Optimal Selection and Operation of Pumps as Turbines for Maximizing Energy Recovery
Abstract
:1. Introduction
- Validation of the methodology proposed in Manservigi et al. [31]. The validation is performed by means of two sites that differ in both flow rate and head characteristics by strengthening the general validity of the proposed methodology;
- Validation by means of the experimental characteristic curves of a fleet of forty-five PATs so that the recovered energy is calculated by exploiting the entire operating range of each turbomachine. Thus, this paper differs from state-of-the-art studies, which usually present the validation of the respective methodologies by means of predicted PAT characteristic curves;
- Operation of each pair of PATs is finely scheduled to maximize the recovered energy (15 min step time). Instead, some studies assume that each PAT continuously operates over a longer time slot (e.g., night or day).
2. PAT Selection and Control
2.1. PAT Selection
2.2. PAT Control
3. Case Study
3.1. Sites
3.2. Pumps as Turbines
3.3. Layout of Installation
4. Results
4.1. Single PAT
4.1.1. PAT Selection
4.1.2. PAT Operation
4.2. Pair of PATs in Parallel
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
D | diameter |
E | energy |
g | gravitational acceleration |
H | head |
N | rotational speed |
P | power |
PSI | PAT–site index |
Q | flow rate |
t | time |
η | efficiency |
ρ | density |
Subscripts | |
BEP | best efficiency point |
max | maximum value |
mean | mean value |
P | pump mode |
r | runaway condition |
rec | recovered |
ref | reference value |
T | turbine mode |
un | unexploited |
Acronyms | |
BC | Bypass Control |
BEP | Best Efficiency Point |
PAT | Pump As Turbine |
PRV | Pressure Reducing Valve |
PSI | PAT–Site Index |
TC | Throttle Control |
Appendix A
PUMP | PAT | ||||||
---|---|---|---|---|---|---|---|
PAT # | D [m] | N [rpm] | QBEP [L/s] | HBEP [m] | QBEP [L/s] | HBEP [m] | Ref. |
1 | 0.160 | 600 | 2.96 | 1.36 | 5.01 | 3.80 | [45] |
2 | 0.160 | 900 | 3.98 | 2.95 | 5.99 | 5.51 | [45] |
3 | 0.125 | 600 | 2.86 | 0.96 | 7.04 | 4.62 | [45] |
4 | 0.160 | 1200 | 4.33 | 5.65 | 7.08 | 8.45 | [45] |
5 | 0.160 | 1500 | 5.95 | 8.04 | 9.07 | 13.22 | [45] |
6 | 0.200 | 1450 | 5.87 | 11.51 | 9.60 | 25.14 | [23] |
7 | 0.250 | 1450 | 6.76 | 19.57 | 9.63 | 37.17 | [23] |
8 | 0.125 | 1200 | 5.03 | 2.90 | 9.13 | 7.60 | [45] |
9 | 0.125 | 900 | 3.98 | 1.70 | 7.99 | 5.86 | [45] |
10 | 0.160 | 1800 | 6.97 | 11.53 | 11.02 | 19.47 | [45] |
11 | 0.315 | 1450 | 7.54 | 31.38 | 14.10 | 110.64 | [23] |
12 | 0.125 | 1800 | 5.97 | 7.18 | 11.05 | 11.66 | [45] |
13 | 0.160 | 2100 | 8.00 | 15.66 | 13.09 | 27.06 | [45] |
14 | 0.160 | 2400 | 9.97 | 19.48 | 15.00 | 35.38 | [45] |
15 | 0.125 | 600 | 5.49 | 0.76 | 9.02 | 1.39 | [45] |
16 | 0.125 | 1500 | 5.98 | 4.55 | 10.05 | 9.33 | [45] |
17 | 0.160 | 2700 | 10.96 | 24.92 | 16.02 | 41.14 | [45] |
18 | 0.125 | 2400 | 7.99 | 12.20 | 15.00 | 20.80 | [45] |
19 | 0.125 | 2100 | 7.02 | 9.40 | 13.10 | 15.92 | [45] |
20 | 0.335 | 1450 | 7.99 | 31.29 | 13.71 | 99.54 | [23] |
21 | 0.125 | 2700 | 9.00 | 15.34 | 16.03 | 23.99 | [45] |
22 | 0.125 | 900 | 7.96 | 1.64 | 13.98 | 3.20 | [45] |
23 | 0.160 | 1450 | 9.72 | 8.55 | 15.27 | 13.10 | [23] |
