How Does Human Activity Shape the Largest Estuarine Bay of the Pearl River Estuary, South China (1964–2019)
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.2. Methods
4. Results
4.1. Planar Changes in Underwater Topography during Different Decades
4.1.1. Planar Changes to the Bay from 1964 to 1989
4.1.2. Planar Changes in the Bay from 1989 to 2007
4.1.3. Planar Changes in the Bay from 2007 to 2019
4.2. Long-Term Evolutionary Characteristics from 1964 to 2019
4.2.1. Long-Term Water Area and Volume Changes in the Bay
4.2.2. Silting and Scouring Characteristics during Different Decades
4.3. Aberrant Changes in Recent Years
4.4. Patterns of Morphological Change Obtained by EOF
5. Discussion
5.1. Impacts of Sediment Inputs
5.2. Impacts of Human Activities in Lingding Bay
5.2.1. Impacts of Shoal Reclamation
5.2.2. Impacts of Sand-Dredging in Lingding Bay
5.2.3. Impacts of Port and Waterway Construction
5.3. Sustainable Management of the Bay
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fanos, A.M. The impacts of human activities on the erosion and accretion of the Nile Delta coast. J. Coast. Res. 1995, 11, 821–833. [Google Scholar]
- Giosan, L.; Syvitski, J.; Constantinescu, S.; Day, J. Climate change: Protect the world’s deltas. Nature 2014, 516, 31–33. [Google Scholar] [CrossRef]
- Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 2019, 12, 7–21. [Google Scholar] [CrossRef]
- Guillen, J.; Palanque, A. A historical perspective of the morphological evolution in the lower Ebro River. Environ. Geol. 1997, 30, 174–180. [Google Scholar] [CrossRef]
- Komar, P.D. Coastal erosion-underlying factors and human impacts. Shore Beach 2000, 68, 3–16. [Google Scholar]
- Newton, A.; Harff, J.; You, Z.J.; Wolanski, E. Sustainability of future coasts and estuaries: A synthesis. Estuar. Coast. Shelf S. 2016, 183, 271–274. [Google Scholar] [CrossRef]
- Wu, Z.; Milliman, J.D.; Zhao, D.; Zhou, J.; Yao, C. Recent geomorphic change in LingDing Bay, China, in response to economic and urban growth on the Pearl River Delta, Southern China. Global Planet. Chang. 2014, 123, 1–12. [Google Scholar] [CrossRef]
- Chen, J.Y.; Chen, S.L. Estuarine and coastal challenge in China. Mar. Geol. Lett. 2002, 20, 174–181. (In Chinese) [Google Scholar]
- Dai, Z.J.; Liu, J.T.; Wen, W. Morphological evolution of the South Passage in the Changjiang (Yangtze River) estuary, China. Quat. Int. 2015, 380, 314–326. [Google Scholar] [CrossRef]
- Leonardi, N.; Kolker, A.S.; Fagherazzi, S. Interplay between river discharge and tides in a delta distributary. Adv. Water Resour. 2015, 80, 69–78. [Google Scholar] [CrossRef]
- Yang, L.Z.; Liu, F.; Gong, W.P.; Cai, H.Y.; Yu, F.; Pan, H. Morphological response of Lingding Bay in the Pearl River Estuary to human intervention in recent decades. Ocean Coast. Manag. 2019, 176, 1–10. [Google Scholar] [CrossRef]
- Liu, F.; Xie, R.; Luo, X.X.; Yang, L.Z.; Cai, H.Y.; Yang, Q.S. Stepwise adjustment of deltaic channels in response to human interventions and its hydrological implications for sustainable water managements in the Pearl River Delta, China. J. Hydrol. 2019, 573, 194–206. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Cheng, D.S.; Liu, C. Impacts of human activities on typical delta—I: The Yangzi River and Pearl River Delta. J. Sediment Res. 2005, 6, 76–80. [Google Scholar]
- Han, Z.; Xie, H.; Li, H.; Xie, M. Morphological Evolution of the Lingding Channel in the Pearl River Estuary over the Last Decades. J. Coast. Res. 2020, 37, 104–112. [Google Scholar] [CrossRef]
- Yue, P.J. Evolution and development trend of Lingding Bay. J. Waterw. Harb. 2001, 22, 73–79, 90. (In Chinese) [Google Scholar]
- Luo, X.L.; Zeng, E.Y.; Ji, R.Y.; Wang, C.P. Effects of in-channel sand excavation on the hydrology of the Pearl River Delta, China. J. Hydrol. 2007, 343, 230–239. [Google Scholar] [CrossRef]
