Microplastic Distribution and Characteristics in Common Carp (Cyprinus carpio) from Han River, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Area and Collection
2.2. Reagents and Experiments
2.3. Analysis
2.4. Quality Assurance & Quality Control (QA/QC)
3. Results and Discussion
3.1. MP Concentration
3.2. MP Distribution (Shape, Type, and Size)
3.3. MP Distribution and Potential Risk
3.4. Need for Continuous Monitoring of MPs in Fish
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tiseo, I. Available online: statista.com/topics/5401/global-plastic-waste/#topicOverview (accessed on 19 July 2023).
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Eriksen, M.; Mason, S.; Wilson, S.; Box, C.; Zellers, A.; Edwards, W.; Farley, H.; Amato, S. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 2013, 77, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Borrelle, S.B.; Ringma, J.; Law, K.L.; Monnahan, C.C.; Lebreton, L.; McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G.H.; Hilleary, M.A.; et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 2020, 369, 1515–1518. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, S. Effects of microplastics on fish and in human health. Front. Environ. Sci. 2022, 10, 827289. [Google Scholar] [CrossRef]
- Peters, C.A.; Bratton, S.P. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA. Environ. Pollut. 2016, 210, 380–387. [Google Scholar] [CrossRef]
- Shim, W.J.; Hong, S.H.; Eo, S.E. Identification methods in microplastic analysis: A review. Anal. Methods 2017, 9, 1301–1384. [Google Scholar] [CrossRef]
- Moore, C.J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ. Res. 2008, 108, 131–139. [Google Scholar] [CrossRef]
- Alimba, C.G.; Faggio, C. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environ. Toxicol. Pharmacol. 2019, 68, 61–74. [Google Scholar] [CrossRef]
- Batel, A.; Linti, F.; Scherer, M.; Erdinger, L.; Braunbeck, T. Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. Environ. Toxicol. Chem. 2016, 35, 1656–1666. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, F.; Hassan Kazmi, S.S.U.; Zhao, Y.; Chen, M.; Wang, J. A review of microplastic pollution in seawater, sediments and organisms of the Chinese coastal and marginal seas. Chemosphere 2022, 286, 131677. [Google Scholar] [CrossRef]
- Liebmann, B.; Köppel, S.; Königshofer, P.; Bucsics, T.; Reiberger, T.; Schwabl, P. Assessment of microplastic concentration in human stool. In Proceedings of the UEG Week 2018, Vienna, Australia, 20–24 October 2018. [Google Scholar]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- De Sá, L.C.; Oliveira, M.; Ribeiro, F.; Rocha, T.L.; Futter, M.N. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Sci. Total. Environ. 2018, 645, 1029–1039. [Google Scholar] [CrossRef]
- Alak, G.; Uçar, A.; Parlak, V.; Atamanalp, M. Identification, characterisation of microplastic and their effects on aquatic organisms. Chem. Ecol. 2022, 38, 967–987. [Google Scholar] [CrossRef]
- Ma, H.; Pu, S.; Liu, S.; Bai, Y.; Mandal, S.; Xing, B. MPs in aquatic environments: Toxicity to trigger ecological consequences. Environ. Pollut. 2020, 261, 114089. [Google Scholar] [CrossRef]
- Alfaro-Núñez, A.; Astorga, D.; Cáceres-Farías, L.; Bastidas, L.; Villegas, C.S.; Macay, K.; Christensen, J.H. Microplastic pollution in seawater and marine organisms across the Tropical Eastern Pacific and Galápagos. Sci. Rep. 2021, 11, 6424. [Google Scholar] [CrossRef]
- Goswami, P.; Vinithkumar, N.V.; Dharani, G. First evidence of microplastics bioaccumulation by marine organisms in the Port Blair Bay, Andaman Islands. Mar. Pollut. Bull. 2020, 155, 111163. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Li, B.; Jong, M.C.; Ma, C.; Zuo, C.; Chen, Q.; Shi, H. Process-oriented impacts of microplastic fibers on behavior and histology of fish. J. Hazard. Mater. 2023, 448, 130856. [Google Scholar] [CrossRef] [PubMed]
