Assessing Heavy Metal Contamination Using Biosensors and a Multi-Branch Integrated Catchment Model in the Awash River Basin, Ethiopia
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Sampling and Metals Analysis
2.3. Biosensors
2.4. INCA-Metals Application to the Awash River Basin
3. Results and Discussions
3.1. Metal Pollution in Awash River Basin
3.2. Biosensors Results and Toxicity
3.3. Modelling Tannery Effluent Controls
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krein, A.; Keßler, S.; Meyer, B.; Pailler, J.-Y.; Guignard, C.; Hoffmann, L. Concentrations and loads of dissolved xenobiotics and hormones in two small river catchments of different land use in Luxembourg. Hydrol. Process. 2013, 27, 284–296. [Google Scholar] [CrossRef]
- Phillips, P.J.; Chalmers, A.T.; Gray, J.L.; Kolpin, D.W.; Foreman, W.T.; Wall, G.R. Combined Sewer Overflows: An Environmental Source of Hormones and Wastewater Micropollutants. Environ. Sci. Technol. 2012, 46, 5336–5343. [Google Scholar] [CrossRef]
- Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Rev. 2017, 4, 37–59. [Google Scholar] [CrossRef]
- Prasad, S.; Saluja, R.; Joshi, V.; Garg, J.K. Heavy Metal Pollution in Surface Water of the Upper Ganga River, India: Human Health Risk Assessment. Environ. Monit. Assess. 2020, 192, 742. [Google Scholar] [CrossRef] [PubMed]
- Postevaya, M.A.; Slukovskii, Z.I.; Dauvalter, V.A.; Bernadskaya, D.S. Estimation of Heavy Metal Concentrations in the Water of Urban Lakes in the Russian Arctic (Murmansk). Water 2021, 13, 3267. [Google Scholar] [CrossRef]
- Meng, Z.; Bai, X.; Tang, X. Short−Term Assessment of Heavy Metals in Surface Water from Xiaohe River Irrigation Area, China: Levels, Sources and Distribution. Water 2022, 14, 1273. [Google Scholar] [CrossRef]
- Ismail, E.; Snousy, M.G.; Alexakis, D.E.; Abdelhalim, A.; Ahmed, M.S.; Elsayed, E. Diagnosis of Groundwater Quality in North Assiut Province, Egypt, for Drinking and Irrigation Uses by Applying Multivariate Statistics and Hydrochemical Methods. Water 2023, 15, 2812. [Google Scholar] [CrossRef]
- UNESCO. International Initiative on Water Quality: Promoting Scientific Research, Knowledge Generation and Dissemination and Effective Policies to Respond to Water Quality Challenges in a Holistic and Collaborative Manner towards Ensuring Water Security for Sustainable Development; UNESCO: Paris, France, 2015. [Google Scholar]
- Dyer, S.D.; Wang, X.H. A comparison of stream biological responses to discharge from wastewater treatment plants in high and low population density areas. Environ. Toxicol. Chem. 2002, 21, 1065–1075. [Google Scholar] [CrossRef]
- Ayenew, T. Water management problems in the Ethiopian rift: Challenges for development. J. Afr. Earth Sci. 2007, 48, 222–236. [Google Scholar] [CrossRef]
- Taye, M.T.; Dyer, E.; Hirpa, F.A.; Charles, K. Climate Change Impact on Water Resources in the Awash Basin, Ethiopia. Water 2018, 10, 1560. [Google Scholar] [CrossRef]
- Abebe, Y.; Alamirew, T.; Whitehead, P.; Charles, K.; Alemayehu, E. Spatio-temporal variability and potential health risks assessment of heavy metals in the surface water of Awash basin, Ethiopia. Heliyon 2023, 9, e15832. [Google Scholar] [CrossRef] [PubMed]
- Dokmeci, A.H.; Ongen, A.; Dagdeviren, S. Environmental Toxicity of Cadmium and Health Effect. J. Environ. Prot. Ecol. 2009, 10, 84–93. [Google Scholar]
- Islam, M.S.; Ahmed, M.K.; Habibullah-Al-Mamun, M.; Masunaga, S. Assessment of trace metals in fish species of urban rivers in Bangladesh and health implications. Environ. Toxicol. Pharmacol. 2015, 39, 347–357. [Google Scholar] [CrossRef]
- Kumar, V.; Parihar, R.D.; Sharma, A.; Bakshi, P.; Sidhu, G.P.S.; Bali, A.S.; Karaouzas, L.; Bhardwaj, R.; Thukral, A.K.; Gyasi-Agyei, Y.; et al. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef] [PubMed]
- Rampley, C.P.N.; Whitehead, P.G.; Softley, L.; Hossain, M.A.; Jin, L.; David, J.; Shawal, S.; Das, P.; Thompson, I.P.; Huang, W.E.; et al. River toxicity assessment using molecular biosensors: Heavy metal contamination in the Turag-Balu-Buriganga river systems, Dhaka, Bangladesh. Sci. Total Environ. 2020, 703, 134760. [Google Scholar] [CrossRef]