24 | 0.250 | 1450 | 18.58 | 17.97 | 23.01 | 32.66 | [23] |
25 | 0.125 | 1200 | 11.00 | 2.84 | 18.10 | 5.38 | [45] |
26 | 0.125 | 1500 | 13.86 | 4.28 | 21.95 | 7.72 | [45] |
27 | 0.125 | 1800 | 16.61 | 6.13 | 25.95 | 10.97 | [45] |
28 | 0.200 | 1450 | 23.28 | 12.07 | 31.25 | 17.56 | [23] |
29 | 0.125 | 2100 | 19.00 | 8.38 | 29.90 | 14.48 | [45] |
30 | 0.250 | 1450 | 26.77 | 19.70 | 33.15 | 30.15 | [23] |
31 | 0.220 | 1450 | 24.15 | 14.54 | 32.70 | 19.25 | [23] |
32 | 0.193 | 1450 | 14.00 | 10.00 | 21.00 | 14.70 | [38] |
33 | 0.125 | 2400 | 21.79 | 10.79 | 33.99 | 18.61 | [45] |
34 | 0.125 | 2700 | 24.47 | 13.68 | 39.23 | 24.69 | [45] |
35 | 0.269 | 1450 | 40.25 | 22.26 | 45.82 | 24.40 | [44] |
36 | 0.219 | 1450 | 41.68 | 13.78 | 50.33 | 17.29 | [44] |
37 | 0.160 | 1450 | 41.98 | 7.91 | 48.44 | 10.04 | [23] |
38 | 0.200 | 1450 | 41.68 | 12.96 | 50.00 | 18.83 | [23] |
39 | 0.185 | 1450 | 41.62 | 7.72 | 59.83 | 12.93 | [44] |
40 | 0.200 | 1450 | 70.04 | 13.99 | 76.09 | 11.22 | [23] |
41 | 0.400 | 800 | 60.21 | 17.59 | 76.18 | 22.11 | [34] |
42 | 0.400 | 1000 | 75.14 | 26.90 | 96.60 | 34.71 | [34] |
43 | 0.224 | 1050 | 72.36 | 5.41 | 94.39 | 8.42 | [44] |
44 | 0.400 | 1200 | 102.12 | 36.21 | 98.70 | 44.13 | [34] |
45 | 0.400 | 1520 | 129.79 | 56.90 | 107.07 | 57.30 | [34] |
References
- Ali, A.; Yuan, J.; Javed, H.; Si, Q.; Fall, I.; Ohiemi, I.E.; Osman, F.K.; Islam, R. Small hydropower generation using pump as turbine; a smart solution for the development of Pakistan’s energy. Heliyon 2023, 9, 14993. [Google Scholar] [CrossRef] [PubMed]
- Nejadali, J. Analysis and evaluation of the performance and utilization of regenerative flow pump as turbine (PAT) in Pico-hydropower plants. Energy Sustain. Dev. 2021, 64, 103–117. [Google Scholar] [CrossRef]
- Carravetta, A.; Derakhshan Houreh, S.; Ramos, H.M. Pumps as Turbines, 1st ed.; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Spedaletti, S.; Rossi, M.; Comodi, G.; Salvi, D.; Renzi, M. Energy recovery in gravity adduction pipelines of a water supply system (WSS) for urban areas using Pumps-as-Turbines (PaTs). Sustain. Energy Technol. Assess. 2021, 45, 101040. [Google Scholar] [CrossRef]
- Ramos, H.M.; Morani, M.C.; Pugliese, F.; Fecarotta, O. Integrated Smart Management in WDN: Methodology and Application. Water 2023, 15, 1217. [Google Scholar] [CrossRef]
- Le Marre, M.; Mandin, P.; Lanoisellé, J.; Zilliox, E.; Rammal, F.; Kim, M.; Inguanta, R. Pumps as turbines regulation study through a decision-support algorithm. Renew. Energy 2022, 194, 561–570. [Google Scholar] [CrossRef]
- Ávila, C.A.M.; Sánchez-Romero, F.; López-Jiménez, P.A.; Pérez-Sánchez, M. Optimization tool to improve the management of the leakages and recovered energy in irrigation water systems. Agric. Water Manag. 2021, 258, 107223. [Google Scholar] [CrossRef]
- Venturini, M.; Alvisi, S.; Simani, S.; Manservigi, L. Energy Production by Means of Pumps as Turbines in Water Distribution Networks. Energies 2017, 10, 1666. [Google Scholar] [CrossRef]
- Hanaei, S.; Lakzian, E. Numerical and experimental investigation of the effect of the optimal usage of pump as turbine instead of pressure-reducing valves on leakage reduction by genetic algorithm. Energy Convers. Manag. 2022, 270, 116253. [Google Scholar] [CrossRef]