- Subaramaniyam, U.; Allimuthu, R.S.; Vappu, S.; Ramalingam, D.; Balan, R.; Paital, B.; Panda, N.; Rath, P.K.; Ramalingam, N.; Sahoo, D.K. Effects of microplastics, pesticides and nano-materials on fish health, oxidative stress and antioxidant defense mechanism. Front. Physiol. 2023, 14, 1217666. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Ribeiro, A.; Hylland, K.; Guilhermino, L. Single and combined effects of microplastics and pyrene on juveniles (0+ group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Ecol. Indic. 2013, 34, 641–647. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Vieira, L.R.; Branco, V.; Figueiredo, N.; Carvalho, F.; Carvalho, C.; Guilhermino, L. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquat. Toxicol. 2018, 195, 49–57. [Google Scholar] [CrossRef]
- De Sá, L.C.; Luís, L.G.; Guilhermino, L. Effects of MPs on juveniles of the common goby (Pomatoschistus microps): Confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ. Pollut. 2015, 196, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Güven, O.; Gökdağ, K.; Jovanović, B.; Kıdeyş, A.E. Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish. Environ. Pollut. 2017, 223, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Qiao, R.; An, H.; Zhang, Y. Influence of MPs on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio). Chemosphere 2018, 202, 514–520. [Google Scholar] [CrossRef]
- Karin, M.; Mikael, T.E.; Lars-Anders, H.; Sara, L.; Anders, M.; Tommy, C. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles. Environ. Sci. Technol. 2015, 49, 553–561. [Google Scholar]
- Fossi, M.; Pedà, C.; Compa, M.; Tsangaris, C.; Alomar, C.; Claro, F.; Ioakeimidis, C.; Galgani, F.; Hema, T.; Deudero, S.; et al. Bioindicators for monitoring marine litter ingestion and its impact on Mediterranean biodiversity. Environ. Pollut. 2018, 237, 1023–1040. [Google Scholar] [CrossRef]
- Wright, S.L.; Kelly, F.J. Plastic and human health: A micro issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Vethaak, D.A.; Lavorante, B.R.B.O.; Lundebye, A.-K.; Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 2018, 133, 336–348. [Google Scholar] [CrossRef]
- Kumar, V.; Umesh, M.; Chakraborty, P.; Sharma, P.; Sarojini, S. Origin, ecotoxicity, and analytical methods for microplastic detection in aquatic systems. TrAC Trends Anal. Chem. 2023, 170, 117392. [Google Scholar] [CrossRef]
- Zakeri, M.; Naji, A.; Akbarzadeh, A.; Uddin, S. Microplastic ingestion in important commercial fish in the southern Caspian Sea. Mar. Pollut. Bull. 2020, 160, 111598. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Patimar, R. Ecological risk assessment of heavy metals in surface sediments from the Gorgan Bay, Caspian Sea. Mar. Pollut. Bull. 2018, 137, 662–667. [Google Scholar] [CrossRef]
- Rodrigues, J.P.; Duarte, A.C.; Santos-Echeandia, J. Significance of interactions between microplastics and POPs in the marine environment: A critical overview. Trends Anal. Chem. 2019, 111, 252–260. [Google Scholar] [CrossRef]
- Stockholm Convention, UNEP, Marine Plastic Litter and Microplastics, Stockholm Convention on Persistent Organic Pollutants. 2018. Available online: UNEP-POPS-PUB-LEAFLET-Brochure-MarineLitter-2018.English.pdf (accessed on 5 September 2023).
- Rubin, A.E.; Zucker, I. Interactions of microplastics and organic compounds in aquatic environments: A case study of augmented joint toxicity. Chemosphere 2022, 289, 133212. [Google Scholar] [CrossRef] [PubMed]
- Im, J.K.; Yu, S.J.; Kim, S.J.; Kim, S.H.; Noh, H.R.; Kim, M.K. Occurrence, potential sources, and risk assessment of volatile organic compounds in the Han River basin, South Korea. Int. J. Environ. Res. Publ. Health 2021, 18, 3727. [Google Scholar] [CrossRef] [PubMed]
- Korea Waste Association. Available online: http://www.kwaste.or.kr/bbs/content.php?co_id=sub040102 (accessed on 11 October 2023).
- Ministry of Environment. National Status of Public Wastewater Treatment Facility in Korea; Ministry of Environment: Sejong, Repoublic of Korea, 2021. [Google Scholar]
- KS M 0024; General Rules for Infrared Spectrophotometric Analysis. Korean Standards Service Network: Seoul, Republic of Korea, 2017.