- Khan, F.U.; Rahman, A.U.; Jan, A.; Riaz, M. Toxic and trace metals (Pb, Cd, Zn, Cu, Mn, Ni, Co and Cr) in dust, dustfall/soil. J. Chem. Soc. Pak. 2004, 26, 453–456. [Google Scholar]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Prasad, S.; Yadav, K.K.; Kumar, S.; Gupta, N.; Cabral-Pinto, M.M.S.; Rezania, S.; Radwan, N.; Alam, J. Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. J. Environ. Manag. 2021, 285, 112174. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef]
- Ravindra, K.; Mor, S. Distribution and Health Risk Assessment of Arsenic and Selected Heavy Metals in Groundwater of Chandigarh, India. Environ. Pollut. 2019, 250, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Durai, G.; Rajasimman, M. Biological Treatment of Tannery Wastewater—A Review. J. Environ. Sci. Technol. 2011, 4, 1–17. [Google Scholar] [CrossRef]
- Assegide, E.; Alamirew, T.; Bayabil, H.; Dile, Y.T.; Tessema, B.; Zeleke, G. Impacts of Surface Water Quality in the Awash River Basin, Ethiopia: A Systematic Review. Front. Water 2022, 3, 790900. [Google Scholar] [CrossRef]
- Nigussie, A.; Getaneh, Z. Awash River Basin Water Allocation Modeling and Conflict Resolution Study Project; WP4 Water Quality Final Report; Federal Democratic Republic of Ethiopia Awash Basin Authority: Addis Ababa, Ethiopia, 2016. [Google Scholar]
- Cui, Z.S.; Luan, X.; Jiang, H.C.; Li, Q.; Xu, G.F.; Sun, C.J.; Zheng, L.; Song, Y.Z.; Davison, P.A.; Huang, W.E. Application of a bacterial whole cell biosensor for the rapid detection of cytotoxicity in heavy metal contaminated seawater. Chemosphere 2018, 200, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Hao, O.J.; Lin, C.-F.; Jeng, F.-T.; Shih, C.-J. A review of microtox test and its applications. Toxicol. Environ. Chem. 1995, 52, 57–76. [Google Scholar] [CrossRef]
- Johnson, B.T. Microtox® Acute Toxicity Test. In Small-Scale Freshwater Toxicity Investigations: Toxicity Test Methods; Blaise, C., Férard, J.-F., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 69–105. [Google Scholar] [CrossRef]
- Kwan, K.K.; Dutka, B.J. Simple 2-Step Sediment Extraction Procedure for Use in Genotoxicity and Toxicity Bioassays. Toxic. Assess. 1990, 5, 395–404. [Google Scholar] [CrossRef]
- Stebbing, A.R. Hormesis—The stimulation of growth by low levels of inhibitors. Sci. Total Environ. 1982, 22, 213–234. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Wilson, E.J.; Butterfield, D. A semi-distributed Integrated Nitrogen model for multiple source assessment in Catchments (INCA): Part I—Model structure and process equations. Sci. Total Environ. 1998, 210, 547–558. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Butterfield, D.; Wade, A.J. Simulating metals and mine discharges in river basins using a new integrated catchment model for metals: Pollution impacts and restoration strategies in the Aries-Mures river system in Transylvania, Romania. Hydrol. Res. 2009, 40, 323–346. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Mimouni, Z.; Butterfield, D.; Bussi, G.; Hossain, M.A.; Peters, R.; Shawal, S.; Holdship, P.; Rampley, C.P.N.; Jin, L.; et al. A New Multibranch Model for Metals in River Systems: Impacts and Control of Tannery Wastes in Bangladesh. Sustainability 2021, 13, 3556. [Google Scholar] [CrossRef]
- Wade, A.J.; Durand, P.; Beaujouan, V.; Wessel, W.W.; Raat, K.J.; Whitehead, P.G.; Butterfield, D.; Rankinen, K.; Lepisto, A. A nitrogen model for European catchments: INCA, new model structure and equations. Hydrol. Earth Syst. Sci. 2002, 6, 559–582. [Google Scholar] [CrossRef]
- Jin, L.; Whitehead, P.G.; Bussi, G.; Hirpa, F.; Taye, M.T.; Abebe, Y.; Charles, K. Natural and anthropogenic sources of salinity in the Awash River and Lake Beseka (Ethiopia): Modelling impacts of climate change and lake-river interactions. J. Hydrol.-Reg. Stud. 2021, 36, 100865. [Google Scholar] [CrossRef]
- Bussi, G.; Whitehead, P.G.; Jin, L.; Taye, M.T.; Dyer, E.; Hirpa, F.A.; Yimer, Y.A.; Charles, K.J. Impacts of Climate Change and Population Growth on River Nutrient Loads in a Data Scarce Region: The Upper Awash River (Ethiopia). Sustainability 2021, 13, 1254. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 4. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 2 May 2019).