- Liu, F.; Yuan, L.R.; Yang, Q.S.; Ou, S.Y.; Xie, L.; Cui, X. Hydrological responses to the combined influence of diverse human activities in the Pearl River delta, China. Catena 2014, 113, 41–55. [Google Scholar] [CrossRef]
- Chu, N.; Yao, P.; Ou, S.; Wang, H.; Yang, H.; Yang, Q. Response of tidal dynamics to successive land reclamation in the Lingding Bay over the last century. Coast. Eng. 2022, 173, 104095. [Google Scholar] [CrossRef]
- Hu, H.H.; Xu, Y.; Guan, M.K.; Jiang, Q.J. Analysis on morphological evolution of underwater delta in the Pearl River Estuary. J. Waterw. Harb. 2016, 37, 593–598. (In Chinese) [Google Scholar]
- Wu, C.S.; Yang, S.L.; Huang, S.C.; Mu, J.B. Delta changes in the Pearl River Estuary and its response to human activities (1954 to 2008). Quat. Int. 2016, 392, 147–154. [Google Scholar] [CrossRef]
- Liu, F.; Hu, S.; Guo, X.J.; Cai, H.Y.; Yang, Q.S. Recent changes in the sediment regime of the Pearl River (South China): Causes and implications for the Pearl River Delta. Hydrol. Process. 2018, 32, 1771–1785. [Google Scholar] [CrossRef]
- Li, C.C.; Lei, Y.P.; He, W.; Dai, Z.J. Evolutional processes of the Pearl River Estuary and its protective regulation and exploitation. J. Sediment Res. 2002, 3, 44–51. (In Chinese) [Google Scholar]
- Hu, D.L.; Yang, Q.S.; Wu, C.Y.; Bao, Y.; Ren, J. Changing water and sediment dynamics in Pearl River network and consequences on water and sediment regimes in the Lingdingyang Estuary. Adv. Water Sci. 2010, 21, 69–76. (In Chinese) [Google Scholar]
- Milne, J.A.; Sear, D.A. Modelling River Channel Topography Using GIS. Int. J. Geogr. Inf. Sci. 1997, 11, 499–519. [Google Scholar] [CrossRef]
- Han, Z.; Li, H.; Xie, H.; Yan, B.; Xie, M. Long-term geomorphological evolution of the mouth bar in the Modaomen Estuary of the Pearl River over the last 55 Years (1964–2019). Water 2022, 14, 90. [Google Scholar] [CrossRef]
- McFeeters, S.K. Use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1420–1432. [Google Scholar] [CrossRef]
- Dai, Z.J.; Fagherazzi, S.; Mei, X.F.; Chen, J.Y.; Meng, Y. Linking the infilling of the North Branch in the Changjiang (Yangtze) estuary to anthropogenic activities from 1958 to 2013. Mar. Geol. 2016, 379, 1–12. [Google Scholar] [CrossRef]
- Miller, J.K.; Dean, R.G. Shoreline variability via empirical orthogonal function analysis:part I temporal and spatial characteristics. Coast. Eng. 2007, 54, 111–131. [Google Scholar] [CrossRef]
- Lane, A. Bathymetric evolution of the Mersey estuary, UK, 1906-1997: Causes and effects. Estuar. Coast. Shelf Sci. 2004, 59, 249–263. [Google Scholar] [CrossRef]
- Mei, X.F.; Dai, Z.J.; Wei, W.; Li, W.H.; Wang, J.; Sheng, H. Secular bathymetric variations of the North Channel in the Changjiang (Yangtze) Estuary, China, 1880–2013: Causes and effects. Geomorphology 2018, 303, 30–40. [Google Scholar] [CrossRef]
- van Maren, D.S.; Oost, A.P.; Wang, Z.B.; Vos, P.C. The effect of land reclamations and sediment extraction on the suspended sediment concentration in the Ems Estuary. Mar. Geol. 2016, 376, 147–157. [Google Scholar] [CrossRef]
- Li, M.G.; Xin, W.J.; Xu, Q.; Han, X.J. Influence of Hong Kong-Zhuhai-Macao Bridge on hydrodynamic sediment environments and harbors and navigational channels in Lingdingyang Firth of the Pearl River. Port Waterw. Eng. 2017, 10, 67–73. (In Chinese) [Google Scholar]
- Han, Z.Y.; Ma, D.Q.; Ouyang, Q.A. Research on back siltation characteristics of Tonggu Channel in Shenzhen. J. Waterw. Harb. 2021, 42, 39–44. [Google Scholar]
- Li, W.; Cui, C.; Han, Z.; Xie, M. Cause Analysis of Abnormal Deposition of Hong Kong–Zhuhai–Macao Bridge in Pearl River Estuary, China. In Proceedings of the 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Beihai, China, 16–17 January 2021; pp. 792–795. [Google Scholar] [CrossRef]