- Valeria, H.; Lars, G.; Richard, C.T.; Martin, T. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar]
- Roch, S.; Walter, T.; Ittner, L.D.; Friedrich, C.; Brinker, A. A systematic study of the microplastic burden in freshwater fishes of south-western Germany—Are we searching at the right scale? Sci. Total Environ. 2019, 689, 1001–1011. [Google Scholar] [CrossRef]
- Tien, C.J.; Wang, Z.X.; Chen, C.S. MPs in water, sediment and fish from the Fengshan River system: Relationship to aquatic factors and accumulation of polycyclic aromatic hydrocarbons by fish. Environ. Pollut. 2020, 265, 114962. [Google Scholar] [CrossRef]
- Park, T.J.; Kim, M.K.; Lee, S.H.; Lee, Y.S.; Kim, M.J.; Song, H.Y.; Park, J.H.; Zoh, K.D. Occurrence and characteristics of microplastics in fish of the Han River, South Korea: Factors affecting microplastic abundance in fish. Environ. Res. 2022, 206, 112647. [Google Scholar] [CrossRef]
- Incheon City. Environmental Investigation from Han River Estuary. 2020. Available online: https://www.incheon.go.kr/IC010205/view?repSeq=DOM_0000000002052475&curPage=2&beginDt=&srchRepTitle=%ED%95%9C%EA%B0%95%ED%95%98%EA%B5%AC&srchRepContents=&endDt=&srchMainManagerDeptNm= (accessed on 5 September 2023).
- Kyeongin News. 2022. Available online: kyeongin.com/main/view.php?key=20220616010002881 (accessed on 25 August 2023).
- Carbery, M.; O’Connor, W.; Palanisami, T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ. Int. 2018, 115, 400–409. [Google Scholar] [CrossRef]
- Park, T.J.; Lee, S.H.; Lee, M.S.; Lee, J.K.; Lee, S.H.; Zoh, K.D. Occurrence of microplastics in the Han River and riverine fish in South Korea. Sci. Total Environ. 2020, 708, 134535. [Google Scholar] [CrossRef]
- Greenpeace. Available online: https://www.greenpeace.org/static/planet4-korea-stateless/2023/03/20631b9b-2023-%ED%94%8C%EB%9D%BC%EC%8A%A4%ED%8B%B1-%EB%8C%80%ED%95%9C%EB%AF%BC%EA%B5%AD2.0-%EB%B3%B4%EA%B3%A0%EC%84%9C_%EC%B5%9C%EC%A2%85_%EC%A0%80%EC%9A%A9%EB%9F%89.pdf (accessed on 25 September 2023).
- Hong, J.-H.; Lee, J.-H.; Ha, H.-J.; Lee, J.-H.; Oh, S.-R.; Lee, Y.-M.; Lee, M.-Y.; Zoh, K.-D. Occurrence and sources of synthetic musk fragrances in the sewage treatment plants and the Han River, Korea. Water 2021, 13, 392. [Google Scholar] [CrossRef]
- Park, T.J.; Kim, M.K.; Lee, S.H.; Kim, M.J.; Lee, Y.S.; Lee, B.M.; Seong, K.S.; Park, J.H.; Zoh, K.D. Temporal and spatial distribution of microplastic in the sediment of the Han River, South Korea. Chemosphere 2023, 317, 137831. [Google Scholar] [CrossRef] [PubMed]
- Zhengkun, P.; Chaonan, Z.; Shaodan, W.; Di, S.; Aiguo, Z.; Shaolin, X.; Guohuan, X.; Jixing, Z. Occurrence of microplastics in the gastrointestinal tract and gills of fish from Guangdong, South China. J. Mar. Sci. Eng. 2021, 9, 981. [Google Scholar]
- Barboza, L.G.A.; Lopes, C.; Oliveira, P.; Bessa, F.; Otero, V.; Henriques, B.; Raimundo, J.; Caetano, M.; Vale, C.; Guilhermino, L. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci. Total Environ. 2020, 717, 134625. [Google Scholar] [CrossRef]
- Zeytin, S.; Wagner, G.; Mackay-Roberts, N.; Gerdts, G.; Schuirmann, E.; Klockmann, S.; Slater, M. Quantifying microplastic translocation from feed to the fillet in European sea bass Dicentrarchus labrax. Mar. Pollut. Bull. 2020, 156, 111210. [Google Scholar] [CrossRef]
- Di Giacinto, F.; Di Renzo, L.; Mascilongo, G.; Notarstefano, V.; Gioacchini, G.; Giorgini, E.; Bogdanović, T.; Petričević, S.; Listeš, E.; Brkljača, M.; et al. Detection of microplastics, polymers and additives in edible muscle of swordfish (Xiphias gladius) and bluefin tuna (Thunnus thynnus) caught in the Mediterranean Sea. J. Sea Res. 2023, 192, 102359. [Google Scholar] [CrossRef]
- Ribeiro, C.D.S.; Casillas, Y.B.; Fernandez, A.; Caballeroa, M.J. An end to the controversy over the microscopic detection and effects of pristine microplastics in fish organs. Sci. Rep. 2020, 10, 12434. [Google Scholar]