- Bontemps, S.; Defourny, P.; Bogaert, E.V.; Arino, O.; Kalogirou, V.; Perez, J.R. Globcover 2009-Products Description and Validation Report; European Space Agency: Paris, France, 2009. [Google Scholar]
- Futter, M.N.; Erlandsson, M.A.; Butterfield, D.; Whitehead, P.G.; Oni, S.K.; Wade, A.J. PERSiST: A flexible rainfall-runoff modelling toolkit for use with the INCA family of models. Hydrol. Earth Syst. Sci. 2014, 18, 855–873. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2. [Google Scholar] [CrossRef]
- Abebe, Y.; Whitehead, P.; Alamirew, T.; Jin, L.; Alemayehu, E. Evaluating the Effects of Geochemical and Anthropogenic factors on the concentration and treatability of Heavy Metals in Awash River and Lake Beseka, Ethiopia. Environ. Monit. Assess. 2023, 195, 1188. [Google Scholar] [CrossRef] [PubMed]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
Sample ID | Type | Fe | Al | Rb | Sr | Cr | Mn | Co | Ni | Cu | Mo | Zn | As | Li | Cd | Hg | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SW1 | River | 155.1 | 121.4 | 2.1 | 293.4 | 0.3 | 108.1 | 0.8 | 1.9 | 2.0 | 1.7 | 4.9 | 0.5 | 1.3 | BDL | BDL | 0.1 |
SW2 | River | 3896.8 | 1980.4 | 35.3 | 442.4 | 214.2 | 2170.4 | 4.4 | 9.8 | 9.3 | 1.3 | 72.3 | 2.8 | 7.4 | 0.12 | BDL | 7.9 |
SW3 | River | 2695.0 | 1455.4 | 38.6 | 414.5 | 138.3 | 2240.2 | 5.5 | 12.1 | 15.4 | 1.8 | 75.7 | 2.6 | 7.5 | 0.10 | BDL | 9.0 |
SW4 | River | 1741.8 | 1065.0 | 19.7 | 314.4 | 5.4 | 1455.0 | 3.8 | 7.4 | 5.1 | 3.2 | 24.0 | 2.8 | 12.4 | BDL | BDL | 2.5 |
SW5 | River | 1657.6 | 1659.8 | 17.2 | 319.9 | 3.0 | 678.0 | 5.0 | 13.4 | 9.1 | 3.9 | 14.0 | 3.0 | 8.3 | BDL | BDL | 2.4 |
SW6 | River | 1082.7 | 1256.9 | 32.7 | 73.4 | 2.1 | 65.1 | 0.6 | 2.8 | 2.7 | 103.8 | 10.2 | 23.0 | 28.6 | 0.10 | BDL | 0.6 |
SW7 | River | 1431.5 | 1560.4 | 17.3 | 323.5 | 2.6 | 850.5 | 4.4 | 12.7 | 7.0 | 4.5 | 11.9 | 2.9 | 8.3 | BDL | BDL | 1.7 |
SW8 | River | 307.7 | 386.4 | 10.1 | 320.8 | 0.6 | 137.6 | 1.1 | 5.1 | 2.6 | 6.3 | 13.8 | 2.3 | 23.2 | BDL | BDL | 0.4 |
SW9 | River | 272.1 | 314.9 | 12.0 | 322.4 | 139.1 | 330.2 | 1.3 | 4.7 | 2.2 | 5.6 | 8.6 | 2.7 | 25.9 | BDL | BDL | 0.4 |
SW10 | River | 410.9 | 382.3 | 15.6 | 374.2 | 69.4 | 747.1 | 3.6 | 12.3 | 3.1 | 8.5 | 9.3 | 4.1 | 36.9 | BDL | BDL | 0.6 |
SW11 | River | 1003.4 | 1164.2 | 3.9 | 150.3 | 1.5 | 57.5 | 0.8 | 3.7 | 3.5 | 1.9 | 7.3 | 0.9 | 2.9 | BDL | BDL | 0.9 |
SW12 | River | 1162.3 | 1406.2 | 4.6 | 151.5 | 1.6 | 67.6 | 0.9 | 4.3 | 3.7 | 2.3 | 8.5 | 1.0 | 4.2 | BDL | BDL | 1.0 |
SW13 | River | 1833.0 | 1908.5 | 6.7 | 169.8 | 2.1 | 277.4 | 1.9 | 5.6 | 5.1 | 2.4 | 11.9 | 1.7 | 6.9 | BDL | BDL | 1.6 |
SW14 | River | 1014.8 | 1208.8 | 32.4 | 75.9 | 2.0 | 67.1 | 0.6 | 2.6 | 3.4 | 108.7 | 7.2 | 25.0 | 28.0 | 0.12 | BDL | 0.6 |