- Postacchini, M.; Darvini, G.; Finizio, F.; Pelagalli, L.; Soldini, L.; Di Giuseppe, E. Hydropower generation through pump as turbine: Experimental study and potential application to small-scale WDN. Water 2020, 12, 958. [Google Scholar] [CrossRef]
- Postacchini, M.; Di Giuseppe, E.; Eusebi, A.L.; Pelagalli, L.; Darvini, G.; Cipolletta, G.; Fatone, F. Energy saving from small-sized urban contexts: Integrated application into the domestic water cycle. Renew. Energy 2022, 199, 1300–1317. [Google Scholar] [CrossRef]
- Sarbu, I.; Mirza, M.; Muntean, D. Integration of Renewable Energy Sources into Low-Temperature District Heating Systems: A Review. Energies 2022, 15, 6523. [Google Scholar] [CrossRef]
- García, A.M.; Gallagher, J.; Chacón, M.C.; Mc Nabola, A. The environmental and economic benefits of a hybrid hydropower energy recovery and solar energy system (PAT-PV), under varying energy demands in the agricultural sector. J. Clean. Prod. 2021, 303, 127078. [Google Scholar] [CrossRef]
- Ji, Y.; Ran, J.; Yang, Z.; Li, H.; Hao, X. Optimization of energy recovery turbine in demineralized water treatment system of power station by Box–Behnken Design method. Energy Rep. 2022, 8, 362–370. [Google Scholar] [CrossRef]
- Wang, H.; Wang, F.; Wang, B.; Wang, C.; Wu, J.; Lu, H. Gravity-induced virtual clocking effect in large-capacity/low-head pumped hydro energy storage system with horizontal shaft. Sustain. Energy Technol. Assess. 2023, 60, 103441. [Google Scholar] [CrossRef]
- Balacco, G.; Fiorese, G.D.; Alfio, M.R.; Totaro, V.; Binetti, M.; Torresi, M.; Stefanizzi, M. PaT-ID: A tool for the selection of the optimal pump as turbine for a water distribution network. Energy 2023, 282, 128366. [Google Scholar] [CrossRef]
- Marini, G.; Di Menna, F.; Maio, M.; Fontana, N. HYPER: Computer-Assisted Optimal Pump-as-Turbine (PAT) Selection for Microhydropower Generation and Pressure Regulation in a Water Distribution Network (WDN). Water 2023, 15, 2807. [Google Scholar] [CrossRef]
- European Commission. Proposal for a Directive of the European Parliament and of the Council on the Quality of Water Intended for Human Consumption (Recast); European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Stefanizzi, M.; Filannino, D.; Capurso, T.; Camporeale, S.M.; Torresi, M. Optimal hydraulic energy harvesting strategy for PaT installation in Water Distribution Networks. Appl. Energy 2023, 344, 121246. [Google Scholar] [CrossRef]
- Novara, D.; McNabola, A. Design and Year-Long Performance Evaluation of a Pump as Turbine (PAT) Pico-Hydropower Energy Recovery Device in a Water Network. Water 2021, 13, 3014. [Google Scholar] [CrossRef]
- Pugliese, F.; Giugni, M. An Operative Framework for the Optimal Selection of Centrifugal Pumps as Turbines (PATs) in Water Distribution Networks (WDNs). Water 2022, 14, 1785. [Google Scholar] [CrossRef]
- Nasir, A.; Dribssa, E.; Girma, M.; Madessa, H.B. Selection and Performance Prediction of a Pump as a Turbine for Power Generation Applications. Energies 2023, 16, 5036. [Google Scholar] [CrossRef]
- Barbarelli, S.; Amelio, M.; Florio, G. Experimental activity at test rig validating correlations to select pumps running as turbines in microhydro plants. Energy Convers. Manag. 2017, 149, 781–797. [Google Scholar] [CrossRef]