- Roch, S.; Friedrich, C.; Brinker, A. Uptake routes of microplastics in fishes: Practical and theoretical approaches to test existing theories. Sci. Rep. 2020, 10, 3896. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Soltani, N.; Keshavarzi, B.; Moore, F.; Turner, A.; Hassanaghaei, M. Microplastics in different tissues of fish and prawn from the Musa Estuary, Persian Gulf. Chemosphere 2018, 205, 80–87. [Google Scholar] [CrossRef]
- De Vries, A.N.; Govoni, D.; Arnason, S.H.; Carlsson, P. Microplastic ingestion by fish: Body size, condition factor, and gut fullness are not related to the amount of plastic consumed. Mar. Pollut. Bull. 2020, 151, 110827. [Google Scholar] [CrossRef]
- Jung, J.W.; Park, J.W.; Eo, S.; Choi, J.; Song, Y.K.; Cho, Y.; Hong, S.H.; Shim, W.J. Ecological risk assessment of microplastics in coastal, shelf, and deep sea waters with a consideration of environmentally relevant size and shape. Environ. Pollut. 2021, 270, 116217. [Google Scholar] [CrossRef]
- Parvin, F.; Jannat, S.; Tareq, S.M. Abundance, characteristics, and variation of microplastics in different freshwater fish species from Bangladesh. Sci. Total Environ. 2021, 784, 147137. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.R.; Jiang, M.; Wei, Q.H.; Leff, L.G. Microplastic surface properties affect bacterial colonization in freshwater. J. Basic Microbiol. 2019, 59, 54–61. [Google Scholar] [CrossRef] [PubMed]
- McNeish, R.E.; Kim, L.H.; Barrett, H.A.; Mason, S.A.; Kelly, J.J.; Hoellein, T.J. Microplastic in riverine fish is connected to species traits. Sci. Rep. 2018, 8, 11639. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, C.; Pan, Z.; Sun, D.; Zhou, A.; Xie, S.; Wang, J.; Zou, J. Microplastics in wild freshwater fish of different feeding habits from Beijiang and Pearl River Delta regions, south China. Chemosphere 2020, 258, 127345. [Google Scholar] [CrossRef]
- Roch, S.; Ros, A.F.H.; Friedrich, C.; Brinker, A. Microplastic evacuation in fish is particle size-dependent. Freshw. Biol. 2021, 66, 926–935. [Google Scholar] [CrossRef]
- Razegheh, A.; Farid, M.; Behnam, K. Investigating a probable relationship between microplastics and potentially toxic elements in fish muscles from northeast of Persian Gulf. Environ. Pollut. 2018, 232, 154–163. [Google Scholar]
- Yi, S.R. Analysis of Resource Circulation Policies in the Post-COVID-19 Era. 2021, pp. 11–38. Available online: https://www.kci.go.kr/kciportal/landing/article.kci?arti_id=ART002790468 (accessed on 5 September 2023). (In Korean with English Abstract).
Tissue | MPs/Fish | MPs/g (SD) | Shape (%) | Most Abundant Polymer * Type (%) | Most Abundant MP Size (µm) (%) |
---|---|---|---|---|---|
Gill (n = 15) | 316 | 1.60 ± 1.69 | Fragment (95) Fiber (5) | PE (85) | Fragment: 20–50 (55) Fiber: 50–100 (41) |
Intestine (n = 15) | 545 | 1.34 ± 1.64 | Fragment (86) Fiber (14) | PP (29), PS (29) | Fragment: 50–100 (33) Fiber: 600–700 (8) |
Muscle (n = 10) | 30 | 0.12 ± 0.13 | Fragment (93) Fiber (7) | PEVA (53) | Fragment: 20–50 (50) Fiber: ≥1000 (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.-K.; Lee, J.; Lee, S.Y.; Kim, T.K.; Chung, D.; Seo, J. Microplastic Distribution and Characteristics in Common Carp (Cyprinus carpio) from Han River, South Korea. Water 2023, 15, 4113. https://doi.org/10.3390/w15234113
Oh J-K, Lee J, Lee SY, Kim TK, Chung D, Seo J. Microplastic Distribution and Characteristics in Common Carp (Cyprinus carpio) from Han River, South Korea. Water. 2023; 15(23):4113. https://doi.org/10.3390/w15234113
Chicago/Turabian StyleOh, Jung-Keun, Jangho Lee, Soo Yong Lee, Tae Kyung Kim, David Chung, and Jinwon Seo. 2023. "Microplastic Distribution and Characteristics in Common Carp (Cyprinus carpio) from Han River, South Korea" Water 15, no. 23: 4113. https://doi.org/10.3390/w15234113
APA StyleOh, J. -K., Lee, J., Lee, S. Y., Kim, T. K., Chung, D., & Seo, J. (2023). Microplastic Distribution and Characteristics in Common Carp (Cyprinus carpio) from Han River, South Korea. Water, 15(23), 4113. https://doi.org/10.3390/w15234113