 0.1241 | CR = 0.0088 < 0.1 λmax = 3.0092 |
0.5876 | 0.0509 | ||
0.0890 | 0.0503 | ||
Criterion layer C3 | 0.4466 | 0.0361 | CR = 0.0577 < 0.1 λmax = 4.1541 |
0.2122 | 0.0287 | ||
0.0896 | 0.0242 | ||
0.2517 | 0.0102 |
Indicators | C11 | C12 | C13 | C21 | C22 | C23 | C31 | C32 | C33 | C34 |
---|---|---|---|---|---|---|---|---|---|---|
Weights | 0.0708 | 0.0770 | 0.1062 | 0.0834 | 0.0752 | 0.0974 | 0.0812 | 0.1110 | 0.1077 | 0.1901 |
Indicators | C11 | C12 | C13 | C21 | C22 | C23 | C31 | C32 | C33 | C34 |
---|---|---|---|---|---|---|---|---|---|---|
Weights | 0.2345 | 0.1891 | 0.1235 | 0.1117 | 0.0583 | 0.0646 | 0.0498 | 0.0538 | 0.0496 | 0.0650 |
Treatment | C11 | C12 | C13 | C21 | C22 | C23 | C31 | C32 | C33 | C34 | Ci | Sorted | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N1W1 | 0.3217 | 0.2933 | 0.2883 | 0.2201 | 0.2324 | 0.2369 | 0.2917 | 0.3049 | 0.3243 | 0.2912 | 0.1098 | 0.0281 | 0.2038 | 9 |
N1W2 | 0.3334 | 0.3419 | 0.3465 | 0.2877 | 0.2941 | 0.2855 | 0.3165 | 0.2889 | 0.4105 | 0.2898 | 0.0725 | 0.0625 | 0.4632 | 6 |
N1W3 | 0.3300 | 0.3180 | 0.3077 | 0.3345 | 0.3356 | 0.3209 | 0.3165 | 0.2636 | 0.4683 | 0.3408 | 0.0606 | 0.0801 | 0.5693 | 4 |
N2W1 | 0.3320 | 0.3224 | 0.2980 | 0.2743 | 0.3021 | 0.2851 | 0.3565 | 0.3955 | 0.2810 | 0.3957 | 0.0800 | 0.0577 | 0.4189 | 7 |
N2W2 | 0.3373 | 0.3490 | 0.3441 | 0.3481 | 0.3679 | 0.3461 | 0.3680 | 0.3622 | 0.3423 | 0.4065 | 0.0419 | 0.0869 | 0.6747 | 2 |
N2W3 | 0.3417 | 0.3620 | 0.3756 | 0.4119 | 0.3904 | 0.4000 | 0.3451 | 0.3076 | 0.3632 | 0.3855 | 0.0320 | 0.1071 | 0.7698 | 1 |
N3W1 | 0.3291 | 0.3205 | 0.3320 | 0.3030 | 0.2971 | 0.2920 | 0.3298 | 0.3901 | 0.2073 | 0.2860 | 0.0879 | 0.0504 | 0.3642 | 8 |
N3W2 | 0.3359 | 0.3317 | 0.3392 | 0.3771 | 0.3637 | 0.3807 | 0.3451 | 0.3582 | 0.2538 | 0.2958 | 0.0613 | 0.0806 | 0.5681 | 5 |
N3W3 | 0.3383 | 0.3556 | 0.3586 | 0.3958 | 0.3836 | 0.4101 | 0.3241 | 0.3023 | 0.2676 | 0.2745 | 0.0614 | 0.0919 | 0.5994 | 3 |
0.3417 | 0.3620 | 0.3756 | 0.4119 | 0.3904 | 0.4101 | 0.3680 | 0.3955 | 0.4683 | 0.4065 | |||||
0.3217 | 0.2933 | 0.2883 | 0.2201 | 0.2324 | 0.2369 | 0.2917 | 0.2636 | 0.2073 | 0.2745 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, H.; Pan, X.; Zhang, H.; Xiao, Z.; Xiao, R.; Zhao, Z.; Chen, T. Comprehensive Regulation of Water–Nitrogen Coupling in Hybrid Seed Maize in the Hexi Oasis Irrigation Area Based on the Synergy of Multiple Indicators. Water 2023, 15, 3927. https://doi.org/10.3390/w15223927
Deng H, Pan X, Zhang H, Xiao Z, Xiao R, Zhao Z, Chen T. Comprehensive Regulation of Water–Nitrogen Coupling in Hybrid Seed Maize in the Hexi Oasis Irrigation Area Based on the Synergy of Multiple Indicators. Water. 2023; 15(22):3927. https://doi.org/10.3390/w15223927
Chicago/Turabian StyleDeng, Haoliang, Xiaofan Pan, Hengjia Zhang, Zhanwen Xiao, Rang Xiao, Zhixi Zhao, and Tao Chen. 2023. "Comprehensive Regulation of Water–Nitrogen Coupling in Hybrid Seed Maize in the Hexi Oasis Irrigation Area Based on the Synergy of Multiple Indicators" Water 15, no. 22: 3927. https://doi.org/10.3390/w15223927
APA StyleDeng, H., Pan, X., Zhang, H., Xiao, Z., Xiao, R., Zhao, Z., & Chen, T. (2023). Comprehensive Regulation of Water–Nitrogen Coupling in Hybrid Seed Maize in the Hexi Oasis Irrigation Area Based on the Synergy of Multiple Indicators. Water, 15(22), 3927. https://doi.org/10.3390/w15223927