SW15 | River | 2158.1 | 2135.1 | 10.5 | 162.4 | 2.4 | 370.2 | 1.7 | 5.8 | 4.1 | 16.1 | 10.0 | 5.9 | 10.1 | BDL | BDL | 1.3 |
SW16 | River | 1732.5 | 1870.2 | 11.6 | 173.8 | 2.0 | 239.5 | 1.5 | 5.5 | 3.7 | 19.9 | 8.4 | 5.4 | 10.6 | BDL | BDL | 1.1 |
TM01 | IWW | 729.6 | 2239.6 | 77.5 | 469.0 | 18,038.1 | 168.3 | 0.8 | 17.5 | 3.2 | BDL | 31.9 | BDL | 67.9 | BDL | BDL | 0.6 |
TM02 | IWW | 37.2 | 67.9 | 85.7 | 235.1 | 1229.0 | 6.3 | 0.5 | 5.4 | BDL | BDL | 7.4 | BDL | 76.3 | BDL | BDL | BDL |
TM03 | IWW | 525.3 | 146.2 | 187.9 | 453.3 | 474.9 | 60.2 | 10.6 | 10.7 | 0.9 | BDL | 35.4 | 1.8 | 55.1 | BDL | BDL | 0.3 |
TA04 | IWW | 2278.8 | 3358.1 | 150.7 | 582.8 | 4329.5 | 3097.1 | 7.4 | 28.6 | 10.1 | 3.3 | 77.1 | BDL | 234.0 | BDL | BDL | 1.1 |
TA05 | IWW | 74.3 | 1881.0 | 46.2 | 438.8 | 34.1 | 472.6 | 3.5 | 3.5 | 0.8 | 1.1 | 11.1 | BDL | 23.4 | BDL | 1.81 | 0.1 |
Detection Limits | 0.640 | 0.059 | 0.013 | 0.392 | 0.006 | 0.008 | 0.002 | 0.003 | 0.044 | 0.150 | 0.198 | 0.003 | 0.057 | 0.001 | 0.650 | 0.015 | |
WHO standards | 300 | 200 | - | - | 50 | 100 | - | 20 | 1300 | 70 | 5000 | 10 | - | 3 | 2 | 10 |
Coefficients Estimate | Coefficients Standard Error | t | p | |
---|---|---|---|---|
(Intercept) | 177.861 | 6.106 | 29.127 | <0.001 |
Lead | 17.364 | 7.075 | 2.454 | 0.034 |
Zinc | −1.715 | 0.650 | −2.638 | 0.025 |
Arsenic | −2.631 | 0.248 | −10.605 | <0.001 |
Copper | −3.361 | 1.779 | −1.890 | 0.088 |
Manganese | −0.013 | 0.006 | −2.058 | 0.067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, L.; Rampley, C.; Abebe, Y.; Bussi, G.; To, T.Q.; Ager, D.; Whitehead, P.G. Assessing Heavy Metal Contamination Using Biosensors and a Multi-Branch Integrated Catchment Model in the Awash River Basin, Ethiopia. Water 2023, 15, 4073. https://doi.org/10.3390/w15234073
Jin L, Rampley C, Abebe Y, Bussi G, To TQ, Ager D, Whitehead PG. Assessing Heavy Metal Contamination Using Biosensors and a Multi-Branch Integrated Catchment Model in the Awash River Basin, Ethiopia. Water. 2023; 15(23):4073. https://doi.org/10.3390/w15234073
Chicago/Turabian StyleJin, Li, Cordelia Rampley, Yosef Abebe, Gianbattista Bussi, Trang Quynh To, Duane Ager, and Paul G. Whitehead. 2023. "Assessing Heavy Metal Contamination Using Biosensors and a Multi-Branch Integrated Catchment Model in the Awash River Basin, Ethiopia" Water 15, no. 23: 4073. https://doi.org/10.3390/w15234073
APA StyleJin, L., Rampley, C., Abebe, Y., Bussi, G., To, T. Q., Ager, D., & Whitehead, P. G. (2023). Assessing Heavy Metal Contamination Using Biosensors and a Multi-Branch Integrated Catchment Model in the Awash River Basin, Ethiopia. Water, 15(23), 4073. https://doi.org/10.3390/w15234073