- Kostner, M.K.; Zanfei, A.; Alberizzi, J.C.; Renzi, M.; Righetti, M.; Menapace, A. Micro hydro power generation in water distribution networks through the optimal pumps-as-turbines sizing and control. Appl. Energy 2023, 351, 121802. [Google Scholar] [CrossRef]
- Fernández García, I.; Ferras, D.; McNabola, A. Potential of energy recovery and water saving using micro-hydropower in rural water distribution networks. J. Water Resour. Plan. Manag. 2019, 145, 1–11. [Google Scholar] [CrossRef]
- Fernández García, I.; Mc Nabola, A. Maximizing hydropower generation in gravity water distribution networks: Determining the optimal location and number of pumps as turbines. J. Water Resour. Plan. Manag. 2020, 146, 04019066. [Google Scholar] [CrossRef]
- Pérez-Sánchez, M.; Sánchez-Romero, F.J.; López Jiménez, P.A.; Ramos, H.M. PATs selection towards sustainability in irrigation networks: Simulated annealing as a water management tool. Renew. Energy 2018, 116, 234–249. [Google Scholar] [CrossRef]
- Mercedes-García, A.V.; Sánchez-Romero, F.J.; López Jiménez, P.A.; Pérez-Sánchez, M. A new optimization approach for the use of hybrid renewable systems in the search of the zero net energy consumption in water irrigation systems. Renew. Energy 2022, 195, 853–871. [Google Scholar] [CrossRef]
- Chacón, M.C.; Rodríguez Díaz, J.A.; García Morillo, J.; McNabola, A. Pump-as-turbine selection methodology for energy recovery in irrigation networks: Minimising the payback period. Water 2019, 11, 149. [Google Scholar] [CrossRef]
- Pérez-Sánchez, M.; Sánchez-Romero, F.J.; Ramos, H.M.; López Jiménez, P.A. Optimization Strategy for Improving the Energy Efficiency of Irrigation Systems by Micro Hydropower: Practical Application. Water 2017, 9, 799. [Google Scholar] [CrossRef]
- Manservigi, L.; Venturini, M.; Losi, E. Optimal selection of pumps as turbines for maximizing electrical energy production. In Proceedings of the 100RES 2020—Applied Energy Symposium (ICAE) 100% RENEWABLE: Strategies, Technologies and Challenges for a Fossil Free Future, Pisa, Italy, 25–30 October 2020. [Google Scholar]
- Gulich, J.F. Centrifugal Pumps, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Kandi, A.; Moghimi, M.; Tahani, M.; Derakhshan, S. Efficiency Increase in Water Transmission Systems Using Optimized Selection of Parallel Pumps Running as Turbines. J. Water Resour. Plan. Manag. 2021, 147, 04021065. [Google Scholar] [CrossRef]
- Stefanizzi, M.; Capurso, T.; Balacco, G.; Torresi, M.; Binetti, M.; Piccinni, A.F.; Fortunato, B.; Camporeale, S.M. Preliminary assessment of a pump used as turbine in a water distribution network for the recovery of throttling energy. In Proceedings of the 12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC13, Lausanne, Switzerland, 8–12 April 2018. [Google Scholar]
- Creaco, E.; Campisano, A.; Fontana, N.; Marini, G.; Page, P.R.; Walski, T. Real time control of water distribution networks: A state-of-the-art review. Water Res. 2019, 161, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Castorino, G.A.M.; Manservigi, L.; Barbarelli, S.; Losi, E.; Venturini, M. Development and validation of a comprehensive methodology for predicting PAT performance curves. Energy 2023, 274, 127366. [Google Scholar] [CrossRef]