- Li, Z.L. Three wars in Lingding Bay, documentary on the installation of the E15 immersed tunnel of the Hong Kong-Zhuhai-Macao Bridge. Constr. Archit. 2015, 19, 13–15. (In Chinese) [Google Scholar]
- Monge-Ganuzas, M.; Cearreta, A.; Evans, G. Morphodynamic consequences of dredging and dumping activities along the lower Oka estuary (Urdaibai Biosphere Reserve, southeastern Bay of Biscay, Spain). Ocean Coast. Manag. 2013, 77, 40–49. [Google Scholar] [CrossRef]
- Pan, L.Z.; Ding, P.X.; Ge, J.Z. Impacts of Deep Waterway Project on morphological changes within the North Passage of the Changjiang Estuary, China. J. Coast. Res. 2012, 284, 1165–1176. [Google Scholar] [CrossRef]
No. | Chart Name | Chart Scale | Publication Date | Measuring Date | Chart Datum | Chart Projection |
---|---|---|---|---|---|---|
1 | Chinese Chart No. 5713 (Neilinglingdao to Humen) | 1:50,000 at Lat. 26° | 1968 | 1964 | Theoretical depth datum | Mercator (BJ-1954) |
2 | Chinese Chart No. 15435 (Niutoudao to Neilinglingdao) | 1:50,000 at Lat. 22°16′ | 1979 | 1964 | Theoretical depth datum | Mercator (BJ-1954) |
3 | Chinese Chart No. 15445 (Neilinglingdao to Humen) | 1:50,000 at Lat. 22°35′ | 1984 | 1974 | Theoretical depth datum | Mercator (BJ-1954) |
4 | Chinese Chart No. 15435 (Guishandao to Neilinglingdao) | 1:50,000 at Lat. 22°16′ | 1986 | 1974 | Theoretical depth datum | Mercator (BJ-1954) |
5 | Chinese Chart No. 15445 (Neilinglingdao to Humen) | 1:50,000 at Lat. 22°35′ | 1991 | 1989 | Theoretical depth datum | Mercator (BJ-1954) |
6 | Chinese Chart No. 15435 (Niutoudao to Neilinglingdao) | 1:40,000 at Lat. 22°18′ | 1986 | 1989 | Theoretical depth datum | Mercator (BJ-1954) |
7 | Chinese Chart No. 380801 (Guishandao to Shajiao) | 1:75,000 at Lat. 22°27′ | 1999 | 1998 | Theoretical depth datum | Mecator (BJ-1954) |
8 | Bathymetric data provided by HBB | 1:10,000 | 2007 | Theoretical depth datum | BJ-1954 | |
9 | Bathymetric chart provided by SLAC | 1:10,000 | 2011 | Theoretical depth datum | BJ-1954 | |
10 | Bathymetric chart provided by SLAC | 1:10,000 | 2016 | Theoretical depth datum | BJ-1954 | |
11 | Chinese Chart No. 84206 (Guishandao to Shajiao) | 1:75,000 at Lat. 22°27′ | 2021 | 2018–2019 | Theoretical depth datum | Mercator (BJ-1954) |
No. | Sensor ID | Acquisition Date | Resolution (m) | Data Source |
---|---|---|---|---|
1 | Landsat4 MSS | 18 November 1975 | 78 | https://glovis.usgs.gov/, accessed on 16 October 2023 |
2 | Landsat5 TM | 24 November 1988 | 30 | https://glovis.usgs.gov/, accessed on 16 October 2023 |
3 | Landsat7 ETM | 4 November 1998 | 30 | https://glovis.usgs.gov/, accessed on 16 October 2023 |
4 | Landsat5 TM | 17 December 2008 | 30 | https://glovis.usgs.gov/, accessed on 16 October 2023 |
5 | Landsat8 OLI | 12 February 2018 | 30 | https://glovis.usgs.gov/, accessed on 16 October 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Z.; Wang, H.; Xie, H.; Li, H.; Li, W. How Does Human Activity Shape the Largest Estuarine Bay of the Pearl River Estuary, South China (1964–2019). Water 2023, 15, 4143. https://doi.org/10.3390/w15234143
Han Z, Wang H, Xie H, Li H, Li W. How Does Human Activity Shape the Largest Estuarine Bay of the Pearl River Estuary, South China (1964–2019). Water. 2023; 15(23):4143. https://doi.org/10.3390/w15234143
Chicago/Turabian StyleHan, Zhiyuan, Heng Wang, Hualiang Xie, Huaiyuan Li, and Wendan Li. 2023. "How Does Human Activity Shape the Largest Estuarine Bay of the Pearl River Estuary, South China (1964–2019)" Water 15, no. 23: 4143. https://doi.org/10.3390/w15234143
APA StyleHan, Z., Wang, H., Xie, H., Li, H., & Li, W. (2023). How Does Human Activity Shape the Largest Estuarine Bay of the Pearl River Estuary, South China (1964–2019). Water, 15(23), 4143. https://doi.org/10.3390/w15234143