- Venturini, M.; Manservigi, L.; Alvisi, S.; Simani, S. Development of a physics-based model to predict the performance of pumps as turbines. Appl. Energy 2018, 213, 343–354. [Google Scholar] [CrossRef]
- Rossi, M.; Nigro, A.; Renzi, M. Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions. Appl. Energy 2019, 248, 555. [Google Scholar] [CrossRef]
- Cao, Z.; Deng, J.; Zhao, L.; Lu, L. Numerical Research of Pump-as-Turbine Performance with Synergy Analysis. Processes 2021, 9, 1031. [Google Scholar] [CrossRef]
- Venturini, M.; Alvisi, S.; Simani, S.; Manservigi, L. Comparison of Different Approaches to Predict the Performance of Pumps as Turbines (PATs). Energies 2018, 11, 1016. [Google Scholar] [CrossRef]
- Brisbois, A.; Dziedzic, R. Multivariate Regression Models for Predicting Pump-as-Turbine Characteristics. Water 2023, 15, 3290. [Google Scholar] [CrossRef]
- Yang, S.S.; Derakhshan, S.; Kong, F.Y. Theoretical, numerical and experimental prediction of pump as turbine performance. Renew. Energy 2012, 48, 507–513. [Google Scholar] [CrossRef]
- Yang, F.; Li, Z.; Cai, Y.; Jiang, D.; Tang, F.; Sun, S. Numerical Study for Flow Loss Characteristic of an Axial-Flow Pump as Turbine via Entropy Production Analysis. Processes 2022, 10, 1695. [Google Scholar] [CrossRef]
- Tan, X.; Engeda, A. Performance of centrifugal pumps running in reverse as turbine: Part II- systematic specific speed and specific diameter based performance prediction. Renew. Energy 2016, 99, 188–197. [Google Scholar] [CrossRef]
- Delgado, J.; Ferreira, J.P.; Covas, D.I.C.; Avellan, F. Variable speed operation of centrifugal pumps running as turbines. Experimental investigation. Renew. Energy 2019, 142, 437–450. [Google Scholar] [CrossRef]
Qmean [L/s] | Qmax [L/s] | Hmean [m] | Hmax [m] | Esite [MWh/Year] | |
---|---|---|---|---|---|
Site #1 | 117 | 303 | 12 | 16 | 115 |
Site #2 | 28 | 75 | 46 | 66 | 101 |
Best PAT | Erec [kWh] | Erec/Esite [%] | |
---|---|---|---|
Site #1 | #40 | 51,341 | 44.8% |
Site #2 | #30 | 40,575 | 40.3% |
Best Pair of PAT | Erec [kWh] | Erec/Esite [%] | |
---|---|---|---|
Site #1 | #40, #36 | 53,695 | 46.9% |
Site #2 | #30, #17 | 49,605 | 49.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manservigi, L.; Venturini, M.; Losi, E.; Castorino, G.A.M. Optimal Selection and Operation of Pumps as Turbines for Maximizing Energy Recovery. Water 2023, 15, 4123. https://doi.org/10.3390/w15234123
Manservigi L, Venturini M, Losi E, Castorino GAM. Optimal Selection and Operation of Pumps as Turbines for Maximizing Energy Recovery. Water. 2023; 15(23):4123. https://doi.org/10.3390/w15234123
Chicago/Turabian StyleManservigi, Lucrezia, Mauro Venturini, Enzo Losi, and Giulia Anna Maria Castorino. 2023. "Optimal Selection and Operation of Pumps as Turbines for Maximizing Energy Recovery" Water 15, no. 23: 4123. https://doi.org/10.3390/w15234123
APA StyleManservigi, L., Venturini, M., Losi, E., & Castorino, G. A. M. (2023). Optimal Selection and Operation of Pumps as Turbines for Maximizing Energy Recovery. Water, 15(23), 4123. https://doi.org/10.3390/w15234123